English
新闻公告
More
化学进展 2020, Vol. 32 Issue (12): 2049-2063 DOI: 10.7536/PC200404 前一篇   后一篇

• 综述 •

层状双金属氢氧化物的控制合成及其在水处理中的应用

吕维扬1,**(), 孙继安1, 姚玉元1, 杜淼2, 郑强2   

  1. 1 浙江理工大学材料科学与工程学院 杭州 310018
    2 浙江大学高分子科学与工程学系 杭州 310058
  • 收稿日期:2020-04-03 修回日期:2020-06-26 出版日期:2021-10-15 发布日期:2020-10-15
  • 通讯作者: 吕维扬
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(No. 51873180); 国家自然科学基金项目(51973183)

Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation

Weiyang Lv1,**(), Ji’an Sun1, Yuyuan Yao1, Miao Du2, Qiang Zheng2   

  1. 1 School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
    2 Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
  • Received:2020-04-03 Revised:2020-06-26 Online:2021-10-15 Published:2020-10-15
  • Contact: Weiyang Lv
  • Supported by:
    the National Natural Science Foundation of China(No. 51873180); the National Natural Science Foundation of China(51973183)

层状双金属氢氧化物(LDH)作为无机层状粒子的典型代表,已在众多应用领域展现出巨大潜力。然而,目前的研究大多从LDH的层板组成、层间阴离子种类以及粒子尺寸的角度入手对其进行功能优化,较少关注形貌结构对LDH性能的影响。本文从简要介绍LDH的基本结构和性质出发,详细总结了常规六方片状以及特殊形貌(球状、多面体状、纳米线状、环状等)LDH的制备方法。结合LDH与其他功能粒子复合以提升其综合性能的需求,深入分析了反应配方、合成条件以及基体表面性质对LDH复合材料形貌的调控规律,并综述LDH及其复合物分别作为吸附、催化和分离材料在水处理中的应用。最后,对当前控制合成LDH所存在的难点及其未来研究方向进行了展望。

As a typical representative of inorganic layered materials, layered double hydroxide(LDH) has attracted intensive interest in the well-established and advanced fields of applications. However, current studies on the function optimization of LDH mainly focus on tuning the composition, interlayer anions and particle size, ignoring the relationship between the morphology and property. This review starts with a brief introduction of the basic structure and property of LDH, and then summarizes the LDH synthetic methods of the traditional hexagonal platelets and novel morphologies like microspheres, nanocages, nanowires and nanorings. To improve the comprehensive performance of LDH composite materials, the construction mechanism has been deeply explored through controlling the reaction condition and formulation, as well as the surface property of matrix. In addition, we also discuss the potential applications of LDH composites in water remediation as the adsorbents, catalysts and separation materials. Finally, the present difficulties and development trends of controlling synthesis of LDH are prospected.

Contents

1 Introduction

2 Basic structure and property of LDH

2.1 Composition and structure of LDH

2.2 Characteristic property of LDH

3 Preparation methods of LDH

3.1 Synthesis of LDH with traditional morphology

3.2 Synthesis of LDH with novel morphology

4 Controllable preparation of LDH composites

4.1 Effect of reaction formulation

4.2 Effect of reaction condition

4.3 Effect of surface property

5 Water remediation by LDH materials

5.1 Adsorbents

5.2 Catalysts

5.3 Separation materials

6 Conclusion and outlook

()
图1 LDH的结构示意图,常规的元素组成也于图中标出[18]
Fig.1 Schematic representation of the structure of LDH, the general elemental composition is also indicated[18]
图2 (a~d)二维LDH的晶体结构以及螺旋位错机理驱动生成纳米片和纳米花结构的示意图,(e, f)不同倍率下LDH的SEM图,(g, h)敲击模式下LDH的AFM图[57]
Fig.2 (a~d) Illustrations of the crystal structure and the screw dislocation-driven growth of 2D LDH into nanoplates and nanoflowers,(e, f) SEM images of LDH with different magnifications,(g, h) tapping mode AFM images of LDH[57]
图3 通过牺牲模板法制备出不同结构LDH的SEM和TEM图: (a)核壳微球[85],(b)蛋黄壳微球[85],(c)空心微球[85],(d)内部含MOF的纳米笼[93],(e)空心纳米笼[93],(f)空心棱柱[94],(g)空心纳米球[97],(h)3 D阵列微孔结构[98]和(i)纳米线[99]
Fig.3 TEM and SEM images of LDH synthesized by sacrificial template method with different morphologies: (a) core-shell microspheres[85],(b) yolk-shell microspheres[85],(c) hollow microspheres[85],(d) nanocages with MOF inside[93],(e) hollow nanocages[93],(f) hollow prism[94],(g) hollow nanospheres[97],(h) 3 D ordered microporous structure[98] and (i) nanowires[99]
图4 利用软模板法制备出不同结构LDH的TEM图: (a)带状结构[100],(b)纳米棒[100],(c)绳索结构[107],(d)核壳微球[108],(e)蛋黄壳微球[108],(f)空心微球[108],(g, h)纳米卷和(i)纳米片[109]
Fig.4 TEM images of LDH synthesized by soft template method with different morphologies: (a) belt-like structure[100],(b) nanorods[100],(c) rope-like structure[107],(d) core-shell microspheres[108],(e) yolk-shell microspheres[108],(f) hollow microspheres[108],(g, h) nanoscrolls and (i) nanosheets[109]
图5 不同反应时间下CoAl-LDH的TEM图: (a)0.5 h,(b)1 h,(c)1.5 h,(d)2 h,(e)2.5 h 和(f)3 h;(g)纳米片和纳米环在不同反应时间下的尺寸分布[112]
Fig.5 TEM images of the CoAl-LDH at different reaction times: (a) 0.5 h,(b) 1 h,(c) 1.5 h,(d) 2 h,(e) 2.5 h and (f) 3 h.(g) The size distributions of both nanosheet and nanoring at different reaction times[112]
图6 (a)MgAl(NO 3)和(b)MgAl(SO 4)体系下合成所得复合纤维膜的SEM图,(c)不同体系中LDH在PVDF纤维表面的生长机理[122]
Fig.6 SEM images of PVDF@LDH composite fibrous membranes synthesized by (a) MgAl(NO 3) and (b) MgAl(SO 4), (c) Schematic illustration of the growth mechanism of LDH on PVDF nanofiber surface[122]
图7 不同反应时间下LDH在改性SiO 2纤维表面的SEM图: (a)3 h,(b)6 h,(c)12 h和(d)24 h[126]
Fig.7 SEM images of the LDH grown on the modified SiO 2nanofibers at different reaction times: (a) 3 h,(b) 6 h,(c) 12 h and (d) 24 h[126]
表1 不同形貌LDH应用于水处理时的性能对比
Table 1 The performance comparison of LDH with different morphologies in water treatment
[1]
Zubair M , Daud M , McKay G , Shehzad F , Al-Harthi M A . Appl. Clay Sci., 2017, 143: 279.
[2]
Atienzar P , de Victoria-Rodriguez M, Juanes O , Carlos Rodriguez-Ubis J, Brunet E , Garcia H . Energy Environ. Sci., 2011, 4: 4718.
[3]
Cai Z , Bu X , Wang P , Ho J C , Yang J , Wang X . J. Mater. Chem. A, 2019, 7: 5069.
[4]
Pan Z , Jiang Y , Yang P , Wu Z , Tian W , Liu L , Song Y , Gu Q , Sun D , Hu L . ACS Nano, 2018, 12: 2968.
[5]
Jiang Y , Song Y , Li Y , Tian W , Pan Z , Yang P , Li Y , Gu Q , Hu L . ACS Appl . Mater. Interfaces, 2017, 9: 37645.
[6]
Naderi Kalali E, Wang X , Wang D Y. J. Mater. Chem. A, 2016, 4: 2147.
[7]
Pang X , He Y , Jung J , Lin Z . Science, 2016, 353: 1268.
[8]
Sun Y , Xia Y . Science, 2002, 298: 2176.
[9]
Cavas L , Yildiz P G , Mimigianni P , Sapalidis A , Nitodas S . J. Coat. Technol. Res., 2018, 15: 105.
[10]
Lv W , Mei Q , Du M , Xiao J , Ye W , Zheng Q . J. Phys. Chem. C, 2016, 120: 14435.
[11]
Lee G , Na W , Kim J , Lee S , Jang J . J. Mater. Chem. A, 2019, 7: 17637.
[12]
Roldan Cuenya B. Thin Solid Films, 2010, 518: 3127.
[13]
Liu Y , Wei J , Tian Y , Yan S . J. Mater. Chem. A, 2015, 3: 19000.
[14]
Tan C , Cao X , Wu X J , He Q , Yang J , Zhang X , Zhang H . Chem. Rev., 2017, 117: 6225.
[15]
Wang Q , O'Hare D . Chem. Rev., 2012, 112: 4124.
[16]
Ma R , Sasaki T . Accounts Chem. Res., 2015, 48: 136.
[17]
Sideris P , Nielsen U , Gan Z , Grey C . Science, 2008, 321: 113.
[18]
Pavlovic M , Rouster P , Oncsik T , Szilagyi I . Chempluschem, 2017, 82: 121.
[19]
Yan K , Liu Y , Lu Y , Chai J , Sun L . Catal. Sci. Technol., 2017, 7: 1622.
[20]
Yan D , Lu J , Wei M , Han J , Ma J , Li F , Duan X . Angew. Chem. Int. Edit., 2009, 48: 3073.
[21]
Millange F , Walton R , Lei L , O'Hare D . Chem. Mater., 2000, 12: 1990.
[22]
Iglesias A H , Ferreira O P , Gouveia D X , Souza Filho A G, de Paiva J A C, Mendes Filho J , Alves O L . J. Solid State Chem., 2005, 178: 142.
[23]
Lue Z , Duan X . Chinese J. Catal., 2008, 29: 839.
[24]
Omwoma S , Chen W , Tsunashima R , Song Y F . Coordin. Chem. Rev., 2014, 258: 58.
[25]
Feng J , He Y , Liu Y , Du Y , Li D . Chem. Soc. Rev., 2015, 44: 5291.
[26]
Wang Y , Yan D , El Hankari S, Zou Y , Wang S . Adv. Sci., 2018, 5: 1800064.
[27]
Zhu J , Zhu Z , Zhang H , Lu H , Qiu Y . RSC Adv., 2019, 9: 2284.
[28]
Mohapatra L , Parida K . J. Mater. Chem. A, 2016, 4: 10744.
[29]
Jobbagy M , Iyi N . J. Phys. Chem. C, 2010, 114: 18153.
[30]
Bellotto M , Rebours B , Clause O , Lynch J , Bazin D , Elkaïm E . J. Phys. Chem., 1996, 100: 8527.
[31]
Tichit D , Layrac G , Gerardin C . Chem. Eng. J., 2019, 369: 302.
[32]
Shao M , Zhang R , Li Z , Wei M , Evans D G , Duan X . Chem. Commun., 2015, 51: 15880.
[33]
Xu Z P , Zhang J , Adebajo M O , Zhang H , Zhou C . Appl. Clay Sci., 2011, 53: 139.
[34]
Frost R L , Weier M L , Clissold M E , Williams P A . Spectrochim. Acta. A, 2003, 59: 3313.
[35]
Adachi-Pagano M , Forano C , Besse J P . J. Mater. Chem., 2003, 13: 1988.
[36]
Yu J , Wang Q , O'Hare D , Sun L . Chem. Soc. Rev., 2017, 46: 5950.
[37]
Kühl S , Schumann J , Kasatkin I , Hävecker M , Schlögl R , Behrens M . Catal. Today, 2015, 246: 92.
[38]
Wang X , Lin Y , Su Y , Zhang B , Li C , Wang H , Wang L . Electrochimica Acta, 2017, 225: 263.
[39]
San Román M S, Holgado M J , Jaubertie C , Rives V. Solid State Sci., 2008, 10: 1333.
[40]
Okamoto K , Iyi N , Sasaki T . Appl. Clay Sci., 2007, 37: 23.
[41]
Tsukanov A A , Psakhie S G . Sci. Rep., 2016, 6: 19986.
[42]
Bravo-Suárez J J , Páez-Mozo E A , Ted Oyama S . Micropor. Mesopor. Mat., 2004, 67: 1.
[43]
Khan A I , O’Hare D . J. Mater. Chem., 2002, 12: 3191.
[44]
Bravo-Suárez J J , Páez-Mozo E A , Oyama S T . Química Nova, 2004, 27: 601.
[45]
Li L , Feng Y J , Li Y S , Zhao W R , Shi J L . Angew. Chem. Int. Edit., 2009, 48: 5888.
[46]
Mishra G , Dash B , Pandey S . Appl. Clay Sci., 2018, 153: 172.
[47]
Tsyganok A , Suzuki K , Hamakawa S , Takehira K , Hayakawa T . Chem. Lett., 2001, 1: 24.
[48]
Millange F , Walton R I , O'Hare D . J. Mater. Chem., 2000, 10: 1713.
[49]
Meng W , Li F , Evans D G , Duan X . Mater. Chem. Phys., 2004, 86: 1.
[50]
Wei M , Shi S , Wang J , Li Y , Duan X . J. Solid State Chem., 2004, 177: 2534.
[51]
Aisawa S , Takahashi S , Ogasawara W , Umetsu Y , Narita E . J. Solid State Chem., 2001, 162: 52.
[52]
Zhao Y , Li F , Zhang R , Evans D G , Duan X . Chem. Mater., 2002, 14: 4286.
[53]
Evans D , Duan X . Chem. commun, 2006, 5: 485.
[54]
李天( Li T ), 郝晓杰( Hao X J ), 白莎( Bai S ), 赵宇飞( Zhao Y F ), 宋宇飞( Song Y F ). 物理化学学报( Acta Physico-Chimica Sinica), 2020, 36( 9): 1912005.
[55]
Ogawa M , Kaiho H . Langmuir, 2002, 18: 4240.
[56]
Oh J M , Hwang S H , Choy J H . Solid State Ionics, 2002, 151: 285.
[57]
Forticaux A , Dang L , Liang H , Jin S . Nano Letters, 2015, 15: 3403.
[58]
Morel-Desrosiers N , Pisson J , Israëli Y , Taviot-GuÉho C , Besse J P , Morel J P . J. Mater. Chem., 2003, 13: 2582.
[59]
Bontchev R P , Liu S , Krumhansl J L , Voigt J , Nenoff T M . Chem. Mater., 2003, 15: 3669.
[60]
S P. Newman , Jones W. New J. Chem., 1998, 22: 105.
[61]
Kukkadapu R K , Witkowski M S , Amonette J E . Chem. Mater., 1997, 9: 417.
[62]
Xing Y , Li D , Ren L L , Evans D G , Duan X . Acta Chim. Sinica, 2003, 61: 267.
[63]
Newman S P , Jones W . J. Solid State Chem., 1999, 148: 26.
[64]
Malki K , Roy A , Besse J P . Eur. J. Solid State Inorg. Chem., 1989, 20: 339.
[65]
Ogawa M , Asai S . Chem. Mater., 2000, 12: 3253.
[66]
Zhang J , Zhang F , Ren L , Evans D G , Duan X . Mater. Chem. Phys., 2004, 85: 207.
[67]
Ren L , He J , Zhang S , Evans D G , Duan X . J. Mol. Catal. B: Enzym., 2002, 18: 3.
[68]
Boehm H P , Steinle J , Vieweger C . Angew. Chem. Int. Edit., 1977, 16: 265.
[69]
Valente J S , Cantu M S , Figueras F . Chem. Mater., 2008, 20: 1230.
[70]
Shedam M R , Venkateswara Rao A . Mater. Chem. Phys., 1998, 52: 263.
[71]
赵芸( Zhao Y ), 矫庆泽( Jiao Q Z ), 李峰( Li F ), Evans D. G., 段雪(Duan X). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2001, 17( 6): 830.
[72]
De la Hoz A, Diaz-Ortiz A , Moreno A . Chem. Soc. Rev., 2005, 34: 164.
[73]
Tichit D , Rolland A , Prinetto F , Fetter G , de Jesus Martinez-Ortiz M, Valenzuela M A , Bosch P . J. Mater. Chem., 2002, 12: 3832.
[74]
Fetter G , Hernández F , Maubert A M , Lara V H , Bosch P . J. Porous Mat., 1997, 4: 27.
[75]
Aramendı M A , Borau V , Jimenez U , Marinas J M , Ruiz J R , Urbano F J . J. Solid State Chem., 2002, 168: 156.
[76]
Jitianu M , Bãlãsoiu M , Zaharescu M , Jitianu A , Ivanov A . J. Sol-Gel Sci. Techn., 2000, 19: 453.
[77]
Ma R , Liang J , Liu X , Sasaki T . J. Am. Chem. Soc., 2012, 134: 19915.
[78]
Ma R , Liu Z , Takada K , Iyi N , Bando Y , Sasaki T . J. Am. Chem. Soc., 2007, 129: 5257.
[79]
Ma R , Liang J , Takada K , Sasaki T . J. Am. Chem. Soc., 2011, 133: 613.
[80]
Del Arco M , Carriazo D , Gutierrez S , Martin C , Rives V. Inorg. Chem., 2004, 43: 375.
[81]
Lei X , Yang L , Zhang F , Duan X . Chem. Eng. Sci., 2006, 61: 2730.
[82]
Tongamp W , Zhang Q , Saito F . J. Mater. Sci., 2007, 42: 9210.
[83]
Nagaraju G , Sekhar S C , Bharat L K , Yu J S . ACS Nano, 2017, 11: 10860.
[84]
Jafari Foruzin L, Rezvani Z. Ultrason. Sonochem., 2019, 64: 104919.
[85]
Shao M , Ning F , Zhao Y , Zhao J , Wei M , Evans D G , Duan X . Chem. Mater., 2012, 24: 1192.
[86]
Wang W , Zhang N , Shi Z , Ye Z , Gao Q , Zhi M , Hong Z . Chem. Eng. J., 2018, 338: 55.
[87]
Sudare T , Zenzai A , Tamura S , Kiyama M , Hayashi F , Teshima K . Crystengcomm, 2019, 21: 7211.
[88]
Sun Y , Gao X , Yang N , Tantai X , Xiao X , Jiang B , Zhang L . Ind. Eng. Chem. Res., 2019, 58: 7937.
[89]
Pan J , Wang F , Zhang L , Song S , Zhang H . Inorg. Chem. Front., 2019, 6: 220.
[90]
Li Z , Han F , Li C , Jiao X , Chen D . Chem-Asian J., 2018, 13: 1129.
[91]
Zhou X , Mu X , Cai W , Wang J , Chu F , Xu Z , Hu Y . ACS Appl. Mater. Interfaces, 2019, 11: 41736.
[92]
Guan X , Huang M , Yang L , Wang G , Guan X . Chem. Eng. J., 2019, 372: 151.
[93]
Jiang Z , Li Z , Qin Z , Sun H , Jiao X , Chen D . Nanoscale, 2013, 5: 11770.
[94]
Yu L , Yang J F , Guan B Y , Lu Y , Lou X W . Angew. Chem. Int. Edit., 2018, 57: 172.
[95]
Li L , Ma R , Iyi N , Ebina Y , Takada K , Sasaki T . Chem. Commun., 2006, 29: 3125.
[96]
Zong Y , Li K , Tian R , Lin Y , Lu C . Nanoscale, 2018, 10: 23191.
[97]
Gunawan P , Xu R . Chem. Mater., 2009, 21: 781.
[98]
Geraud E , Rafqah S , Sarakha M , Forano C , Prevot V , Leroux F . Chem. Mater., 2008, 20: 1116.
[99]
Memon J , Sun J , Meng D , Ouyang W , Memon M A , Huang Y , Geng J . J. Mater. Chem. A, 2014, 2: 5060.
[100]
Hu G , O'Hare D . J. Am. Chem. Soc., 2005, 127: 17808.
[101]
He J , Li B , Evans D G , Duan X . Colloid Surface A, 2004, 251: 191.
[102]
Sun H , Chu Z , Hong D , Zhang G , Xie Y , Li L , Shi K . J. Alloy Compd., 2016, 658: 561.
[103]
Zhang P , Ouyang S , Li P , Huang Y , Frost R L . Chem. Eng. J., 2019, 360: 1137.
[104]
Yang Y , Fan G , Li F . Mater. Lett., 2014, 116: 203.
[105]
Zhang H , Chen H , Azat S , Mansurov Z A , Liu X , Wang J , Wu R . J. Alloy Compd., 2018, 768: 572.
[106]
Wu H , Jiao Q , Zhao Y , Huang S , Li X , Liu H , Zhou M . Mater. Charact., 2010, 61: 227.
[107]
Zhao J , Xie Y , Yuan W , Li D , Liu S , Zheng B , Hou W . J. Mater. Chem. B, 2013, 1: 1263.
[108]
Shao M , Ning F , Zhao J , Wei M , Evans D G , Duan X . Adv. Funct. Mater., 2013, 23: 3513.
[109]
Lv W Y , Du M , Ye W J , Zheng Q . J. Mater. Chem. A, 2015, 3: 23395.
[110]
Ren L , Hu J S , Wan L J , Bai C L . Mater. Res. Bull., 2007, 42: 571.
[111]
Tian L , Wang K , Wo H , Li Z , Song M , Li J , Du X . J. Taiwan Inst. Chem. E., 2019, 96: 273.
[112]
Zhou D , Zhang Q , Wang S , Jia Y , Liu W , Duan H , Sun X . Inorg. Chem., 2020, 59: 1804.
[113]
Chen L , Li C , Wei Y , Zhou G , Pan A , Wei W , Huang B . J. Alloy Compd., 2016, 687: 499.
[114]
Huang P , Liu J , Wei F , Zhu Y , Wang X , Cao C , Song W . Mater. Chem. Front., 2017, 1: 1550.
[115]
Zhong H , Liu T , Zhang S , Li D , Tang P , Alonso-Vante N , Feng Y . J. Energy Chem., 2019, 33: 130.
[116]
Prevot V , Szczepaniak C , Jaber M . J. Colloid Interface Sci., 2011, 356: 566.
[117]
Shi J L , Peng H J , Zhu L , Zhu W , Zhang Q . Carbon, 2015, 92: 96.
[118]
Huo R , Kuang Y , Zhao Z , Zhang F , Xu S . J. Colloid Interface Sci., 2013, 407: 17.
[119]
Tokudome Y , Fukui M , Tarutani N , Nishimura S , Prevot V , Forano C , Takahashi M . Langmuir, 2016, 32: 8826.
[120]
Tokudome Y , Tarutani N , Nakanishi K , Takahashi M . J. Mater. Chem. A, 2013, 1: 7702.
[121]
Wang L , Wang Y , Wang X . Materials, 2017, 10: 1140.
[122]
Mei Q , Lv W , Du M , Zheng Q . RSC Adv., 2017, 7: 46576.
[123]
Jing C , Liu X , Liu X , Jiang D , Dong B , Dong F , Zhang Y . CrystEngComm, 2018, 20: 7428.
[124]
Lai F , Huang Y , Miao Y E , Liu T . Electrochimica Acta, 2015, 174: 456.
[125]
Su D , Tang Z , Xie J , Bian Z , Zhang J , Yang D , Kong Q . Appl. Surf. Sci., 2019, 469: 487.
[126]
Lv W Y , Mei Q Q , Fu H K , Xiao J L , Du M , Zheng Q . J. Mater. Chem. A, 2017, 5: 19079.
[127]
Chen X , Mi F , Zhang H , Zhang H . Mater. Lett., 2012, 69: 48.
[128]
Bai X , Liu Q , Zhang H , Liu J , Li Z , Jing X , Wang J . Electrochimica Acta, 2016, 215: 492.
[129]
Theiss F L , Couperthwaite S J , Ayoko G A , Frost R L . J. Colloid Interface Sci., 2014, 417: 356.
[130]
Dore E , Frau F . J. Water Process. Eng., 2019, 31: 100855.
[131]
Lv L , He J , Wei M , Evans D G , Duan X . J. Hazard. Mater., 2006, 133: 119.
[132]
Wu X , Wang Y , Xu L , Lv L . Desalination, 2010, 256: 136.
[133]
Ji H , Wu W , Li F , Yu X , Fu J , Jia L . J. Hazard. Mater., 2017, 334: 212.
[134]
Zhang Y , Li X , Liu H . Desalin. Water Treat., 2015, 55: 1325.
[135]
Kang J , Levitskaia T G , Park S , Kim J , Varga T , Um W . Chem. Eng. J., 2020, 380.
[136]
He W , Ai K , Ren X , Wang S , Lu L . J. Mater. Chem. A, 2017, 5: 19593.
[137]
Goh K H , Lim T T , Dong Z . Water Res., 2008, 42: 1343.
[138]
Zhou J , Shu W , Gao Y , Cao Z , Zhang J , Hou H , Qian G . RSC Adv., 2017, 7: 20320.
[139]
Jaiswal A , Mani R , Banerjee S , Gautam R K , Chattopadhyaya M C . J. Mol. Liq., 2015, 202: 52.
[140]
Wang W , Zhou J , Achari G , Yu J , Cai W . Colloid Surface A, 2014, 457: 33.
[141]
Otgonjargal E , Kim Y S , Park S M , Baek K , Yang J S . Sep. Sci. Technol., 2012, 47: 2192.
[142]
Liang X , Zang Y , Xu Y , Tan X , Hou W , Wang L , Sun Y . Colloid Surface A, 2013, 433: 122.
[143]
Yang F , Sun S , Chen X , Chang Y , Zha F , Lei Z . Appl. Clay Sci., 2016, 123: 134.
[144]
Ma S , Huang L , Ma L , Shim Y , Islam S M , Wang P , Kanatzidis M G . J. Am. Chem. Soc., 2015, 137: 3670.
[145]
Ma L , Wang Q , Islam S M , Liu Y , Ma S , Kanatzidis M G . J. Am. Chem. Soc., 2016, 138: 2858.
[146]
Xie Y , Yuan X , Wu Z , Zeng G , Jiang L , Peng X , Li H . J. Colloid Interface Sci., 2019, 536: 440.
[147]
Yang Z , Wang F , Zhang C , Zeng G , Tan X , Yu Z , Cui F . RSC Adv., 2016, 6: 79415.
[148]
Guo Y , Zhu Z , Qiu Y , Zhao J . Chem. Eng. J., 2013, 219: 69.
[149]
Darmograi G , Prelot B , Layrac G , Tichit D , Martin-Gassin G , Salles F , Zajac J . J. Phys. Chem. C, 2015, 119: 23388.
[150]
De Sa F P , Cunha B N , Nunes L M . Chem. Eng. J., 2013, 215: 122.
[151]
Zhang Y X , Hao X D , Kuang M , Zhao H , Wen Z Q . Appl. Surf. Sci., 2013, 283: 505.
[152]
Meng Z , Wu M , Zhao S , Jing R , Li S , Shao Y , Zhang Q . Appl. Clay Sci., 2019, 170: 41.
[153]
Bethi B , Sonawane S H , Bhanvase B A , Gumfekar S P . Chem. Eng. Process., 2016, 109: 178.
[154]
Song B , Zeng Z , Zeng G , Gong J , Xiao R , Ye S , Tang X . Adv. Colloid Interfac., 2019, 272: 101999.
[155]
Pan D , Ge S , Zhao J , Tian J , Shao Q , Guo L , Guo Z . Ind. Eng. Chem. Res., 2018, 58: 836.
[156]
Xia S , Qian M , Zhou X , Meng Y , Xue J , Ni Z . Mol. Catal., 2017, 435: 118.
[157]
Zhou T , Hu M , He J , Xie R , An C , Li C , Luo J . Crystengcomm, 2019, 21: 5526.
[158]
Fang P , Wang Z , Wang W . Crystengcomm, 2019, 21: 7025.
[159]
Wu M J , Wu J Z , Zhang J , Chen H , Zhou J Z , Qian G R , Rao Q L . Catal. Sci. Technol., 2018, 8: 1207.
[160]
Wang P , Ng D H L , Zhou M , Li J . Appl. Clay Sci., 2019, 178: 105131.
[161]
Guo X X , Hu T T , Meng B , Sun Y , Han Y F . Appl. Catal. B-Environ., 2020, 260: 118157.
[162]
Fan G , Li F , Evans D G , Duan X . Chem. Soc. Rev., 2014, 43: 7040.
[163]
Zhong P , Yu Q , Zhao J , Xu S , Qiu X , Chen J . J. Colloid Interface Sci., 2019, 552: 122.
[164]
Zhang H , Li G , Deng L , Zeng H , Shi Z . J. Colloid Interface Sci., 2019, 543: 183.
[165]
Wang J , Wang S . Chem. Eng. J., 2018, 334: 1502.
[166]
Li W , Wu P X , Zhu Y , Huang Z J , Lu Y H , Li Y W , Zhu N W . Chem. Eng. J., 2015, 279: 93.
[167]
Hou L , Li X , Yang Q , Chen F , Wang S , Ma Y , Wang D . Sci. Total Environ., 2019, 663: 453.
[168]
Ma Q , Cheng H , Fane A G , Wang R , Zhang H . Small, 2016, 12: 2186.
[169]
Chu Z , Feng Y , Seeger S . Angew. Chem. Int. Edit., 2015, 54: 2328.
[170]
Cui J , Zhou Z , Xie A , Wang Q , Liu S , Lang J , Dai J . J. Membrane Sci., 2019, 573: 226.
[171]
Lv W Y , Mei Q Q , Xiao J L , Du M , Zheng Q . Adv. Funct. Mater., 2017, 27: 9.
[172]
Liu P , Zhang Y , Liu S , Zhang Y , Qu L . Appl. Clay Sci., 2019, 182.
[173]
Lyu H , Hu K , Fan J , Ling Y , Xie Z , Li J . Appl. Surf. Sci., 2019, 500: 144037.
[174]
Zhang L , Xiong Z , Li L , Burt R , Zhao X S . J. Colloid Interface Sci., 2016, 469: 224.
[175]
Zou Y , Liu Y , Wang X , Sheng G , Wang S , Ai Y , Ji Y F , Liu Y H , Hayat T , Wang X K . ACS Sustainable Chemi. Eng., 2017, 5: 3583.
[176]
Li Y , Wang J , Li Z S , Liu Q , Liu J Y , Liu L H , Zhang X F , Yu J . Chem. Eng. J., 2013, 218: 295.
[177]
Wang Q , Wang X , Tian B . Water Sci.Technol., 2018, 77: 2772.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[3] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[4] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[10] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[11] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[12] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[13] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[14] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[15] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.