English
新闻公告
More
化学进展 2021, Vol. 33 Issue (4): 543-554 DOI: 10.7536/PC200667 前一篇   后一篇

• 综述 •

生物医用高通量研究中的微液滴阵列

陈怡峰1, 王聪1, 任科峰1, 计剑1,*()   

  1. 1 浙江大学高分子科学与工程学系 教育部高分子合成与功能构造重点实验室 杭州 310027
  • 收稿日期:2020-06-22 修回日期:2020-08-20 出版日期:2021-04-20 发布日期:2020-12-22
  • 通讯作者: 计剑
  • 基金资助:
    国家自然科学基金项目(51933009); 国家重点研发计划重点专项(2017YFB0702500)

Droplet Microarrays in Biomedical High-Throughput Research

Yifeng Chen1, Cong Wang1, Kefeng Ren1, Jian Ji1()   

  1. 1 Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2020-06-22 Revised:2020-08-20 Online:2021-04-20 Published:2020-12-22
  • Contact: Jian Ji
  • Supported by:
    the National Natural Science Foundation of China(51933009); the Key Project of National Key Research and Development Program of China(2017YFB0702500)

为快速、高效处理大量实验及其数据,进一步加快材料研发过程,高通量筛选成为了一种越来越重要的实验手段,被广泛应用于众多领域,以提升实验效率。而高通量实验平台是开展高通量实验的基础条件。现有高通量实验平台,如微孔板,在处理珍贵样品和试剂时,仍存在消耗量较大、实验通量较低等问题,仍有待进一步优化。而微液滴阵列作为一种新兴的微型化和集成化高通量平台,具有试剂及样品消耗少、反应时间短、高度集成化、可操作性强等优势,在生物医用领域得到了广泛的研究和应用。本文总结归纳了微液滴阵列的制备方法,将其划分为表面化学驱动和物理形貌辅助两大类,并对不同制备方法的优缺点进行了简要的分析;随后从2D细胞筛选、3D细胞培养、单细胞分析及全机体筛选四个方向对其在生物医用高通量研究中的应用进行了简要介绍,最后总结分析了微液滴阵列在应用过程中存在的问题和未来的发展方向。

In order to handle a large number of experiment conditions and outputs and further accelerate the material development process, high-throughput screening has become a more and more important experimental method, which has been widely used in many fields to improve experimental efficiency. And the high-throughput platform is the basic condition for carrying out high-throughput experiments. Existing high-throughput platforms, like microtiter plates, still suffer from problems such as high consumption and low experimental throughput when dealing with precious samples and reagents and further optimization is still required. As an emerging miniaturized and integrated high-throughput platform, droplet microarrays have the advantages of low consumption of reagent and sample, short reaction time, high integration and strong operability, and have been widely studied and applied in the field of biomedicine. In this paper, the construction methods of droplet microarrays are summarized and divided into two categories: surface chemistry driving and physical morphology assisted. The advantages and disadvantages of different construction methods are briefly analyzed. Then the applications of droplet microarrays in biomedical high-throughput research are also briefly introduced from the four directions of 2D cell screening, 3D cell culture, single cell analysis and whole organism screening. Finally, the problems existing in the application process of droplet microarrays and its future development direction are also summarized and analyzed.

Contents

1 Introduction

2 Construction methods

2.1 Surface chemistry

2.2 Surface morphology

3 Applications in biomedical high-throughput research

3.1 2D cell screening

3.2 3D cell culture

3.3 Single cell analysis

3.4 Whole organism screening

4 Conclusion and outlook

()
图1 不同的微液滴阵列。A)亲疏水图案化表面的微液滴阵列示意图及实物图[7];B)微柱间捕获的微液滴阵列示意图及显微图像[8]
Fig.1 Different types of droplet microarrays. A) The schematic and image of droplet microarray formed on a superhydrophilic-superhydrophobic patterned surface[7]. Copyright 2012, Royal Society of Chemistry B) The schematic and microscopic image of droplet microarray captured by micropillars[8]. Copyright 2019, American Chemical Society
图2 湿法刻蚀制备微液滴阵列示意图[12]
Fig.2 The schematic of fabrication of droplet microarray by wet etching[12]. Copyright 2011, Royal Society of Chemistry
图3 微液滴阵列的制备技术:A)软光刻[13]、B)光接枝[16]
Fig.3 Droplet microarrays formed by A) soft lithography[13], Copyright 2016, John Wiley and Sons and B) photografting[16]. Copyright 2011, John Wiley and Sons
图4 A)滚动液滴法一步形成微液滴过程[7];B)光催化制备亲疏水图案化表面[20]
Fig.4 A) Droplet microarray formed by rolling droplet method[7]. Copyright 2012, Royal Society of Chemistry; B) Fabrication of superhydrophilic-superhydrophobic patterned surface by photocatalysis[20]. Copyright 2018, American Chemical Society
图5 利用微柱间的剪切作用捕获形成微液滴阵列[33]
Fig.5 Droplet microarray formed among the micropillars by shear force[33]. Copyright 2018, Royal Society of Chemistry
图6 微液滴阵列分别形成于A)微柱上[35]和B)破乳后[36]
Fig.6 Droplet microarrays formed A) on micropillars[35]. Copyright 2019, John Wiley and Sons and B) by emulsion breaking[36]. Copyright 2019, American Chemical Society
图7 等离子体处理不同时间调节表面亲疏水性[44]
Fig.7 The procedure to create a wettability gradient on the initially superhydrophobic surface by changing the plasma-exposure time[44]. Copyright 2009, John Wiley and Sons
图8 A)三明治法添加化合物库进行细胞筛选流程示意图[48]和B)细胞转染增强剂高通量筛选流程示意图[49]
Fig.8 The schematic of a workflow of A) cell based screening using sandwiching technology[48]. Copyright 2015, John Wiley and Sons and B) high-throughput screening of cell transfection enhancers[49]. Copyright 2020, John Wiley and Sons
图9 A)微压痕表面进行悬滴法培养及药物筛选示意图[29];B)不同初始细胞浓度下悬滴法培养所得球状体的共聚焦显微镜图像[61]
Fig.9 A) The schematic of cell culture by hanging drop method on superhydrophobic surface with micro-indentations and drug-screening test[29]. Copyright 2014, John Wiley and Sons B) The confocal microscope of the spheroids formed by hanging drop method with different initial cell densities[61]. Copyright 2015, Royal Society of Chemistry
图10 A)在微液滴阵列上三种不同位置进行穿孔以实现后续加液取液操作[26];B)在大闪蝶翅膀上制备微液滴阵列实现悬滴法细胞培养[28]
Fig.10 A) Three different positions to be perforated in order to add and remove medium from the drop[26]. Copyright 2014, American Chemical Society B) Schematic of the fabrication of droplet microarray on the superhydrophobic butterfly wing and the formation of the spheroids[28]. Copyright 2019, American Chemical Society
图11 A)封装细胞的水凝胶阵列制备示意图[7];B)两种细胞层层组装示意图及其共聚焦荧光图像和C)两种细胞并排组装示意图[13]
Fig.11 A) Schematic of the fabrication of arrays of hydrogel micropads incorporating cells[7]. Copyright 2012, Royal Society of Chemistry; B) Schematic and confocal florescence image of layer-by-layer assembled cells in a single microgel and C) Schematics of side-by-side assembly of two cell populations in a single microgel[13]. Copyright 2016, John Wiley and Sons
图12 微液滴阵列体系进行单细胞基因表达分析流程示意图[66]
Fig.12 Schematic of the operation procedures of single cell gene expression analysis using droplet microarray system[66]. Copyright 2015, Springer Nature
图13 单细胞微液滴阵列形成流程图[68]
Fig.13 Schematic of the workflow of single cell droplet microarray formation[68]. Copyright 2016, MDPI
图14 斑马鱼胚胎微液滴阵列形成示意图及图像[27]
Fig.14 Schematic and images of the formation of droplet microarray containing zebrafish embryos[27]. Copyright 2017, John Wiley and Sons
[1]
Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel J B, de Mello A J. Lab a Chip, 2008, 8(8): 1244.

doi: 10.1039/b806405a     URL    
[2]
Jenssen T K, Lægreid A, Komorowski J, Hovig E. Nat. Genet., 2001, 28(1): 21.

URL     pmid: 11326270
[3]
Kansy M, Senner F, Gubernator K. J. Med. Chem., 1998, 41(7): 1007.

doi: 10.1021/jm970530e     URL     pmid: 9544199
[4]
Tronser T, Popova A A, Levkin P A. Curr. Opin. Biotechnol., 2017, 46: 141.

doi: 10.1016/j.copbio.2017.03.005     URL     pmid: 28388486
[5]
Tronser T, Popova A A, Jaggy M, Bastmeyer M, Levkin P A. Adv. Healthcare Mater., 2017, 6(23): 1700622.
[6]
Feng W Q, Ueda E, Levkin P A. Adv. Mater., 2018, 30(20): 1706111.
[7]
Ueda E, Geyer F L, Nedashkivska V, Levkin P A. Lab a Chip, 2012, 12(24): 5218.
[8]
Xu J G, Huang M S, Wang H F, Fang Q. Anal. Chem., 2019, 91(16): 10757.

URL     pmid: 31335121
[9]
Lee H A, Ma Y F, Zhou F, Hong S, Lee H. Acc. Chem. Res., 2019, 52(3): 704.

URL     pmid: 30835432
[10]
Ren K F, Hu M, Zhang H, Li B C, Lei W X, Chen J Y, Chang H, Wang L M, Ji J. Prog. Polym. Sci., 2019, 92: 1.
[11]
Arumugam S, Popik V V. J. Am. Chem. Soc., 2011, 133(39): 15730.

doi: 10.1021/ja205652m     URL     pmid: 21861517
[12]
Zhang Y X, Zhu Y, Yao B, Fang Q. Lab a Chip, 2011, 11(8): 1545.
[13]
Li Y W, Chen P, Wang Y C, Yan S Q, Feng X J, Du W, Koehler S A, Demirci U, Liu B F. Adv. Mater., 2016, 28(18): 3543.

URL     pmid: 26991071
[14]
Kuo C T, Wang J Y, Lu S R, Lai Y S, Chang H H, Hsieh J T, Wos A M, Chen B P C, Lu J H, Lee H. Sci. Rep., 2019, 9(1): 10120.

URL     pmid: 31300742
[15]
Wang J B, Zhou Y, Qiu H W, Huang H, Sun C H, Xi J Z, Huang Y Y. Lab a Chip, 2009, 9(13): 1831.

doi: 10.1039/b901635j     URL    
[16]
Geyer F L, Ueda E, Liebel U, Grau N, Levkin P A. Angew. Chem. Int. Ed., 2011, 50(36): 8424.
[17]
Jackman R J, Duffy D C, Ostuni E, Willmore N D, Whitesides G M. Anal. Chem., 1998, 70(11): 2280.

URL     pmid: 21644640
[18]
Feng W Q, Li L X, Ueda E, Li J S, Heißler S, Welle A, Trapp O, Levkin P A. Adv. Mater. Interfaces, 2014, 1(7): 1400269.
[19]
Li H Z, Yang Q, Li G N, Li M Z, Wang S T, Song Y L. ACS Appl. Mater. Interfaces, 2015, 7(17): 9060.

URL     pmid: 25761507
[20]
Liu M, Feng L P, Zhang X Y, Hua Y, Wan Y Q, Fan C, Lv X, Wang H. ACS Appl. Mater. Interfaces, 2018, 10(38): 32038.

URL     pmid: 30160942
[21]
Hwang S H, Lee J, Khang D Y. ACS Appl. Mater. Interfaces, 2019, 11(8): 8645.

URL     pmid: 30688058
[22]
Mu Q C, Wang S G, Li J P, Zhou L H, Li L Q, Chi L F, Wang W C. Appl. Phys. Lett., 2019, 114(18): 183702.
[23]
Lei W, Demir K, Overhage J, Grunze M, Schwartz T, Levkin P A. Adv. Biosys., 2020, 4(10): 2000073.
[24]
Salgado C L, Oliveira M B, Mano J F. Integr. Biol., 2012, 4(3): 318.
[25]
Oliveira M B, Salgado C L, Song W L, Mano J F. Small, 2013, 9(5): 768.

URL     pmid: 23169604
[26]
Oliveira M B, Neto A I, Correia C R, Rial-Hermida M I, Alvarez-Lorenzo C, Mano J F. ACS Appl. Mater. Interfaces, 2014, 6(12): 9488.

URL     pmid: 24865973
[27]
Popova A A, Marcato D, Peravali R, Wehl I, Schepers U, Levkin P A. Adv. Funct. Mater., 2018, 28(3): 1703486.
[28]
Shao C M, Liu Y X, Chi J J, Chen Z Y, Wang J, Zhao Y J. Langmuir, 2019, 35(10): 3832.

URL     pmid: 30773015
[29]
Neto A I, Correia C R, CustÓdio C A, Mano J F. Adv. Funct. Mater., 2014, 24(32): 5096.
[30]
Kulesa A, Kehe J, Hurtado J E, Tawde P, Blainey P C. PNAS, 2018, 115(26): 6685.

URL     pmid: 29899149
[31]
Zhang Y, Minagawa Y, Kizoe H, Miyazaki K, Iino R, Ueno H, Tabata K V, Shimane Y, Noji H. Sci. Adv., 2019, 5(8): eaav8185.

doi: 10.1126/sciadv.aav8185     URL     pmid: 31457078
[32]
Lan C P, Zhou Z W, Ren H W, Park S, Lee S H. J. Mol. Liq., 2019, 283: 155.
[33]
Park D, Kang M, Choi J W, Paik S M, Ko J, Lee S, Lee Y, Son K, Ha J, Choi M, Park W, Kim H Y, Jeon N L. Lab a Chip, 2018, 18(14): 2013.
[34]
Song Y, Xu T, Xiu J, Zhang X. Biosens. Bioelectron., 2020, 149: 111845.

URL     pmid: 31733486
[35]
Liu X J, Gu H C, Ding H B, Du X, He Z Z, Sun L D, Liao J L, Xiao P F, Gu Z Z. Small, 2019, 15(35): 1902360.
[36]
Li Z, Huang Z D, Li F Y, Su M, Li H Z, Zhang Z Y, Wang Y L, Song Y L. ACS Appl. Mater. Interfaces, 2019, 11(19): 17960.

URL     pmid: 30983313
[37]
Nichols M K, Kumar R K, Bassindale P G, Tian L F, Barnes A C, Drinkwater B W, Patil A J, Mann S. Small, 2018, 14(26): 1800739.
[38]
Xu T L, Shi W X, Huang J R, Song Y C, Zhang F L, Xu L P, Zhang X J, Wang S T. ACS Nano, 2017, 11(1): 621.

URL     pmid: 27992718
[39]
KernallÉguen A, Steinhoff R, Bachler S, Dittrich P S, Saint-Marcoux F, El Bakhi S, Vorspan F, LÉonetti G, Lafitte D, PÉlissier-Alicot A L, Zenobi R. Anal. Chem., 2018, 90(3): 2302.

URL     pmid: 29309134
[40]
Zeng Y, Du X, Gao B B, Liu B, Xie Z Y, Gu Z Z. ACS Appl. Mater. Interfaces, 2018, 10(4): 4222.
[41]
Zhao T H, Parker R M, Williams C A, Lim K T P, Frka-Petesic B, Vignolini S. Adv. Funct. Mater., 2019, 29(21): 1804531.
[42]
Bao L, Pinchasik B E, Lei L, Xu Q W, Hao H, Wang X H, Zhang X H. ACS Appl. Mater. Interfaces, 2019, 11(30): 27386.
[43]
Gao M, Kuang M X, Li L H, Liu M J, Wang L B, Song Y L. Small, 2018, 14(19): 1870086.
[44]
Song W L, Veiga D D, CustÓdio C A, Mano J F. Adv. Mater., 2009, 21(18): 1830.
[45]
Zhou Y, Pang Y H, Huang Y Y. Anal. Chem., 2012, 84(5): 2576.

URL     pmid: 22324855
[46]
Zhang H S, Hao Y, Yang J Y, Zhou Y, Li J, Yin S Y, Sun C H, Ma M, Huang Y Y, Xi J J. Nat. Commun., 2011, 2: 554.

URL     pmid: 22109528
[47]
Efremov A N, Stanganello E, Welle A, Scholpp S, Levkin P A. Biomaterials, 2013, 34(7): 1757.

doi: 10.1016/j.biomaterials.2012.11.034     URL     pmid: 23228425
[48]
Popova A A, Schillo S M, Demir K, Ueda E, Nesterov-Mueller A, Levkin P A. Adv. Mater., 2015, 27(35): 5217.

URL     pmid: 26255809
[49]
Liu Y X, Tronser T, Peravali R, Reischl M, Levkin P A. Adv. Biosys., 2020, 4(3): 1900257.
[50]
Popova A A, Demir K, Hartanto T G, Schmitt E, Levkin P A. RSC Adv., 2016, 6(44): 38263.
[51]
Lee Y Y, Narayanan K, Gao S J, Ying J Y. Nano Today, 2012, 7(1): 29.
[52]
Jaggy M, Zhang P, Greiner A M, Autenrieth T J, Nedashkivska V, Efremov A N, Blattner C, Bastmeyer M, Levkin P A. Nano Lett., 2015, 15(10): 7146.

URL     pmid: 26351257
[53]
Brinkmann F, Hirtz M, Haller A, Gorges T M, Vellekoop M J, Riethdorf S, Müller V, Pantel K, Fuchs H. Sci. Rep., 2015, 5: 15342.

URL     pmid: 26493176
[54]
Breslin S, O’Driscoll L. Drug Discov. Today, 2013, 18(5/6): 240.
[55]
Lin R Z, Chang H Y. Biotechnol. J., 2008, 3(9/10): 1172.
[56]
Tung Y C, Hsiao A Y, Allen S G, Torisawa Y S, Ho M, Takayama S. Anal., 2011, 136(3): 473.
[57]
Moscona A. Exp. Cell Res., 1952, 3(3): 535.
[58]
Keller G M. Curr. Opin. Cell Biol., 1995, 7(6): 862.

URL     pmid: 8608017
[59]
Kelm J M, Timmins N E, Brown C J, Fussenegger M, Nielsen L K. Biotechnol. Bioeng., 2003, 83(2): 173.

URL     pmid: 12768623
[60]
Zhao L, Xiu J D, Liu Y, Zhang T Y, Pan W J, Zheng X N, Zhang X J. Sci. Rep., 2019, 9: 19717.

URL     pmid: 31873199
[61]
Neto A I, Correia C R, Oliveira M B, Rial-Hermida M I, Alvarez-Lorenzo C, Reis R L, Mano J F. Biomater. Sci., 2015, 3(4): 581.

doi: 10.1039/c4bm00411f     URL     pmid: 26222417
[62]
Popova A A, Tronser T, Demir K, Haitz P, Kuodyte K, Starkuviene V, Wajda P, Levkin P A. Small, 2019, 15(25): 1901299.
[63]
Neto A I, Demir K, Popova A A, Oliveira M B, Mano J F, Levkin P A. Adv. Mater., 2016, 28(35): 7613.

URL     pmid: 27332997
[64]
Svahn H A, van den Berg A. Lab a Chip, 2007, 7(7/5): 544.
[65]
Kawasaki E S. Ann. N Y Acad. Sci., 2004, 1020(1): 92.
[66]
Zhu Y, Zhang Y X, Liu W W, Ma Y, Fang Q, Yao B. Sci. Rep., 2015, 5: 9551.

URL     pmid: 25828383
[67]
Leung K, Klaus A, Lin B K, Laks E, Biele J, Lai D, Bashashati A, Huang Y F, Aniba R, Moksa M, Steif A, Mes-Masson A M, Hirst M, Shah S P, Aparicio S, Hansen C L. PNAS, 2016, 113(30): 8484.

URL     pmid: 27412862
[68]
Jogia G, Tronser T, Popova A, Levkin P. Microarrays, 2016, 5(4): 28.
[69]
Giacomotto J, SÉgalat L. Br. J. Pharmacol., 2010, 160(2): 204.

URL     pmid: 20423335
[70]
Brehm M, Heissler S, Afonin S, Levkin P A. Small, 2020, 16(10): 1905971.
[71]
Li M S, Yu H T, Bao L, Dyett B, Zhang X H. J. Colloid Interface Sci., 2019, 543: 164.

URL     pmid: 30802763
[1] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[2] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[3] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[4] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[5] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[6] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[7] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[8] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[9] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[10] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[11] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[12] 李智, 唐后亮, 冯岸超, 汤华燊. “活性”/可控自由基聚合制备两性离子聚合物及其应用[J]. 化学进展, 2018, 30(8): 1097-1111.
[13] 王俊莲, 刘新宇, 谢美英, 王化军. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012.
[14] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382.
[15] 贾潞, 马建中, 高党鸽, 吕斌. 层状双氢氧化物/聚合物纳米复合材料[J]. 化学进展, 2018, 30(2/3): 295-303.
阅读次数
全文


摘要