English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2331-2339 DOI: 10.7536/PC220319 前一篇   后一篇

• 综述 •

单细胞水生生物金属纳米颗粒的定量分析

张丹丹1,2, 吴琪1,3, 曲广波1,2,3,*(), 史建波1,2,3, 江桂斌1   

  1. 1 中国科学院生态环境研究中心 环境化学与生态毒理学国家重点实验室 北京 100085
    2 中国科学院大学资源与环境学院 北京 100049
    3 中国科学院大学杭州高等研究院环境学院 杭州 310024
  • 收稿日期:2022-03-22 修回日期:2022-04-21 出版日期:2022-11-24 发布日期:2022-06-25
  • 通讯作者: 曲广波
  • 作者简介:

    曲广波 研究员,博士生导师。2011年博士毕业至今在中国科学院生态环境研究中心工作。2014年1月~2015年3月分别在美国印第安纳大学和迈阿密大学任访问学者和博士后。研究方向为新型污染物的转化分析与毒理。通过基于效应导向的分析技术与成组毒理学分析系统,对区域环境的暴露和效应风险进行评价并筛选效应污染物。在Chem. Rev., Angew. Chem. Int. Ed.,Environ. Sci. & Technol.ACS Nano等期刊发表SCI论文86篇。2017年获得"国家优秀青年基金"支持。

  • 基金资助:
    国家自然科学基金项目(21976189); 国家自然科学基金项目(22036002)

Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms

Dandan Zhang1,2, Qi Wu1,3, Guangbo Qu1,2,3(), Jianbo Shi1,2,3, Guibin Jiang1   

  1. 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085, China
    2 College of Resources and Environment, University of Chinese Academy of Sciences,Beijing 100049, China
    3 School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences,Hangzhou 310024, China
  • Received:2022-03-22 Revised:2022-04-21 Online:2022-11-24 Published:2022-06-25
  • Contact: Guangbo Qu
  • Supported by:
    National Natural Science Foundation of China(21976189); National Natural Science Foundation of China(22036002)

人类活动释放的金属纳米颗粒不可避免地进入水环境中。大量研究表明,金属纳米颗粒会对水生生物产生生殖毒性和遗传毒性等,金属纳米颗粒还可能沿着食物链传递,对环境生物和人类健康造成威胁。细胞内金属纳米颗粒定量分析是研究金属纳米颗粒生物效应的重要基础。此外,单细胞之间存在异质性,具有特殊生理特性的细胞个体可能影响细胞群体的命运。而基于细胞群体平均值的定量分析则忽略了细胞个体的异质性,遗漏了对群落具有重要功能的细胞群体信息。因此,在单细胞水平上定量分析水环境中底层营养级的单细胞微生物细胞内金属纳米颗粒,对认识金属纳米颗粒与水生生物的相互作用,评估其进入食物链的潜在风险至关重要。本文梳理了已用于单细胞水生生物体内金属纳米颗粒的单细胞定量分析方法,阐述了它们的工作原理和在相关研究中的应用,总结了各方法的优缺点,期望为今后相关研究的方法选择提供参考,最后展望了该领域未来的研究方向。

Metal nanoparticles released by human activities inevitably enter the aquatic environment. Numerous studies have shown that metal nanoparticles could induce reproductive toxicity and genetic toxicity in aquatic organisms. Furthermore, metal nanoparticles could be transmitted along the food chains which is a potential threat to human health. Quantitative analysis of intracellular metal nanoparticles is important for studying the biological effects of metal nanoparticles. In addition, there is heterogeneity among cells, and the individual cell with special physiological characteristics may influence or even determine the destiny of the cell population. However, most traditional methods for the quantitative determination of intracellular metal nanoparticles were based on the whole cell population whereas the heterogeneity of individual cells was neglected, which may result in the loss of significant information about cell populations that have important functions to the community. Therefore, the quantitative analysis of the intracellular metal nanoparticles in unicellular microorganisms, which locates at the bottom of the trophic level in the aquatic environment, is essential for understanding the interaction between metal nanoparticles and aquatic organisms and evaluating the potential risk of metal nanoparticles entering the food chain. In this review, we discuss the single-cell analysis methods for the quantitative determination of metal nanoparticles in aquatic unicellular organisms. The working principle and application of these methods and their pros and cons are summarized. This paper aims to provide a theoretical basis of the method selection for relevant studies in the future. Finally, we prospect the future research directions in this field according to the current research status.

Contents

1 Introduction

2 Quantitative methods based on fluorescence

2.1 Confocal laser scanning microscopy

2.2 Flow cytometry

3 Quantitative methods based on non-fluorescent microscopy

3.1 Scanning transmission electron microscopy

3.2 Hyperspectral imaging with enhanced darkfield microscopy

4 Quantitative methods based on mass spectrometry

4.1 Single cell inductively coupled plasma mass spectrometry

4.2 Mass cytometry

5 Conclusion and perspective

()
表1 本综述中提到的单细胞水生生物体内金属纳米颗粒的定量分析方法的应用概述
Table 1 Overview of the application of methods for quantitative analysis of metal nanoparticles in unicellular aquatic organisms mentioned in this review
表2 本综述中提到的单细胞定量分析方法之间优点和缺点的概述
Table 2 Overview of the advantage and disadvantage among single-cell quantitative analysis methods mentioned in this review
[1]
Gilroy K D, Ruditskiy A, Peng H C, Qin D, Xia Y N. Chem. Rev., 2016, 116(18): 10414.

doi: 10.1021/acs.chemrev.6b00211     pmid: 27367000
[2]
Pei P, Chen Y, Sun C X, Fan Y, Yang Y M, Liu X, Lu L F, Zhao M Y, Zhang H X, Zhao D Y, Liu X G, Zhang F. Nat. Nanotechnol., 2021, 16(9): 1011.

doi: 10.1038/s41565-021-00922-3     URL    
[3]
Price E, Gesquiere A J. Sci. Adv., 2020, 6(4): eaax2642.

doi: 10.1126/sciadv.aax2642     URL    
[4]
Shi T L, Hou X, Guo S Q, Zhang L, Wei C H, Peng T, Hu X G. Nat. Commun., 2021, 12(1): 493.

doi: 10.1038/s41467-020-20547-9     URL    
[5]
Pomerantseva E, Bonaccorso F, Feng X L, Cui Y, Gogotsi Y. Science, 2019, 366(6468): 969.

doi: 10.1126/science.aan8285    
[6]
Park K, Kuo Y, Shvadchak V, Ingargiola A, Dai X H, Hsiung L, Kim W, Zhou H, Zou P, Levine A J, Li J, Weiss S. Sci. Adv., 2018, 4(1): e1601453.

doi: 10.1126/sciadv.1601453     URL    
[7]
Song Y, Ozdemir E, Ramesh S, Adishev A, Subramanian S, Harale A, Albuali M, Fadhel B A, Jamal A, Moon D, Choi S H, Yavuz C T. Science, 2020, 368(6492): eabb5680.

doi: 10.1126/science.abb5680     URL    
[8]
Roach K A, Stefaniak A B, Roberts J R. J. Immunotoxicol., 2019, 16(1): 87.

doi: 10.1080/1547691X.2019.1605553     URL    
[9]
Aruoja V, Pokhrel S, Sihtmäe M, Mortimer M, Mädler L, Kahru A. Environ. Sci. Nano., 2015, 2(6): 630.

doi: 10.1039/C5EN00057B     URL    
[10]
Chen F R, Xiao Z G, Yue L, Wang J, Feng Y, Zhu X S, Wang Z Y, Xing B S. Environ. Sci. Nano., 2019, 6(4): 1026.

doi: 10.1039/C8EN01368C     URL    
[11]
Kim M S, Louis K M, Pedersen J A, Hamers R J, Peterson R E, Heideman W. Analyst, 2014, 139(5): 964.

doi: 10.1039/c3an01966g     pmid: 24384696
[12]
Yang W W, Wang Y, Huang B, Wang N X, Wei Z B, Luo J, Miao A J, Yang L Y. Environ. Sci. Technol., 2014, 48(13): 7568.

doi: 10.1021/es500694t     pmid: 24912115
[13]
Guo W B, Yang L Y, Miao A J. J. Hazard. Mater., 2021, 411: 125098.

doi: 10.1016/j.jhazmat.2021.125098     URL    
[14]
Haghighat F, Kim Y, Sourinejad I, Yu I J, Johari S A. Chemosphere, 2021, 262: 127805.

doi: 10.1016/j.chemosphere.2020.127805     URL    
[15]
Werlin R, Priester J H, Mielke R E, Krämer S, Jackson S, Stoimenov P K, Stucky G D, Cherr G N, Orias E, Holden P A. Nat. Nanotechnol., 2011, 6(1): 65.

doi: 10.1038/nnano.2010.251     pmid: 21170041
[16]
Abdolahpur Monikh F, Chupani L, Arenas-Lago D, Guo Z L, Zhang P, Darbha G K, Valsami-Jones E, Lynch I, Vijver M G, van Bodegom P M, Peijnenburg W J G M. Nat. Commun., 2021, 12(1): 899.

doi: 10.1038/s41467-021-21164-w     pmid: 33563998
[17]
Kuehr S, Diehle N, Kaegi R, Schlechtriem C. Environ. Sci. Eur., 2021, 33(1) : 35.

doi: 10.1186/s12302-021-00473-3     URL    
[18]
Tan L Y, Huang B, Xu S, Wei Z B, Yang L Y, Miao A J. Environ. Sci. Technol., 2016, 50(14): 7799.

doi: 10.1021/acs.est.6b01645     URL    
[19]
Briffa S M, Nasser F, Valsami-Jones E, Lynch I. Environ. Sci. Nano., 2018, 5(7): 1745.

doi: 10.1039/C8EN00063H     URL    
[20]
Yang M H, Lin C H, Chang L W, Lin P P. Methods Mol. Biol., 2012, 926: 345.

doi: 10.1007/978-1-62703-002-1_22     pmid: 22975974
[21]
Domingos R F, Simon D F, Hauser C, Wilkinson K J. Environ. Sci. Technol., 2011, 45(18): 7664.

doi: 10.1021/es201193s     pmid: 21842898
[22]
Zhang L Q, Wang W X. Environ. Sci. Technol., 2019, 53(1): 494.

doi: 10.1021/acs.est.8b04918     URL    
[23]
Brehm-Stecher B F, Johnson E A. Microbiol. Mol. Biol. Rev., 2004, 68(3): 538.

doi: 10.1128/MMBR.68.3.538-559.2004     URL    
[24]
Vanhecke D, Rodriguez-Lorenzo L, Clift M J D, Blank F, Petri-Fink A, Rothen-Rutishauser B. Nanomed., 2014, 9(12): 1885.

doi: 10.2217/nnm.14.108     URL    
[25]
Wei X, Lu Y, Zhang X, Chen M L, Wang J H. TrAC, Trends Anal. Chem., 2020, 127: 115886.
[26]
Brown M, Wittwer C. Clin. Chem., 2000, 46(8): 1221.

doi: 10.1093/clinchem/46.8.1221     URL    
[27]
Shapiro H M. J. Microbiol. Methods, 2000, 42(1): 3.

pmid: 11000426
[28]
Han M Y, Gao X H, Su J Z, Nie S M. Nat. Biotechnol., 2001, 19(7): 631.

pmid: 11433273
[29]
Rothen-Rutishauser B, Kuhn D A, Ali Z, Gasser M, Amin F, Parak W J, Vanhecke D, Fink A, Gehr P, Brandenberger C. Nanomed., 2014, 9(5): 607.

doi: 10.2217/nnm.13.24     URL    
[30]
Rodriguez-Lorenzo L, Fytianos K, Blank F, Garnier C V, Rothen-Rutishauser B, Petri-Fink A. Small, 2014, 10(7): 1341.

doi: 10.1002/smll.201302889     pmid: 24482355
[31]
Chastellain M, Petri A, Hofmann H. J. Colloid Interface Sci., 2004, 278(2): 353.

doi: 10.1016/j.jcis.2004.06.025     URL    
[32]
Hard R, Hipp J, Tangrea M A, Tomaszewski J E. Pathobiology of Human Disease. Eds.: McManus L M, Mitchell R N. Amsterdam: Elsevier, 2014. 3723.
[33]
Jiang X E, Röcker C, Hafner M, Brandholt S, Dörlich R M, Nienhaus G U. ACS Nano, 2010, 4(11): 6787.

doi: 10.1021/nn101277w     pmid: 21028844
[34]
Wu Q, Shi J B, Ji X M, Xia T, Zeng L, Li G T, Wang Y Y Y, Gao J, Yao L L, Ma J J, Liu X L, Liu N, Hu L G, He B, Liang Y, Qu G B, Jiang G B. ACS Nano, 2020, 14(10): 12828.

doi: 10.1021/acsnano.0c03587     URL    
[35]
Clift M J D, Rothen-Rutishauser B, Brown D M, Duffin R, Donaldson K, Proudfoot L, Guy K, Stone V. Toxicol. Appl. Pharmacol., 2008, 232(3): 418.

doi: 10.1016/j.taap.2008.06.009     URL    
[36]
Gottstein C, Wu G H, Wong B J, Zasadzinski J A. ACS Nano, 2013, 7(6): 4933.

doi: 10.1021/nn400243d     pmid: 23706031
[37]
Wang Y, Miao A J, Luo J, Wei Z B, Zhu J J, Yang L Y. Environ. Sci. Technol., 2013, 47(18): 10601.

doi: 10.1021/es4017188     URL    
[38]
Chithrani B D, Ghazani A A, Chan W C W. Nano Lett., 2006, 6(4): 662.

pmid: 16608261
[39]
Park J, Ha M K, Yang N, Yoon T H. Anal. Chem., 2017, 89(4): 2449.

doi: 10.1021/acs.analchem.6b04418     URL    
[40]
Wu Y, Ali M R K, Dansby K, El-Sayed M A. Anal. Chem., 2019, 91(22): 14261.

doi: 10.1021/acs.analchem.9b02248     URL    
[41]
Gupta G S, Kumar A, Shanker R, Dhawan A. Sci. Rep., 2016, 6: 31422.

doi: 10.1038/srep31422     URL    
[42]
Fan Y Y, Dong D F, Li Q L, Si H B, Pei H M, Li L, Tang B. Lab Chip, 2018, 18(8): 1151.

doi: 10.1039/C7LC01333G     URL    
[43]
Mullins J M. Methods in Molecular Biology. Eds.: Walker J M. Amsterdam: Springer, 2010. 181.
[44]
Blank H, Schneider R, Gerthsen D, Gehrke H, Jarolim K, Marko D. Nanotoxicology, 2014, 8(4): 433.

doi: 10.3109/17435390.2013.796535     URL    
[45]
Browning N D, Chisholm M F, Pennycook S J. Nature, 1993, 366(6451): 143.

doi: 10.1038/366143a0     URL    
[46]
LeBeau J M, Findlay S D, Allen L J, Stemmer S. Nano Lett., 2010, 10(11): 4405.

doi: 10.1021/nl102025s     pmid: 20945926
[47]
Mielke R E, Priester J H, Werlin R A, Gelb J, Horst A M, Orias E, Holden P A. Appl. Environ. Microbiol., 2013, 79(18): 5616.

doi: 10.1128/AEM.01680-13     URL    
[48]
Priester J H, Stoimenov P K, Mielke R E, Webb S M, Ehrhardt C, Zhang J P, Stucky G D, Holden P A. Environ. Sci. Technol., 2009, 43(7): 2589.

pmid: 19452921
[49]
Zamora-Perez P, Tsoutsi D, Xu R X, Rivera Gil P. Materials, 2018, 11(2): 243.

doi: 10.3390/ma11020243     URL    
[50]
Fairbairn N, Christofidou A, Kanaras A G, Newman T A, Muskens O L. Phys. Chem. Chem. Phys., 2013, 15(12): 4163.

doi: 10.1039/c2cp43162a     pmid: 23183927
[51]
Xiao L H, Yeung E S. Annu. Rev. Anal. Chem., 2014, 7: 89.

doi: 10.1146/annurev-anchem-071213-020125     URL    
[52]
Wang H H, Zhang T, Zhou X C. J. Phys.: Condens. Matter, 2019, 31(47): 473001.
[53]
Gao L, Smith R T. J. Biophotonics, 2015, 8(6): 441.

doi: 10.1002/jbio.201400051     URL    
[54]
Badireddy A R, Wiesner M R, Liu J. Environ. Sci. Technol., 2012, 46(18): 10081.

doi: 10.1021/es204140s     pmid: 22906208
[55]
Mortimer M, Gogos A, Bartolome N, Kahru A, Bucheli T D, Slaveykova V I. Environ. Sci. Technol., 2014, 48(15): 8760.

doi: 10.1021/es500898j     pmid: 25000358
[56]
Halter M, Bier E, DeRose P C, Cooksey G A, Choquette S J, Plant A L, Elliott J T. Cytometry A, 2014, 85(11): 978.

doi: 10.1002/cyto.a.22519     URL    
[57]
Petersen E J, Mortimer M, Burgess R M, Handy R, Hanna S, Ho K T, Johnson M, Loureiro S, Selck H, Scott-Fordsmand J J, Spurgeon D, Unrine J, van den Brink N W, Wang Y, White J, Holden P. Environ. Sci. Nano., 2019, 6(6): 1619.

doi: 10.1039/C8EN01378K     URL    
[58]
Yin L, Zhang Z, Liu Y Z, Gao Y, Gu J K. Analyst, 2019, 144(3): 824.

doi: 10.1039/C8AN01190G     URL    
[59]
Yu X X, He M, Chen B B, Hu B. Anal. Chim. Acta, 2020, 1137: 191.

doi: 10.1016/j.aca.2020.07.041     URL    
[60]
Li F M, Armstrong D W, Houk R S. Anal. Chem., 2005, 77(5): 1407.

doi: 10.1021/ac049188l     URL    
[61]
Corte-Rodríguez M, Álvarez-Fernández R, García-Cancela P, Montes-BayÓn M, Bettmer J. TrAC, Trends Anal. Chem., 2020, 132: 116042.
[62]
Wei X, Hu L L, Chen M L, Yang T, Wang J H. Anal. Chem., 2016, 88(24): 12437.

doi: 10.1021/acs.analchem.6b03810     URL    
[63]
Meyer S, LÓpez-Serrano A, Mitze H, Jakubowski N, Schwerdtle T. Metallomics, 2018, 10(1): 73.

doi: 10.1039/c7mt00285h     pmid: 29292446
[64]
Shen X, Zhang H T, He X L, Shi H L, Stephan C, Jiang H, Wan C H, Eichholz T. Anal. Bioanal. Chem., 2019, 411(21): 5531.

doi: 10.1007/s00216-019-01933-9     URL    
[65]
Gomez-Gomez B, Corte-Rodríguez M, Perez-Corona M T, Bettmer J, Montes-BayÓn M, Madrid Y. Anal. Chim. Acta, 2020, 1128: 116.

doi: S0003-2670(20)30707-8     pmid: 32825896
[66]
Merrifield R C, Stephan C, Lead J R. Environ. Sci. Technol., 2018, 52(4): 2271.

doi: 10.1021/acs.est.7b04968     pmid: 29400052
[67]
Shi J B, Ji X M, Wu Q, Liu H W, Qu G B, Yin Y G, Hu L G, Jiang G B. Anal. Chem., 2020, 92(1): 622.

doi: 10.1021/acs.analchem.9b03719     URL    
[68]
Lum J T, Leung K S. Anal. Chim. Acta, 2019, 1061: 50.

doi: 10.1016/j.aca.2019.02.042     URL    
[69]
Wang H, Chen B B, He M, Hu B. Anal. Chem., 2017, 89(9): 4931.

doi: 10.1021/acs.analchem.7b00134     pmid: 28397489
[70]
Yu X X, Chen B B, He M, Wang H, Hu B. Anal. Chem., 2019, 91(4): 2869.

doi: 10.1021/acs.analchem.8b04844     URL    
[71]
Yu X X, Chen B B, He M, Hu B. Anal. Chem., 2020, 92(19): 13550.

doi: 10.1021/acs.analchem.0c03194     URL    
[72]
Zhang X, Wei X, Men X, Wu C X, Bai J J, Li W T, Yang T, Chen M L, Wang J H. ACS Appl. Mater. Interfaces, 2021, 13(36): 43668.

doi: 10.1021/acsami.1c11953     URL    
[73]
Wei X, Zhang X, Guo R, Chen M L, Yang T, Xu Z R, Wang J H. Anal. Chem., 2019, 91(24): 15826.

doi: 10.1021/acs.analchem.9b04122     URL    
[74]
Zhang X, Wei X, Men X, Jiang Z, Ye W Q, Chen M L, Yang T, Xu Z R, Wang J H. Anal. Chem., 2020, 92(9): 6604.

doi: 10.1021/acs.analchem.0c00376     pmid: 32233376
[75]
Baumgarth N, Roederer M. J. Immunol. Methods, 2000, 243(1/2): 77.

doi: 10.1016/S0022-1759(00)00229-5     URL    
[76]
Oliver A L S, Haase A, Peddinghaus A, Wittke D, Jakubowski N, Luch A, Grützkau A, Baumgart S. Anal. Chem., 2019, 91(18): 11514.

doi: 10.1021/acs.analchem.9b01870     URL    
[77]
Yang Y Y S, Atukorale P U, Moynihan K D, Bekdemir A, Rakhra K, Tang L, Stellacci F, Irvine D J. Nat. Commun., 2017, 8: 14069.

doi: 10.1038/ncomms14069     URL    
[78]
Guo Y T, Baumgart S, Stark H J, Harms H, Müller S. Front. Microbiol., 2017, 8: 1326.

doi: 10.3389/fmicb.2017.01326     URL    
[79]
Spitzer M H, Nolan G P. Cell, 2016, 165(4): 780.

doi: 10.1016/j.cell.2016.04.019     URL    
[80]
Langer J, Aberasturi D J D, Aizpurua J, Alvarez-Puebla R A, AuguiÉ B, Baumberg J J, Bazan G C, Bell S E J, Boisen A, Brolo A G, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, Javier García de Abajo F, Goodacre R, Graham D, Haes A J, Haynes C L, Huck C, Itoh T, Käll M, Kneipp J, Kotov N A, Kuang H, Le Ru E C, Lee H K, Li J F, Ling X Y, Maier S A, Mayerhöfer T, Moskovits M, Murakoshi K, Nam J M, Nie S M, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz G C, Shegai T, Schlücker S, Tay L L, George Thomas K, Tian Z Q, Van Duyne R P, Vo-Dinh T, Wang Y, Willets K A, Xu C L, Xu H X, Xu Y K, Yamamoto Y S, Zhao B, Liz-Marzán L M. ACS Nano, 2020, 14(1): 28.

doi: 10.1021/acsnano.9b04224     URL    
[81]
Sirimuthu N M S, Syme D, Cooper J M. Anal. Chem., 2010, 82(17): 7369.

doi: 10.1021/ac101480t     pmid: 20695440
[82]
Taylor J, Huefner A, Li L, Wingfield J, Mahajan S. Analyst, 2016, 141(17): 5037.

doi: 10.1039/c6an01003b     pmid: 27479539
[83]
Fienberg H G, Simonds E F, Fantl W J, Nolan G P, Bodenmiller B. Cytometry A, 2012, 81A(6): 467.

doi: 10.1002/cyto.a.22067     URL    
[84]
Hartmann F J, Simonds E F, Bendall S C J S r. Sci. Rep., 2018, 8(1): 10770.

doi: 10.1038/s41598-018-28791-2     pmid: 30018331
[85]
Ornatsky O, Bandura D, Baranov V, Nitz M, Winnik M A, Tanner S. J. Immunol. Methods, 2010, 361(1-2): 1.

doi: 10.1016/j.jim.2010.07.002     pmid: 20655312
[86]
Behbehani G K, Bendall S C, Clutter M R, Fantl W J, Nolan G P. Cytometry A, 2012, 81A(7): 552.

doi: 10.1002/cyto.a.22075     URL    
[87]
Chang Q, Ornatsky O I, Siddiqui I, Loboda A, Baranov V I, Hedley D W. Cytometry A, 2017, 91(2): 160.

doi: 10.1002/cyto.a.23053     URL    
[88]
Chang Q, Ornatsky O I, Siddiqui I, Straus R, Baranov V I, Hedley D W. Sci. Rep., 2016, 6(1): 36641.

doi: 10.1038/srep36641     URL    
[89]
Kutscher D, Asogan D, Mudway I, Brekke P, Beales C, Wang X H, Perkins M W, Maret W, Stewart T J. Spectroscopy Supplements, 2020, 35(S4): 16.
[90]
Becker J S. J. Mass Spectrom., 2013, 48(2): 255.

doi: 10.1002/jms.3168     URL    
[91]
Wang M, Zheng L N, Wang B, Chen H Q, Zhao Y L, Chai Z F, Reid H J, Sharp B L, Feng W Y. Anal. Chem., 2014, 86(20): 10252.

doi: 10.1021/ac502438n     URL    
[92]
Zheng L N, Feng L X, Shi J W, Chen H Q, Wang B, Wang M, Wang H F, Feng W Y. Anal. Chem., 2020, 92(21): 14339.

doi: 10.1021/acs.analchem.0c01775     URL    
[1] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[2] 唐志姣, 李攻科*, 胡玉玲*. 氮掺杂碳点的制备及在定量分析中的应用[J]. 化学进展, 2016, 28(10): 1455-1461.
[3] 焦成鹏, 黄自力, 张海军, 张少伟. 置换反应制备双金属纳米催化剂[J]. 化学进展, 2015, 27(5): 472-481.
[4] 崔淑媛, 刘军, 吴伟. 金属纳米颗粒导电墨水的制备及其在印刷电子方面的应用[J]. 化学进展, 2015, 27(10): 1509-1522.
[5] 李阳, 牛军峰, 张驰, 王正早, 郑梦源, 商恩香. 水中金属纳米颗粒对细菌的光致毒性机理[J]. 化学进展, 2014, 26(0203): 436-449.
[6] 陶琴, 董健, 钱卫平*. 表面增强拉曼光谱在定量分析中的应用[J]. 化学进展, 2013, 25(06): 1031-1041.
[7] 吕继涛, 张淑贞* . 环境中纳米材料的分离与分析方法[J]. 化学进展, 2012, 24(12): 2374-2383.
[8] 王金业, 宋晨, 徐景坤, 丁宝全. 利用DNA折纸术构建功能纳米材料[J]. 化学进展, 2012, (10): 1936-1945.
[9] 郝丽, 徐春秀, 程和勇, 刘金华, 殷学锋*. 微流控芯片测定单细胞内化学组分的进展[J]. 化学进展, 2012, 24(08): 1544-1553.
[10] 邓彬 徐见容 汪志明 肖玉秀. 毛细管电泳单细胞分析*[J]. 化学进展, 2010, 22(11): 2215-2223.
[11] 王立英 蔡灵剑 沈頔 冯永刚 陈萌 钱东金. 金属纳米颗粒制备中的还原剂与修饰剂*[J]. 化学进展, 2010, 22(04): 580-592.
[12] 朱兰兰,殷学锋. 单细胞分析中的荧光标记化学*[J]. 化学进展, 2008, 20(12): 2045-2052.
[13] 梁佳然,钟文英,于俊生. 量子点荧光探针在定量分析中的应用*[J]. 化学进展, 2008, 20(09): 1385-1390.
[14] 龙晓辉,莫志宏,张耀洲. 基于二维凝胶电泳的蛋白质定量分析技术[J]. 化学进展, 2006, 18(04): 474-481.
[15] 肖玉秀,冯钰锜,达世禄. 单细胞毛细管电泳分析研究进展*[J]. 化学进展, 2004, 16(04): 543-.