English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 384-396 DOI: 10.7536/PC201226 前一篇   后一篇

• 综述 •

副本交换分子动力学

彭诚1,2, 吴乐云1,2, 徐志建1,2,*(), 朱维良1,2,*()   

  1. 1 中国科学院上海药物研究所药物发现与设计中心 上海 201203
    2 中国科学院大学 北京 100049
  • 收稿日期:2020-12-15 修回日期:2021-02-16 出版日期:2022-02-20 发布日期:2021-03-04
  • 通讯作者: 徐志建, 朱维良
  • 基金资助:
    国家重点研发计划项目(2016YFA0502301); 国家重大新药创制科技重大专项(2018ZX09711002)

Replica Exchange Molecular Dynamics

Cheng Peng1,2, Leyun Wu1,2, Zhijian Xu1,2(), Weiliang Zhu1,2()   

  1. 1 Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences,Shanghai 201203, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-12-15 Revised:2021-02-16 Online:2022-02-20 Published:2021-03-04
  • Contact: Zhijian Xu, Weiliang Zhu
  • Supported by:
    National Key Research and Development Program(2016YFA0502301); National Science & Technology Major Project“Key New Drug Creation and Manufacturing Program”, China(2018ZX09711002)

副本交换分子动力学(REMD)是一种广泛应用于蛋白质功能性构象变化模拟及相应自由能计算的增强型采样算法。由于REMD理论严格且采样效率高,近年来备受关注,尤其是针对传统REMD方法的发展和优化,显著提高了REMD的采样效率,拓展了其应用范围。但是各种REMD新型方法的最佳适用范围也存在较大区别,使得如何选用合适的REMD方法成为实际应用的难题和挑战。因此,有必要对各种REMD方法及其应用进行阐述,深入比较各方法的优缺点及其实际应用体系。本综述从REMD的原理出发,回顾了近年来各类REMD方法的变形策略,以助于对REMD方法的理解、应用和继续改进。

Replica exchange molecular dynamics (REMD) is a kind of enhanced sampling algorithm that has been widely used in the study of protein conformation changes with their free energy landscape. Due to its rigorous principle and high sampling efficiency, researches on the optimization and development of the conventional REMD method have also sprung up, and have been in the ascendant recently, which greatly enhances its sampling efficiency and expands its application. However, those REMD variations usually have specific application, making it difficult to choose suitable REMD variations in practical application. Therefore, it is of great significance to summarize the REMD variations for understanding their advantages and disadvantages and for choosing suitable REMD variations. Here, we review recent development of the REMD variations from the perspective of their principle, and classify them into six types of methods: I) improving the approach and swapping rate of replica exchange, II) reducing the potential energy on exchange attempts to reduce the number of replica, III) Hamiltonians replica exchange molecular dynamics, IV) adjusting simulation process to improve sampling efficiency, V) changing the sampling methods, VI) adapting to heterogeneous and distributed computing environment. We hope that this review may be helpful in the understanding, application, and further improvement of the various REMD variations.

Contents

1 Introduction

2 Temperature replica exchange molecular dynamics

3 Improve the approach and swapping rate of replica exchange

4 Reduce the potential energy on exchange attempts to reduce the number of replica

4.1 Deal with the explicit solvent

4.2 Reduce the freedom of solute

5 Hamiltonians replica exchange molecular dynamics

5.1 Adjust the formula of potential energy

5.2 Adopted into other enhanced sampling algorithms

5.3 Multidimensional replica exchange molecular dynamics

5.4 Introducing physical parameters in simulations

6 Adjust simulation process to improve sampling efficiency

6.1 The way of temperature control

6.2 The parameters in parallel replicas

6.3 Multilayer simulation in parallel replicas

6.4 Adjust initial structures

7 Sampling methods

8 Heterogeneous and distributed computing environment

9 Conclusion and outlook

()
表1 多维REMD方法列表。
Table 1 The list of multidimensional REMD.
图1 代表性REMD变形方法图解。T1-T4代表4个平行模拟副本,不同颜色表示不同模拟温度,其中Modified REMD方法中灰色表示冻结副本。在TIGER方法中,副本模拟有3个循环过程。
Fig. 1 The diagrams of representative REMD variations. T1-T4 refer to four parallel replicas, and different temperatures were colored specifically. The frozen replicas in the Modified REMD method were colored in gray. The TIGER simulation has three simulation cycles.
表2 REMD优化方法总结
Table 2 The summary of methods to improve the sampling efficiency of REMD
[1]
Alaei L, Moosavi-Movahedi A A. Prog. Biophys. Mol. Biol., 2020, 150: 145.

doi: 10.1016/j.pbiomolbio.2019.08.008     URL    
[2]
Orellana L. Front. Mol. Biosci., 2019, 6: 117.

doi: 10.3389/fmolb.2019.00117     pmid: 31750315
[3]
Yeung W, Ruan Z, Kannan N. IUBMB Life, 2020, 72(6): 1189.

doi: 10.1002/iub.v72.6     URL    
[4]
Yang J, Talibov V O, Peintner S, Rhee C, Poongavanam V, Geitmann M, Sebastiano M R, Simon B, Hennig J, Dobritzsch D, Danielson U H, Kihlberg J. ACS Omega, 2020, 5(8): 3979.

doi: 10.1021/acsomega.9b03493     pmid: 32149225
[5]
Chen J, Yang J, Wei Q Y, Weng L, Wu F, Shi Y, Cheng X L, Cai X T, Hu C P, Cao P. Cell Commun. Signal., 2020, 18(1): 1.

doi: 10.1186/s12964-019-0473-9     URL    
[6]
Zou Y, Ewalt J, Ng H L. Int. J. Mol. Sci., 2019, 20.
[7]
Calebiro D, Grimes J. Annu. Rev. Pharmacol. Toxicol., 2020, 60(1): 73.

doi: 10.1146/pharmtox.2020.60.issue-1     URL    
[8]
Ali A M, Atmaj J, van Oosterwijk N, Groves M R, Dömling A. Comput. Struct. Biotechnol. J., 2019, 17: 263.

doi: 10.1016/j.csbj.2019.01.012     URL    
[9]
Moldovean S N, Chiş V. ACS Chem. Neurosci., 2020, 11(2): 105.

doi: 10.1021/acschemneuro.9b00561     pmid: 31841621
[10]
Harpole T J, Delemotte L. Biochim. Et Biophys. Acta BBA Biomembr., 2018, 1860(4): 909.
[11]
Wang J N, Peng C, Yu Y Q, Chen Z Q, Xu Z J, Cai T T, Shao Q, Shi J Y, Zhu W L. Biophys. J., 2020, 118(5): 1009.

doi: 10.1016/j.bpj.2020.01.001     URL    
[12]
Ngo S T, Nguyen P H, Derreumaux P. J. Phys. Chem. B, 2020, 124(7): 1175.

doi: 10.1021/acs.jpcb.9b11881     URL    
[13]
Mitsutake A, Sugita Y, Okamoto Y. Biopolymers, 2001, 60(2): 96.

doi: 10.1002/1097-0282(2001)60:2【-逻*辑*与-】lt;96::AID-BIP1007【-逻*辑*与-】gt;3.0.CO;2-F     pmid: 11455545
[14]
Peng C, Atilaw Y, Wang J N, Xu Z J, Poongavanam V, Shi J Y, Kihlberg J, Zhu W L, ErdÉlyi M. ACS Omega, 2019, 4(26): 22245.

doi: 10.1021/acsomega.9b03797     URL    
[15]
Singh G, Brovchenko I, Oleinikova A, Winter R. J. Phys. Chem. B, 2009, 113(29): 9863.

doi: 10.1021/jp901144v     URL    
[16]
Lee J, Chang I, Yu W. Sci. Rep., 2019, 9: 19144.

doi: 10.1038/s41598-019-55661-2     URL    
[17]
Qi R X, Wei G H, Ma B Y, Nussinov R. Methods in Molecular Biology. New York: Springer, 2018. 101.
[18]
Stelzl L S, Hummer G. J. Chem. Theory Comput., 2017, 13(8): 3927.

doi: 10.1021/acs.jctc.7b00372     pmid: 28657736
[19]
Sugita Y, Kamiya M, Oshima H, Replica-Exchange Methods for Biomolecular Simulations. In: BonomiM., CamilloniC..(eds) 2019, 2022.
[20]
Pitera J W, Swope W. Proc. Natl. Acad. Sci. U. S. A. 2003, 100: 7587.

pmid: 12808142
[21]
Peng C, Zhu Z D, Shi Y L, Wang X Y, Mu K J, Yang Y Q, Zhang X B, Xu Z J, Zhu W L. J. Phys. Chem. Lett., 2020, 11(24): 10482.

doi: 10.1021/acs.jpclett.0c02958     URL    
[22]
Xin L, Sun H. Acta Physico-Chimica Sinica, 2018, 34: 1179.

doi: 10.3866/PKU.WHXB201803161     URL    
[23]
Wallace A F, Hedges L O, Fernandez-Martinez A, Raiteri P, Gale J D, Waychunas G A, Whitelam S, Banfield J F, Yoreo J J D. Science, 2013, 341: 885.

doi: 10.1126/science.1230915     pmid: 23970697
[24]
Sugita Y, Kitao A, Okamoto Y. J. Chem. Phys., 2000, 113(15): 6042.

doi: 10.1063/1.1308516     URL    
[25]
Ostermeir K, Zacharias M. Biochim. Biophys. Acta., 2013, 1834: 847.

doi: 10.1016/j.bbapap.2012.12.016     pmid: 23298543
[26]
Bernardi R C, Melo M C R, Schulten K. Biochim. Et Biophys. Acta BBA Gen. Subj., 2015, 1850(5): 872.
[27]
Massimiliano B, Carlo C. Biomolecular Simulations. New York: Spring Street, 2019. 155.
[28]
Kouza M, Hansmann U H E. J. Chem. Phys., 2011, 134(4): 044124.

doi: 10.1063/1.3533236     URL    
[29]
Itoh S G, Okumura H. J. Chem. Theory Comput., 2013, 9(1): 570.

doi: 10.1021/ct3007919     URL    
[30]
Itoh S G, Okumura H. Mol. Simul., 2015, 41(10/12): 1021.

doi: 10.1080/08927022.2014.923576     URL    
[31]
Itoh S G, Okumura H. J. Phys. Chem. B, 2016, 120(27): 6555.

doi: 10.1021/acs.jpcb.6b03828     URL    
[32]
Yamauchi M, Okumura H. J. Comput. Chem., 2019, 40(31): 2694.

doi: 10.1002/jcc.v40.31     URL    
[33]
Zhang B W, Dai W, Gallicchio E, He P, Xia J C, Tan Z Q, Levy R M. J. Phys. Chem. B, 2016, 120(33): 8289.

doi: 10.1021/acs.jpcb.6b02015     URL    
[34]
Chodera J D, Shirts M R. J. Chem. Phys., 2011, 135(19): 194110.

doi: 10.1063/1.3660669     URL    
[35]
Vogel T, Perez D. Phys. Procedia, 2015, 68: 125.

doi: 10.1016/j.phpro.2015.07.121     URL    
[36]
Brenner P, Sweet C R, Von Handorf D, Izaguirre J A. J. Chem. Phys., 2007, 126(7): 074103.

doi: 10.1063/1.2436872     URL    
[37]
Yua T Q, Lub J, Abramse. C F, Vanden-Eijnden E. Proc. Natl. Acad. Sci. U. S. A., 2016, 113: 11744.

doi: 10.1073/pnas.1605089113     URL    
[38]
Plattner N, Doll J D, Dupuis P, Wang H, Liu Y F, Gubernatis J E. J. Chem. Phys., 2011, 135: 1.
[39]
Lu J F, Vanden-Eijnden E. J. Chem. Phys., 2013, 138(8): 084105.

doi: 10.1063/1.4790706     URL    
[40]
Urano R, Okamoto Y. Comput. Phys. Commun., 2015, 196: 380.

doi: 10.1016/j.cpc.2015.07.007     URL    
[41]
Mu Y G, Yang Y, Xu W X. J. Theor. Comput. Chem., 2008, 7(2): 177.

doi: 10.1142/S0219633608003769     URL    
[42]
Mu Y G, Yang Y, Xu W X. J. Chem. Phys., 2007, 127(8): 084119.

doi: 10.1063/1.2772264     URL    
[43]
Chaudhury S, Olson M A, Tawa G, Wallqvist A, Lee M S. J. Chem. Theory Comput., 2012, 8(2): 677.
[44]
Xu W X, Yang Y, Mu Y, Nordenskiold L. Mol. Simulat., 2008, 34: 575.

doi: 10.1080/08927020801947020     URL    
[45]
Okur A, Wickstrom L, Layten M, Hornak V, Simmerling C, Song K. J. Chem. Theory Comput., 2006, 2: 420.

doi: 10.1021/ct050196z     URL    
[46]
Wang J N, Zhu W L, Li G H, Hansmann U H E. J. Chem. Phys., 2011, 135(8): 084115.

doi: 10.1063/1.3624401     URL    
[47]
Yu Y Q, Wang J N, Shao Q, Shi J Y, Zhu W L. J. Chem. Phys., 2015, 142(12): 125105.

doi: 10.1063/1.4916118     URL    
[48]
Cheng X L, Cui G L, Hornak V, Simmerling C. J. Phys. Chem. B, 2005, 109(16): 8220.

doi: 10.1021/jp045437y     URL    
[49]
Fukunishi H, Watanabe O, Takada S. J. Chem. Phys., 2002, 116(20): 9058.
[50]
Itoh S G, Okumura H, Okamoto Y. J. Chem. Phys., 2010, 132(13): 134105.

doi: 10.1063/1.3372767     URL    
[51]
Itoh S G, Okumura H. J. Comput. Chem., 2013, 34(8): 622.

doi: 10.1002/jcc.23167     URL    
[52]
Itoh S G, Okumura H. J. Phys. Chem. B, 2014, 118(39): 11428.

doi: 10.1021/jp505984e     URL    
[53]
Rathinavelan T, Im W. J. Comput. Chem., 2008, 29(10): 1640.

doi: 10.1002/jcc.v29:10     URL    
[54]
Chen J H, Im W, Brooks C L III. J. Comput. Chem., 2005, 26(15): 1565.

doi: 10.1002/jcc.v26:15     URL    
[55]
Okumura H, Itoh S G. Phys. Chem. Chem. Phys., 2013, 15(33): 13852.

doi: 10.1039/c3cp44443k     URL    
[56]
Jang S, Shin S, Pak Y. Phys. Rev. Lett., 2003, 91(5): 058305.

doi: 10.1103/PhysRevLett.91.058305     URL    
[57]
Liu P, Kim B, Friesner R A, Berne B J. Proc. Natl. Acad. Sci. U. S. A., 2005, 102: 13749.

doi: 10.1073/pnas.0506346102     pmid: 16172406
[58]
Moors S L C, Michielssens S, Ceulemans A. J. Chem. Theory Comput., 2011, 7(1): 231.

doi: 10.1021/ct100493v     URL    
[59]
Kamiya M, Sugita Y. J. Chem. Phys., 2018, 149(7): 072304.

doi: 10.1063/1.5016222     URL    
[60]
Suzuki M, Okuda H. Mol. Simul., 2008, 34(3): 267.

doi: 10.1080/08927020701810583     URL    
[61]
Lyman E, Zuckerman D M. J. Chem. Theory Comput., 2006, 2(3): 656.

doi: 10.1021/ct050337x     URL    
[62]
Piana S, Laio A. J. Phys. Chem. B, 2007, 111(17): 4553.

doi: 10.1021/jp067873l     URL    
[63]
Kubitzki M B, de Groot B L. Biophys. J., 2007, 92(12): 4262.

pmid: 17384062
[64]
Berg B A, Neuhaus T. Phys. Lett. B, 1991, 267(2): 249.

doi: 10.1016/0370-2693(91)91256-U     URL    
[65]
Berg B A, Neuhaus T. Phys. Rev. Lett., 1992, 68(1): 9.

pmid: 10045099
[66]
Sugita Y, Okamoto Y. Chem. Phys. Lett., 2000, 329(3/4): 261.

doi: 10.1016/S0009-2614(00)00999-4     URL    
[67]
Hayashi T, Okamoto Y. Phys. Rev. E, 2019, 100(4): 043304.

doi: 10.1103/PhysRevE.100.043304     URL    
[68]
Fajer M, Hamelberg D, McCammon J A. J. Chem. Theory Comput., 2008, 4(10): 1565.

doi: 10.1021/ct800250m     URL    
[69]
Huang Y M M, McCammon J A, Miao Y L. J. Chem. Theory Comput., 2018, 14(4): 1853.

doi: 10.1021/acs.jctc.7b01226     URL    
[70]
Oshima H, Re S Y, Sugita Y. J. Chem. Theory Comput., 2019, 15(10): 5199.

doi: 10.1021/acs.jctc.9b00761     URL    
[71]
Sidler D, Schwaninger A, Riniker S. J. Chem. Phys., 2016, 145(15): 154114.

doi: 10.1063/1.4964781     URL    
[72]
Armacost K A, Goh G B, Brooks C L III. J. Chem. Theory Comput., 2015, 11(3): 1267.

doi: 10.1021/ct500894k     pmid: 26579773
[73]
Galvelis R, Re S Y, Sugita Y. J. Chem. Theory Comput., 2017, 13(5): 1934.

doi: 10.1021/acs.jctc.7b00079     URL    
[74]
Galvelis R, Sugita Y. J. Comput. Chem., 2015, 36(19): 1446.

doi: 10.1002/jcc.v36.19     URL    
[75]
Bussi G, Gervasio F L, Laio A, Parrinello M. J. Am. Chem. Soc., 2006, 128: 13435.

doi: 10.1021/ja062463w     URL    
[76]
Bonomi M, Parrinello M. Phys. Rev. Lett., 2010, 104(19): 190601.

doi: 10.1103/PhysRevLett.104.190601     URL    
[77]
Jiang W, Roux B. J. Chem. Theory Comput., 2010, 6(9): 2559.

pmid: 21857813
[78]
Zheng J, Alsamarah A, LaCuran A E, Oelschlaeger P, Hao J, Luo Y. Plos One, 2015, 10: e0132221.

doi: 10.1371/journal.pone.0132221     URL    
[79]
Peng C, Wang J N, Shi Y L, Xu Z J, Zhu W L. J. Chem. Theory Comput., 2021, 17(1): 13.

doi: 10.1021/acs.jctc.0c00592     URL    
[80]
Bergonzo C, Henriksen N M, Roe D R, Cheatham T E III. RNA, 2015, 21(9): 1578.

doi: 10.1261/rna.051102.115     URL    
[81]
Roe D R, Bergonzo C, Cheatham T E III. J. Phys. Chem. B, 2014, 118(13): 3543.

doi: 10.1021/jp4125099     URL    
[82]
Arrar M, de Oliveira C A F, Fajer M, Sinko W, McCammon J A. J. Chem. Theory Comput., 2013, 9(1): 18.

doi: 10.1021/ct300896h     URL    
[83]
Okamoto Y, Kokubo H, Tanaka T. J. Chem. Theory Comput., 2014, 10(8): 3563.

doi: 10.1021/ct500539u     pmid: 26588319
[84]
Kokubo H, Tanaka T, Okamoto Y. J. Comput. Chem., 2013, 34(30): 2601.

doi: 10.1002/jcc.v34.30     URL    
[85]
Ebrahimi P, Kaur S, Baronti L, Petzold K, Chen A A. Methods, 2019, 162/163: 96.

doi: 10.1016/j.ymeth.2019.05.001     URL    
[86]
Babin V, Karpusenka V, Moradi M, Roland C, Sagui C. Int. J. Quantum Chem., 2009, 109(15): 3666.

doi: 10.1002/qua.v109:15     URL    
[87]
Lee J, Miller B T, Damjanović A, Brooks B R. J. Chem. Theory Comput., 2015, 11(6): 2560.

doi: 10.1021/ct501101f     URL    
[88]
Lee J, Miller B T, Brooks B R. Protein Sci., 2016, 25(1): 231.

doi: 10.1002/pro.2755     URL    
[89]
Wang L L, Deng Y Q, Knight J L, Wu Y J, Kim B, Sherman W, Shelley J C, Lin T, Abel R. J. Chem. Theory Comput., 2013, 9(2): 1282.

doi: 10.1021/ct300911a     URL    
[90]
Wang L, Berne B J, Friesner R A. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 1937.

doi: 10.1073/pnas.1114017109     URL    
[91]
Jiang W, Thirman J, Jo S, Roux B. J. Phys. Chem. B, 2018, 122(41): 9435.

doi: 10.1021/acs.jpcb.8b03277     URL    
[92]
Lee M, Yoon J, Jang S, Shin S. Phys. Chem. Chem. Phys., 2017, 19(7): 5454.

doi: 10.1039/C6CP05322J     URL    
[93]
Cruzeiro V W D, Roitberg A E. J. Chem. Theory Comput., 2019, 15(2): 871.

doi: 10.1021/acs.jctc.8b00935     URL    
[94]
Nguyen P H. J. Chem. Phys., 2010, 132(14): 144109.

doi: 10.1063/1.3369626     URL    
[95]
Mori T, Jung J, Sugita Y. J. Chem. Theory Comput., 2013, 9(12): 5629.

doi: 10.1021/ct400445k     URL    
[96]
Nagai T, Takahashi T. J. Chem. Phys., 2014, 141(11): 114111.

doi: 10.1063/1.4895510     URL    
[97]
Liu L C, Kuo J L. Comput. Phys. Commun., 2015, 189: 119.

doi: 10.1016/j.cpc.2014.11.021     URL    
[98]
Li X F, O’Brien C P, Collier G, Vellore N A, Wang F, Latour R A, Bruce D A, Stuart S J. J. Chem. Phys., 2007, 127(16): 164116.

doi: 10.1063/1.2780152     URL    
[99]
Li X F, Latour R A, Stuart S J. J. Chem. Phys., 2009, 130(17): 174106.

doi: 10.1063/1.3129342     URL    
[100]
Li X F, Snyder J A, Stuart S J, Latour R A. J. Chem. Phys., 2015, 143(14): 144105.

doi: 10.1063/1.4932341     URL    
[101]
Kulke M, Geist N, Möller D, Langel W. J. Phys. Chem. B, 2018, 122(29): 7295.

doi: 10.1021/acs.jpcb.8b05178     URL    
[102]
Geist N, Kulke M, Schulig L, Link A, Langel W. J. Phys. Chem. B, 2019, 123(28): 5995.

doi: 10.1021/acs.jpcb.9b03134     URL    
[103]
Li X F, Murthy N S, Latour R A. Macromolecules, 2011, 44(13): 5452.

doi: 10.1021/ma200128c     URL    
[104]
Zhang W H, Chen J H. J. Chem. Theory Comput., 2013, 9(6): 2849.

doi: 10.1021/ct400191b     URL    
[105]
Trebst S, Troyer M, Hansmann U H E. J. Chem. Phys., 2006, 124(17): 174903.

doi: 10.1063/1.2186639     URL    
[106]
Kim J, Straub J E, Keyes T. J. Phys. Chem. B, 2012, 116(29): 8646.

doi: 10.1021/jp300366j     URL    
[107]
Chen C J, Xiao Y, Huang Y Z. Phys. Rev. E, 2015, 91(5): 052708.

doi: 10.1103/PhysRevE.91.052708     URL    
[108]
Chen C J, Huang Y Z. J. Comput. Chem., 2016, 37(17): 1565.

doi: 10.1002/jcc.24371     URL    
[109]
Okur A, Roe D R, Cui G L, Hornak V, Simmerling C. J. Chem. Theory Comput., 2007, 3: 557.

doi: 10.1021/ct600263e     URL    
[110]
Henriksen N M, Roe D R, Cheatham T E III. J. Phys. Chem. B, 2013, 117(15): 4014.

doi: 10.1021/jp400530e     URL    
[111]
Li H Z, Li G H, Berg B A, Yang W. J. Chem. Phys., 2006, 125(14): 144902.

doi: 10.1063/1.2354157     URL    
[112]
Rick S W. J. Chem. Phys., 2007, 126(5): 054102.

doi: 10.1063/1.2431807     URL    
[113]
Shell M S. Mol. Simul., 2010, 36(7/8): 505.

doi: 10.1080/08927021003720546     URL    
[114]
Yamamori Y, Kitao A. J. Chem. Phys., 2013, 139(14): 145105.

doi: 10.1063/1.4823743     URL    
[115]
Rhee Y M, Pande V S. Biophys. J., 2003, 84(2): 775.

doi: 10.1016/S0006-3495(03)74897-8     URL    
[116]
Jang S, Kim E, Pak Y. J. Chem. Phys., 2008, 128(22): 229901.

doi: 10.1063/1.2929842     URL    
[117]
Wang J N, Shao Q, Xu Z J, Liu Y T, Yang Z, Cossins B P, Jiang H L, Chen K X, Shi J Y, Zhu W L. J. Phys. Chem. B, 2014, 118(1): 134.

doi: 10.1021/jp4105129     URL    
[118]
Chen J, Peng C, Wang J, Zhu W. Proteins, 2018, 86: 1294.

doi: 10.1002/prot.v86.12     URL    
[119]
Fujisaki H, Shiga M, Kidera A. J. Chem. Phys., 2010, 132(13): 134101.

doi: 10.1063/1.3372802     URL    
[120]
Kima J, Straub J E. J. Chem. Phys., 2009, 130: 1.
[121]
Wu X W, Hodoscek M, Brooks B R. J. Chem. Phys., 2012, 137(4): 044106.

doi: 10.1063/1.4737094     URL    
[122]
Olson M A, Legler P M, Goldman E R. J. Phys. Chem. B, 2016, 120(9): 2234.

doi: 10.1021/acs.jpcb.6b00233     URL    
[123]
Fedorov D G, Sugita Y, Choi C H. J. Phys. Chem. B, 2013, 117: 7996.

doi: 10.1021/jp4029529     URL    
[124]
Moqadam M, Riccardi E, Trinh T T, Lervik A, van Erp T S. Phys. Chem. Chem. Phys., 2017, 19(20): 13361.

doi: 10.1039/C7CP01268C     URL    
[125]
Lin W, Paesani F. J. Phys. Chem. A, 2013, 117(32): 7131.

doi: 10.1021/jp400629t     URL    
[126]
Bulo R E, van Schoot H, Rohr D, Michel C. Int. J. Quantum Chem., 2010, 110(12): 2299.

doi: 10.1002/qua.22554     URL    
[127]
Zhou R. J. Mol. Graph. Model., 2003, 22: 451.

doi: 10.1016/j.jmgm.2003.12.011     URL    
[128]
Suh D, Radak B K, Chipot C, Roux B. J. Chem. Phys., 2018, 148(1): 014101.

doi: 10.1063/1.5004154     URL    
[129]
Kandel S, Salomon-Ferrer R, Larsen A B, Jain A, Vaidehi N. J. Chem. Phys., 2016, 144(4): 044112.

doi: 10.1063/1.4939532     URL    
[130]
Kamberaj H. J. Chem. Phys., 2015, 143(12): 124105.

doi: 10.1063/1.4931599     URL    
[131]
Kamberaj H. J. Mol. Graph. Model., 2018, 81: 32.

doi: S1093-3263(17)30654-X     pmid: 29501958
[132]
Lockhart C, O’Connor J, Armentrout S, Klimov D K. J. Mol. Modeling, 2015, 21(9): 1.

doi: 10.1007/s00894-014-2561-5     URL    
[133]
Platania R, Shams S, Chiu C H, Kim N, Kim J, Park S J. Concurrency Computat.: Pract. Exper., 2017, 29(4): e3878.
[134]
Xia J C, Flynn W F, Gallicchio E, Zhang B W, He P, Tan Z Q, Levy R M. J. Comput. Chem., 2015, 36(23): 1772.

doi: 10.1002/jcc.v36.23     URL    
[1] 马昀, 周妍, 杜文琦, 缪智辉, 祁争健. 基于共轭聚合物的核酸生物传感器的应用[J]. 化学进展, 2015, 27(12): 1799-1807.
[2] 张敏, 吴玉清. 压力诱导溶液中蛋白质构象变化的谱学研究[J]. 化学进展, 2011, 23(10): 2003-2011.
阅读次数
全文


摘要

副本交换分子动力学