English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1115-1125 DOI: 10.7536/PC200741 前一篇   后一篇

• 综述 •

FAHFAs:生物功能、分析及合成

朱泉霏1, 郝俊迪1, 严靖雯1, 王雨1, 冯钰锜1,2,*()   

  1. 1 武汉大学化学与分子科学学院 武汉 430072
    2 武汉大学免疫与代谢前沿科学中心 武汉 430072
  • 收稿日期:2020-07-20 修回日期:2020-11-18 出版日期:2021-07-20 发布日期:2020-12-28
  • 通讯作者: 冯钰锜
  • 基金资助:
    国家自然科学基金项目(21635006); 国家自然科学基金项目(31670373); 国家自然科学基金项目(21721005); 国家自然科学基金项目(21904099); 中国博士后科学基金项目(2018M642893)

FAHFAs: Biological Functions, Analysis and Synthesis

Quanfei Zhu1, Jundi Hao1, Jingwen Yan1, Yu Wang1, Yuqi Feng1,2,*()   

  1. 1 School of Chemistry and Molecular Sciences, Wuhan University,Wuhan 430072, China
    2 Frontier Science Center for Immunology and Metabolism, Wuhan University,Wuhan 430072, China
  • Received:2020-07-20 Revised:2020-11-18 Online:2021-07-20 Published:2020-12-28
  • Contact: Yuqi Feng
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21635006); National Natural Science Foundation of China(31670373); National Natural Science Foundation of China(21721005); National Natural Science Foundation of China(21904099); China Postdoctoral Science Foundation(2018M642893)

羟基脂肪酸支链脂肪酸酯(branched fatty acid esters of hydroxy fatty acids,FAHFAs)是一类新发现的生物活性脂质分子。FAHFAs在哺乳动物体内具有重要的生理功能,如改善葡萄糖耐量、增强胰岛素敏感性、维持血糖稳态和抗炎等。目前,FAHFA相关研究已成为脂质领域研究的一个新方向,受到科学家们的关注。本文总结了自FAHFAs发现至今的主要研究成果,从FAHFA的生理功能、代谢、生物体内的储存形式、分析检测和化学合成等五个方面进行介绍,以期为未来FAHFAs领域的研究提供一些借鉴。

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a new class of functional lipids. It has been reported that they play important roles in mammals, such as improving glucose tolerance, enhancing insulin sensitivity, maintaining blood glucose homeostasis, and anti-inflammatory. Since its discovery in 2014, FAHFA has been attracting more and more attention of scientists, and has become a new branch of lipid research. This review summarizes the research advances of FAHFA since its discovery, covering the physiological function, metabolism, storage in organism, analysis and chemical synthesis of FAHFA.

Contents

1 Introduction

2 Advances since the discovery of FAHFAs

2.1 FAHFAs biological functions

2.2 FAHFAs metabolism

2.3 Storage forms of FAHFAs in vivo

2.4 FAHFAs analysis

2.5 FAHFAs synthesis

3 Conclusion and outlook

()
图1 FAHFAs具有抗炎和抗二型糖尿病功能[2]
Fig. 1 Anti-diabetic and anti-inflammatory effects of FAHFAs[2]. Copyright 2014, Elsevier
图2 9-PAHSA推测合成途径[20]
Fig. 2 Proposed scheme for 9-PAHSA synthesis[20]. Copyright 2018, American Diabetes Association
图3 FAHFA-TAGs的发现及代谢研究[22]
Fig. 3 Discovery of FAHFA-TAGs and their metabolic regulation[22]. Copyright 2019, American Chemical Society
图4 使用原始方法和快速方法分析野生型和AG4OX 型小鼠的腹膜白色脂肪中的OAHSAs和PAHSAs。原始方法(a)和快速方法(b)检测PAHSAs的提取离子流图;原始方法(c)和快速方法(d)检测的OAHSAs的提取离子流图[24]
Fig. 4 Analysis of OAHSAs and PAHSAs in PG WAT of WT and AG4OX mice with the original and shorter method[24]. Extracted ion chromatograms comparing perigonadal white adipose tissue (PG WAT) PAHSAs in AG4OX and WT mice using the original (a) and shorter method (b). Extracted ion chromatograms analyzing OAHSAs in PG WAT WT and AG4OX mice in the original (c) and shorter method (d). Copyright 2018, American Chemical Society
图5 SAX-SPE-CIL-UHPLC-MS/MS技术定量分析FAHFAs示意图[16]
Fig. 5 Schematic illustration for the quantification of FAHFAs by SAX-SPE-CIL-UHPLC-MS/MS analysis[16]. Copyright 2017, Elsevier
图6 FAHFAs与AMPP的衍生化反应[28]
Fig. 6 Derivatization reaction of FAHFAs and AMPP[28]
图7 CIL-LC-MS技术筛查水稻和拟南芥中FAHFAs[31]
Fig. 7 Overview of the procedure for the screening and identification of FAHFAs in rice and Arabidopsis thaliana by CIL-LC-MS[31]. Copyright 2018, American Chemical Society
表1 已报道的FAHFAs家族
Table 1 Reported FAHFA families
No. FAHFA family Structure a Formula No. FAHFA family Structure a Formula
1 POHPO 16:1-O-16:1 C32H58O4 39 MAHAA 14:0-O-20:0 C34H66O4
2 OAHPO 18:1-O-16:1 C34H62O4 40 PAHAA 16:0-O-20:0 C36H70O4
3 PAHPO 16:0-O-16:1 C32H60O4 41 SAHAA 18:0-O-20:0 C38H74O4
4 SAHPO 18:0-O-16:1 C34H64O4 42 OAHAA 18:1-O-20:0 C38H72O4
5 LAHPO 18:2-O-16:1 C34H60O4 43 LAHAA 18:2-O-20:0 C38H70O4
6 POHOA 16:1-O-18:1 C34H62O4 44 AAHAA 20:0-O-20:0 C40H78O4
7 OAHOA 18:1-O-18:1 C36H66O4 45 PAHDDA 16:0-O-12:0 C28H54O4
8 PAHOA 16:0-O-18:1 C34H64O4 46 PDAHDA 15:0-O-10:0 C25H48O4
9 SAHOA 18:0-O-18:1 C36H68O4 47 PAHDA 16:0-O-10:0 C26H50O4
10 ALAHOA 18:3-O-18:1 C36H62O4 48 HDAHDA 17:0-O-10:0 C27H52O4
11 LAHOA 18:2-O-18:1 C36H64O4 49 SAHDA 18:0-O-10:0 C28H54O4
12 POHPA 16:1-O-16:0 C32H60O4 50 PDAHCA 15:0-O-8:0 C23H44O4
13 OAHPA 18:1-O-16:0 C34H64O4 51 PAHCA 16:0-O-8:0 C24H46O4
14 PAHPA 16:0-O-16:0 C32H62O4 52 HDAHCA 17:0-O-8:0 C25H48O4
15 SAHPA 18:0-O-16:0 C34H66O4 53 SAHCA 18:0-O-8:0 C26H50O4
16 MAHPA 14:0-O-16:0 C30H58O4 54 PDAHHA 15:0-O-6:0 C21H40O4
17 MOHPA 14:1-O-16:0 C30H56O4 55 PAHHA 16:0-O-6:0 C22H42O4
18 PDAHPA 15:0-O-16:0 C31H60O4 56 HDAHHA 17:0-O-6:0 C23H44O4
19 HDAHPA 17:0-O-16:0 C33H64O4 57 SAHHA 18:0-O-6:0 C24H46O4
20 LAHPA 18:2-O-16:0 C34H62O4 58 NAHHA 19:0-O-6:0 C25H48O4
21 ALAHPA 18:3-O-16:0 C34H60O4 59 AAHHA 20:0-O-6:0 C26H50O4
22 AAHPA 20:0-O-16:0 C36H70O4 60 MAHMA 14:0-O-14:0 C28H54O4
23 POHSA 16:1-O-18:0 C34H64O4 61 MOHMA 14:1-O-14:0 C28H52O4
24 OAHSA 18:1-O-18:0 C36H68O4 62 PDAHMA 15:0-O-14:0 C29H56O4
25 PAHSA 16:0-O-18:0 C34H66O4 63 PDEAHMA 15:1-O-14:0 C29H54O4
26 SAHSA 18:0-O-18:0 C36H70O4 64 PAHMA 16:0-O-14:0 C30H58O4
27 MAHSA 14:0-O-18:0 C32H62O4 65 POHMA 16:1-O-14:0 C30H56O4
28 PDAHSA 15:0-O-18:0 C33H64O4 66 SAHMA 18:0-O-14:0 C32H62O4
29 HDAHSA 17:0-O-18:0 C35H68O4 67 FAHFA(38:3) 20:3-O-18:0 C38H68O4
30 LAHSA 18:2-O-18:0 C36H66O4 68 FAHFA(38:5) 20:4-O-18:1 C38H64O4
31 AAHSA 20:0-O-18:0 C38H74O4 69 FAHFA(40:5) 20:3-O-20:2 C40H68O4
32 ALAHSA 18:3-O-18:0 C36H64O4 70 FAHFA(40:6) 22:5-O-18:1 C40H66O4
33 DHAHLA 22:6-O-18:2 C40H62O4 71 FAHFA(40:7) 20:4-O-20:3 C40H64O4
34 POHLA 16:1-O-18:2 C34H60O4 72 FAHFA(42:6) 20:3-O-22:3 C42H70O4
35 PAHLA 16:0-O-18:2 C34H62O4 73 FAHFA(42:8) 20:4-O-22:4 C42H66O4
36 ALAHLA 18:3-O-18:2 C36H60O4 74 FAHFA(42:9) 20:4-O-22:5 C42H64O4
37 LAHLA 18:2-O-18:2 C36H62O4 75 FAHFA(44:9) 22:5-O-22:4 C44H68O4
38 DHAHDHA 22:6-O-22:6 C44H62O4
图8 基于FA碳数、酯键位置和log10k的饱和FAHSAs预测模型:其中蓝色圆点代表已确认的化合物,红点代表预测化合物[31]
Fig. 8 Prediction model, based on the log10k, ester position, and carbon number of FA, for saturated FAHSAs. Blue dots represent the confirmed compounds; red dots represent the predicted compounds[31]. Copyright 2018, American Chemical Society
图式1 Yore等提出的5-PAHSA的化学合成路径[2]
Scheme 1 Proposed chemical synthesis pathway of 5-PAHSA by Yore et al.[2]
图式2 Balas等提出的5-PAHSA的化学合成路径[37]
Scheme 2 Proposed chemical synthesis pathway of 5-PAHSA by Balas et al.[37]
图式3 Nelson等报道9(R)-PAHSA的合成方法[38]
Scheme 3 Proposed chemical synthesis pathway of 5(R)-PAHSA by Nelson et al.[38]
[1]
Fahy E, Subramaniam S, Brown H A, Glass C K, Merrill A H, Murphy R C, Raetz C R, Russell D W, Seyama Y, Shaw W. Eur. J. Lipid Sci. Tech., 2005, 107:337.

doi: 10.1002/(ISSN)1438-9312     URL    
[2]
Yore M M, Syed I, Moraes-Vieira P M, Zhang T J, Herman M A, Homan E A, Patel R T, Lee J, Chen S L, Peroni O D, Dhaneshwar A S, Hammarstedt A, Smith U, McGraw T E, Saghatelian A, Kahn B B. Cell, 2014, 159(2):318.

doi: 10.1016/j.cell.2014.09.035     URL    
[3]
Muoio D M, Newgard C B. Nature, 2014, 516(7529):49.

doi: 10.1038/nature14070     URL    
[4]
Ussar S, Tschöp M H. Cell, 2014, 159(2):238.

doi: 10.1016/j.cell.2014.09.045     URL    
[5]
Lee J, Moraes-Vieira P M, Castoldi A, Aryal P, Yee E U, Vickers C, Parnas O, Donaldson C J, Saghatelian A, Kahn B B. J. Biol. Chem., 2016, 291(42):22207.

doi: 10.1074/jbc.M115.703835     URL    
[6]
Kuda O, Brezinova M, Rombaldova M, Slavikova B, Posta M, Beier P, Janovska P, Veleba J, Kopecky J, Kudova E, Pelikanova T, Kopecky J. Diabetes, 2016, 65(11):3516.2.

doi: 10.2337/db16-er11b     URL    
[7]
Kolar M J, Konduri S, Chang T N, Wang H J, McNerlin C, Ohlsson L, Härröd M, Siegel D, Saghatelian A. J. Biol. Chem., 2019, 294(27):10698.

doi: 10.1074/jbc.RA118.006956     URL    
[8]
Syed I, Lee J, Moraes-Vieira P M, Donaldson C J, Sontheimer A, Aryal P, Wellenstein K, Kolar M J, Nelson A T, Siegel D, Mokrosinski J, Farooqi I S, Zhao J J, Yore M M, Peroni O D, Saghatelian A, Kahn B B. Cell Metab., 2018, 27(2):419.

doi: 10.1016/j.cmet.2018.01.001     URL    
[9]
Moraes-Vieira P M, Saghatelian A, Kahn B B. Diabetes, 2016, 65(7):1808.

doi: 10.2337/db16-0221     pmid: 27288004
[10]
Syed I, Rubin de Celis M F, Mohan J F, Moraes-Vieira P M, Vijayakumar A, Nelson A T, Siegel D, Saghatelian A, Mathis D, Kahn B B. J. Clin. Investig., 2019, 129(9):3717.

doi: 10.1172/JCI122445     URL    
[11]
Kahn B B, Saghatelian A, Syed I. EP, EP, US 2019/0151276 A1, 2019.
[12]
Hamad A R A, Sadasivam M, Rabb H. J. Clin. Investig., 2019, 129(9):3527.

doi: 10.1172/JCI130313     URL    
[13]
Brezinova M, Kuda O, Hansikova J, Rombaldova M, Balas L, Bardova K, Durand T, Rossmeisl M, Cerna M, Stranak Z, Kopecky J. Biochim. Et Biophys. Acta BBA Mol. Cell Biol. Lipids, 2018, 1863(2):126.
[14]
Rodríguez J P, Guijas C, Astudillo A M, Rubio J M, Balboa M A, Balsinde J. Cancers, 2019, 11(4):524.

doi: 10.3390/cancers11040524     URL    
[15]
Liu T, Tan Z R, Yu J, Peng F, Guo J W, Meng W H, Chen Y, Rao T, Liu Z Q, Peng J B. Expert. Rev. Proteom., 2020, 17(3):233.

doi: 10.1080/14789450.2020.1757443     URL    
[16]
Zhu Q F, Yan J W, Gao Y, Zhang J W, Yuan B F, Feng Y Q. J. Chromatogr. B, 2017, 1061/1062: 34.
[17]
Zhu Q F, Yan J W, Ni J, Feng Y Q. BBA-Mol. Cell Biol. L., 2020, 1865: 158639.
[18]
Parsons W H, Kolar M J, Kamat S S, Iii A B C, Hulce J J, Saez E, Kahn B B, Saghatelian A, Cravatt B F. Nat. Chem. Biol., 2016, 12(5):367.

doi: 10.1038/nchembio.2051     URL    
[19]
Kolar M J, Kamat S S, Parsons W H, Homan E A, Maher T, Peroni O D, Syed I, Fjeld K, Molven A, Kahn B B, Cravatt B F, Saghatelian A. Biochemistry, 2016, 55(33):4636.

doi: 10.1021/acs.biochem.6b00565     URL    
[20]
Kuda O, Brezinova M, Silhavy J, Landa V, Zidek V, Dodia C, Kreuchwig F, Vrbacky M, Balas L, Durand T, Hübner N, Fisher A B, Kopecky J, Pravenec M. Diabetes, 2018, 67(6):1190.

doi: 10.2337/db17-1087     URL    
[21]
McLean S, Davies N W, Nichols D S, McLeod B J. Lipids, 2015, 50(6):591.

doi: 10.1007/s11745-015-4025-9     URL    
[22]
Tan D, Ertunc M E, Konduri S, Zhang J, Pinto A M, Chu Q, Kahn B B, Siegel D, Saghatelian A. J. Am. Chem. Soc., 2019, 141(22):8798.

doi: 10.1021/jacs.9b00045     URL    
[23]
Zhang T J, Chen S L, Syed I, Ståhlman M, Kolar M J, Homan E A, Chu Q, Smith U, Borén J, Kahn B B, Saghatelian A. Nat. Protoc., 2016, 11(4):747.

doi: 10.1038/nprot.2016.040     URL    
[24]
Kolar M J, Nelson A T, Chang T N, Ertunc M E, Christy M P, Ohlsson L, Härröd M, Kahn B B, Siegel D, Saghatelian A. Anal. Chem., 2018, 90(8):5358.

doi: 10.1021/acs.analchem.8b00503     URL    
[25]
López-Bascón M A, Calderón-Santiago M, Priego-Capote F. Anal. Chimica Acta, 2016, 943:82.

doi: 10.1016/j.aca.2016.09.014     URL    
[26]
Qi B L, Liu P, Wang Q Y, Cai W J, Yuan B F, Feng Y Q. Trac Trends Anal. Chem., 2014, 59:121.

doi: 10.1016/j.trac.2014.03.013     URL    
[27]
Zhang T Y, Li S, Zhu Q F, Wang Q, Hussain D, Feng Y Q. Trac Trends Anal. Chem., 2019, 119:115608.

doi: 10.1016/j.trac.2019.07.019     URL    
[28]
Hu C F, Wang M, Duan Q, Han X L. Anal. Chimica Acta, 2020, 1105: 105.

doi: 10.1016/j.aca.2020.01.026     URL    
[29]
Liberati-Čizmek A M, Biluš M, Brkić A L, Barić I C, Bakula M, Hozić A, Cindrić M. Plant Foods Hum. Nutr., 2019, 74(2):235.

doi: 10.1007/s11130-019-00728-8     URL    
[30]
Ma Y, Kind T, Vaniya A, Gennity I, Fahrmann J F, Fiehn O. J. Cheminformatics, 2015, 7(1):1.

doi: 10.1186/s13321-014-0049-z     URL    
[31]
Zhu Q F, Yan J W, Zhang T Y, Xiao H M, Feng Y Q. Anal. Chem., 2018, 90(16):10056.

doi: 10.1021/acs.analchem.8b02839     URL    
[32]
Hu T, Lin M, Zhang D, Li M L, Zhang J L. Anal. Bioanal. Chem., 2018, 410(28):7415.

doi: 10.1007/s00216-018-1350-x     URL    
[33]
Pham T, Vidal N, Manful C, Fillier T, Pumphrey R, Doody K, Thomas R. Molecules, 2019, 24(2):232.

doi: 10.3390/molecules24020232     URL    
[34]
Marshall D L, Saville J T, Maccarone A T, Ailuri R, Kelso M J, Mitchell T W, Blanksby S J. Rapid Commun. Mass Spectrom., 2016, 30(21):2351.

doi: 10.1002/rcm.7715     URL    
[35]
Ding J, Kind T, Zhu Q F, Wang Y, Yan J W, Fiehn O, Feng Y Q. Anal. Chem., 2020, 92(8):5960.

doi: 10.1021/acs.analchem.0c00172     pmid: 32202765
[36]
Nelson A T. Doctoral Dissertation of University of Texas at Austin, 2018.
[37]
Balas L, Bertrand-Michel J, Viars F, Faugere J, Lefort C, Caspar-Bauguil S, Langin D, Durand T. Org. Biomol. Chem., 2016, 14(38):9012.

doi: 10.1039/C6OB01597B     URL    
[38]
Nelson A T, Kolar M J, Chu Q, Syed I, Kahn B B, Saghatelian A, Siegel D. J. Am. Chem. Soc., 2017, 139(13):4943.

doi: 10.1021/jacs.7b01269     URL    
[1] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[2] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[3] 乔斌, 陈虹妃, 张卉, 蔡称心. 肿瘤外泌体的分析检测[J]. 化学进展, 2019, 31(6): 847-857.
[4] 胡代花, 陈旺, 王永吉. 活性维生素D3类似物的合成及构效关系研究[J]. 化学进展, 2016, 28(6): 839-859.
[5] 梁妍钰, 唐姗, 郑基深. 细胞穿透环肽[J]. 化学进展, 2014, 26(11): 1793-1800.
[6] 石玉刚, 党亚丽, 刘玉华, 白雪. 生物法与化学法制备硫酸软骨素[J]. 化学进展, 2014, 26(08): 1378-1394.
[7] 刘宁, 王旭珍*, 徐文亚, 郭德才, 汤济洲, 张宝禄. 纳/微米二硫化钼的化学制备及其催化加氢脱硫应用[J]. 化学进展, 2013, 25(05): 726-734.
[8] 杜可杰, 王忆, 梁捷雯, 计亮年, 巢晖*. DNA拓扑异构酶抑制剂[J]. 化学进展, 2013, 25(04): 545-554.
[9] 钱和 韩婵 刘利兵. 食品中化学添加剂的功能与风险控制*[J]. 化学进展, 2009, 21(11): 2424-2434.
[10] 董彬,徐景坤,郑利强. 离子液体应用于电合成导电聚合物* [J]. 化学进展, 2009, 21(09): 1792-1799.
[11] 刘晓旸. 高压化学*[J]. 化学进展, 2009, 21(0708): 1373-1388.
[12] 刘小兵,张贵生. 蝴蝶霉素及其类似物的化学合成进展[J]. 化学进展, 2008, 20(11): 1699-1707.
[13] 马强,巨勇,赵玉芬. 糖缀合物的化学合成*[J]. 化学进展, 2006, 18(09): 1110-1120.
[14] 杜灿屏,陈拥军,梁文平,韩晓东. 天然产物化学研究的挑战和机遇[J]. 化学进展, 2002, 14(05): 405-.
[15] 郭志新,朱道本,李玉良. 富勒烯的化学研究进展[J]. 化学进展, 1998, 10(01): 1-.
阅读次数
全文


摘要

FAHFAs:生物功能、分析及合成