English
新闻公告
More
化学进展 2020, Vol. 32 Issue (10): 1564-1581 DOI: 10.7536/PC200202 前一篇   后一篇

• 综述 •

共价有机框架(COFs)材料的结构控制及其在环境化学中的应用

张安睿1, 艾玥洁1,**()   

  1. 1. 华北电力大学环境科学与工程学院 北京 102206
  • 收稿日期:2020-02-04 修回日期:2020-03-29 出版日期:2020-10-24 发布日期:2020-09-02
  • 通讯作者: 艾玥洁
  • 基金资助:
    国家自然科学基金项目(21777039); 国家重点研究开发计划(2017YFA020700); 中央高校基础研究经费资助(2017YQ001)

Structure Control of Covalent Organic Frameworks(COFs) and Their Applications in Environmental Chemistry

Anrui Zhang1, Yuejie Ai1,**()   

  1. 1. College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2020-02-04 Revised:2020-03-29 Online:2020-10-24 Published:2020-09-02
  • Contact: Yuejie Ai
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21777039); National Key Research and Development Program of China(2017YFA020700); Fundamental Research Funds for the Central Universities(2017YQ001)

近年来,共价有机框架(COFs)材料因其稳定的结构、高比表面积、大孔隙率、可修饰结构和易于功能化而受到了科学家们的广泛关注。通过控制COFs材料的孔径、形状和链接方式以及后合成修饰,功能性COFs材料在气体储存分离、传感器和药物传输等领域发挥了越来越重要的作用。尤其在环境化学领域,COFs材料的研究和应用已成为一热门课题。本文综述了COFs材料的结构控制、分类以及在环境污染物检测和去除中的应用,包括对重金属离子、放射性核素、有机污染物和气体污染物的吸附和催化等。通过改变构筑单体的大小和形状、引入特殊官能团和活性位点等方法,可以增强污染物与COFs材料的相互作用(氢键相互作用、π-π相互作用和范德华力等),使COFs材料在环境领域应用中有优异的表现。本文最后展望了COFs材料在环境领域的应用前景和今后的研究方向,希望能为该领域的研究提供参考。

Recently, covalent organic frameworks(COFs) materials have received considerable attention by scholars for their superior characteristics of stable and modifiable structure, high specific surface area, large porosity, and easy functionalization. By controlling the pore size, shape and linkage of COFs materials, as well as the post-synthetic modification, the functional COFs materials have excellent performance in broad areas of gas storage and separations, sensors, drug delivery, etc. Especially in the fields of environmental chemistry, the COFs materials are posing noteworthy concerns in their environmental application. This article reviews the structure control, classification of COFs materials and their application in detecting and removing pollutants, including adsorption and catalysis of heavy metal ions, radionuclides, organic and gaseous pollutants. By changing the size and shape of building units, as well as introducing special functional groups and active sites, the interaction between pollutants and COFs materials have been strengthened via hydrogen bonds, π-π interaction, Van der Waals forces, etc. Consequently, the COFs materials have excellent performance in environmental applications. Eventually, the application prospects and future research directions of COFs materials in the field of environmental remediation are prospected, which may be helpful for future related research.

Contents

1 Introduction

2 The structure control and classification of COFs

2.1 Building units

2.2 Linkages

3 Applications of COFs for removing environmental pollutants

3.1 Ionic pollutants

3.2 Organic pollutants

3.3 Gaseous pollutants

4 Conclusion and outlook

()
图式1 COF-1的缩合反应过程[7]
Scheme 1 Condensation reaction of COF-1[7]
图式2 COFs材料常见链接键类型
Scheme 2 Common reversible reactions and diversity of linkages for the construction of COFs. The linkages are highlighted in red
图1 COFs材料拓扑设计的部分结构单体及几何形状
Fig.1 Topology diagrams and polygon shapes for COFs
图式3 ILCOF-1的合成和结构[40]
Scheme 3 Building blocks and structure of ILCOF-1[40]
图2 (a)TFPT-COF的构筑单体和结构;(b)TFPT-COF的空间结构,几乎重叠(AA)的原始六角形晶格(灰色:碳;蓝色:氮;红色:氧)[43]
Fig.2 (a)Building units and structure of TFPT-COF; (b)Spatial structure of TFPT-COF with almost overlapping(AA) original hexagonal lattice(gray: carbon; blue: nitrogen; red; oxygen)[43]
图3 以吖嗪键链接的COFs(Py-Azine COF)材料[18]
Fig.3 Synthesis of Py-Azine COF via Azine linkage[18]
图4 PI-COF 201和PI-COF 202的合成过程[51]
Fig.4 Synthesis processes of PI-COF 201 and PI-COF 202[51]
图5 石墨烯(QG)搭架COFs材料作为荧光探针和吸附剂用于铜离子的检测和去除。苯酚(Phen)、多聚甲醛(PA)和三聚氰胺(MA)共价聚合反应生成COFs材料。该COFs材料与QG搭架制备无金属QG-搭架COFs,得到可被Cu2+猝灭的亮绿色荧光产物,其可用于检测和去除Cu2+[5]
Fig.5 The application of QG-COFs in detection and removal of Cu2+ ions. The COFs are synthesized through the covalent polymerization reaction among phenol(Phen), paraformaldehyde(PA), and melamine(MA). The metal-free QG-scaffolded COFs can be quenched by Cu2+ ions and used for the detection and removal of Cu2+ ions[5]
表1 COFs材料去除离子类污染物
Table 1 Applications of COFs materials in removing ionic pollutants
图6 N原子掺杂碳材料(NC)催化硝基苯加氢反应机理[82]
Fig.6 The hydrogenation of nitrobenzene catalyzed by NC catalyst in N2H4·H2O[82]
表2 COFs材料去除有机物污染物
Table 2 Applications of diverse COFs in removing organic pollutants
表3 COFs材料去除气体污染物
Table 3 Applications of diverse COFs in removing gaseous pollutants
[1]
Nagai A, Guo Z, Feng X, Jin S, Chen X, Ding X, Jiang D. Nat. Commun., 2011,2(48):536.
[2]
Zhang Q P, Sun Y L, Cheng G, Wang Z, Ma H, Ding S Y, Tan B, Bu J H, Zhang C. Chem. Eng. J, 2020,391:123471.
[3]
Tilford R W, Rd M S, Pellechia P J, Lavigne J J. Adv. Mater., 2010,20(14):2741. doi: 10.1002/adma.200800030

URL     pmid: 25213899
[4]
Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. J. Am. Chem. Soc., 2012,134(48):19524. doi: 10.1021/ja308278w

URL     pmid: 23153356
[5]
Cai Y, Jiang Y, Feng L, Hua Y, Liu H, Fan C, Yin M, Li S, Lv X, Wang H. Anal Chim Acta, 2019,1057:88.
[6]
O'keeffe M, Yaghi O M. Chem. Rev., 2012,112(2):675. doi: 10.1021/cr200205j

URL     pmid: 21916513
[7]
Côté A P, Benin A I, Ockwig N W, O'keeffe M, Matzger A J, Yaghi O M. Science, 2005,310(5751):1166. doi: 10.1126/science.1120411

URL     pmid: 16293756
[8]
Elkaderi H M, Hunt J R, Mendozacortés J L, Côté A P, Taylor R E, O'keeffe M, Yaghi O M. Science, 2007,316(5822):268.

URL     pmid: 17431178
[9]
Diercks C S, Yaghi O M. Science, 2017,355:6328.
[10]
Spitler E L, Dichtel W R. Nat. Chem, 2010,2(8):672.

URL     pmid: 20651731
[11]
Ding S Y, Wang W. Chem. Soc. Rev, 2013,42(2):548.

URL     pmid: 23060270
[12]
Huang N, Wang P, Jiang D. Nat. Rev. Mater., 2016,1:10.
[13]
Cote A P, El-Kaderi H M, Hiroyasu F, Hunt J R, Yaghi O M. J. Am. Chem. Soc., 2007,129(43):12914.

URL     pmid: 17918943
[14]
Qian C, Xu S Q, Jiang G F, Zhan T G, Zhao X. Chem. - Eur. J., 2016,22(49):17784.

URL     pmid: 27778380
[15]
Zhu Y, Wan S, Jin Y, Zhang W. J. Am. Chem. Soc., 2015,137(43):13772.
[16]
Feng X, Chen L, Dong Y, Jiang D. Chem. Commun., 2011,47(7):1979.
[17]
Chen X, Huang N, Gao J, Xu H, Xu F, Jiang D. Chem. Commun., 2014,50(46):6161.
[18]
Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D. J. Am. Chem. Soc., 2017,135(46):17310. doi: 10.1021/ja4103293

URL     pmid: 24182194
[19]
Dalapati S, Jin E, Addicoat M, Heine T, Jiang D. J. Am. Chem. Soc., 2016,138(18):5797.
[20]
Alahakoon S B, Thompson C M, Nguyen A X, Occhialini G, McCandless G T, Smaldone R A. Chem. Commun., 2016,52(13):2843.
[21]
Zhou T Y, Xu S Q, Wen Q, Pang Z F, Zhao X. J. Am. Chem. Soc., 2014,136(45):15885.

URL     pmid: 25360771
[22]
Pang Z F, Xu S Q, Zhou T Y, Liang R R, Zhan T G, Zhao X. J. Am. Chem. Soc., 2016,138(14):4710.
[23]
Xu S Q, Zhan T G, Wen Q, Pang Z F, Zhao X. ACS Macro Lett., 2016,5(1):99.
[24]
Dalapati S, Addicoat M, Jin S, Sakurai T, Gao J, Xu H, Irle S, Seki S, Jiang D. Nat. Commun., 2015,6:7786.
[25]
Liang R R, Zhao X. Org. Chem. Front, 2018,5(22):3341.
[26]
Kahveci Z, Islamoglu T, Shar G A, Ding R, El-Kaderi H M. CrystEngComm, 2013,15(8):1524.
[27]
Feng X, Dong Y, Jiang D. CrystEngComm, 2013,15(8):1508.
[28]
Kandambeth S, Shinde D B, Panda M K, Lukose B, Heine T, Banerjee R. Angew. Chem. Int. Ed., 2013,52(49):13052.
[29]
Kandambeth S, Venkatesh V, Shinde D B, Kumari S, Halder A, Verma S, Banerjee R. Nat. Commun., 2015,6:6786.

URL     pmid: 25858416
[30]
Chen X, Addicoat M, Irle S, Nagai A, Jiang D. J. Am. Chem. Soc., 2013,135(2):546. doi: 10.1021/ja3100319

URL     pmid: 23270524
[31]
Xu H, Gao J, Jiang D. Nat. Chem., 2015,7(11):905.

URL     pmid: 26492011
[32]
Song J R, Sun J, Liu J, Huang Z T, Zheng Q Y. Chem. Commun. (Camb), 2014,50(7):788.
[33]
Lanni L M, Tilford R W, Bharathy M, Lavigne J J. J. Am. Chem. Soc., 2011,133(35):13975.

URL     pmid: 21806023
[34]
Ding S Y, Gao J, Wang Q, Zhang Y, Song W G, Su C Y, Wang W. J. Am. Chem. Soc., 2011,133(49):19816. doi: 10.1021/ja206846p

URL     pmid: 22026454
[35]
Meng Z, Stolz R M, Mirica K A. J. Am. Chem. Soc., 2019,141(30):11929.

URL     pmid: 31241936
[36]
Uriberomo F J, Hunt J R, Furukawa H, Klöck C, O’keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009,131(13):4570.

URL     pmid: 19281246
[37]
Zhang Y B, Su J, Furukawa H, Yun Y, Gándara F, Duong A, Zou X, Yaghi O M. J. Am. Chem. Soc., 2013,135(44):16336.

URL     pmid: 24143961
[38]
Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y. Angew. Chem., Int. Ed., 2014,53(11):2878.
[39]
Liu Y, Ma Y, Zhao Y, Sun X, Gándara F, Furukawa H, Liu Z, Zhu H, Zhu C, Suenaga K, Oleynikov P, Alshammari A S, Zhang X, Terascki O, Yaghi O M. Science, 2016,351(6271):365. doi: 10.1126/science.aad4011

URL     pmid: 26798010
[40]
Rabbani M G, Sekizkardes A K, Kahveci Z, Reich T E, Ding R, El-Kaderi H M. Chem. -Eur. J., 2013,19(10):3324.

URL     pmid: 23386421
[41]
Uriberomo F J, Doonan C J, Furukawa H, Oisaki K, Yaghi O M. J. Am. Chem. Soc., 2011,133(30):11478. doi: 10.1021/ja204728y

URL     pmid: 21721558
[42]
Bunck D N, Dichtel W R. J. Am. Chem. Soc., 2013,135(40):14952. doi: 10.1021/ja408243n

URL     pmid: 24053107
[43]
Stegbauer L, Schwinghammer K, Lotsch B V. Chem. Sci, 2014,5(7):2789.
[44]
Zhongping L, Yongfeng Z, Xiao F, Xuesong D, Yongcun Z, Xiaoming L, Ying M. Chem. - Eur. J., 2015,21(34):12079.

URL     pmid: 26177594
[45]
Vyas V S, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch B V. Nat. Commun, 2015,6:8508.
[46]
Li Z J, Ding S Y, Xue H D, Cao W, Wang W. Chem. Commun. (Camb), 2016,52(45):7217.
[47]
Pachfule P, Kandmabeth S, Mallick A, Banerjee R. Chem. Commun., 2015,51(58):11717.
[48]
Fang Q, Wang J, Gu S, Kaspar R B, Zhuang Z, Zheng J, Guo H, Qiu S, Yan Y. J. Am. Chem. Soc., 2015,137(26):8352.

URL     pmid: 26099722
[49]
Bell V L, Stump B L, Gager H. J. Polym. Sci., Part A:. Polym. Chem., 2010,14:9.
[50]
Fang Q, Zhuang Z, Shuang G, Kaspar R B, Jie Z, Wang J, Qiu S, Yan Y. Nat. Commun., 2014,5:4503.

URL     pmid: 25054211
[51]
Wang T, Xue R, Chen H, Shi P, Lei X, Wei Y, Guo H, Yang W. New J. Chem. 2017, 41, 23:14272.
[52]
Guo J, Xu Y, Jin S, Chen L, Kaji T, Honsho Y, Addicoat M A, Kim J, Saeki A, Ihee H, Seki S, Irle S, Hiramoto M, Gao J, Jiang D. Nat. Commun., 2013,4(1):2736.
[53]
Daugherty M C, Vitaku E, Li R L, Evans A M, Chavez A D, Dichtel W R. Chem. Commun, 2019,55(18):2680.
[54]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008,47(18):3450.
[55]
Wang K, Yang L M, Wang X, Guo L, Cheng G, Zhang C, Jin S, Tan B, Cooper A. Angew. Chem. Int. Ed., 2017,56(45):14149.
[56]
Bai C, Zhang M, Li B, Tian Y, Zhang S, Zhao X, Li Y, Wang L, Ma L, Li S. J. Hazard. Mater., 2015,300:368.
[57]
Zhang S, Zhao X, Li B, Bai C, Li Y, Wang L, Wen R, Zhang M, Ma L, Li S. J. Hazard. Mater., 2016,314:95.
[58]
Zhang M, Li Y, Bai C, Guo X, Han J, Hu S, Jiang H, Tan W, Li S, Ma L. ACS Appl. Mater. Interfaces, 2018,10(34):28936.

URL     pmid: 30068077
[59]
Zhuang X, Zhao W, Zhang F, Cao Y, Liu F, Bi S, Feng X. Polym. Chem., 2016,7(25):4176.
[60]
Huang N, Zhai L, Xu H, Jiang D. J. Am. Chem. Soc., 2017,139(6):2428.
[61]
Ding S Y, Dong M, Wang Y W, Chen Y T, Wang H Z, Su C Y, Wang W. J. Am. Chem. Soc., 2016,138(9):3031. doi: 10.1021/jacs.5b10754

URL     pmid: 26878337
[62]
Leus K, Folens K, Nicomel N R, Perez J P H, Filippousi M, Meledina M, Dîrtu M M, Turner S, van Tendeloo G, Garcia Y, Du Laing G, van Der Voort P. J. Hazard. Mater., 2018,353:312. doi: 10.1016/j.jhazmat.2018.04.027

URL     pmid: 29679891
[63]
Sun Q, Aguila B, Perman J, Earl L D, Abney C W, Cheng Y, Wei H, Nguyen N, Wojtas L, Ma S. J. Am. Chem. Soc., 2017,139(7):2786. doi: 10.1021/jacs.6b12885

URL     pmid: 28222608
[64]
Li G, Ye J, Fang Q, Liu F. Chem. Eng. J, 2019,370:822.
[65]
Chen W, Yang Z, Xie Z, Li Y, Yu X, Lu F, Chen L. J. Mater. Chem. A, 2019,7(3):998. doi: 10.1039/C8TA10046B
[66]
Lu Q, Ma Y, Li H, Guan X, Yusran Y, Xue M, Fang Q, Yan Y, Qiu S, Valtchev V. Angew. Chem., Int. Ed., 2018,57(21):6042.
[67]
Geng T, Zhang C, Chen G, Ma L, Zhang W, Xia H. Micropor. Mesopor. Mater., 2019,284:468.
[68]
Guo X, Tian Y, Zhang M, Li Y, Wen R, Li X, Li X, Xue Y, Ma L, Xia C, Li S. Chem. Mat., 2018,30(7):2299.
[69]
He L, Liu S, Chen L, Dai X, Li J, Zhang M, Ma F, Zhang C, Yang Z, Zhou R, Chai Z, Wang S. Chem. Sci., 2019,10(15):4293.

URL     pmid: 31057756
[70]
Da H J, Yang C X, Yan X P. Environ. Sci. Technol, 2019,53(9):5212. doi: 10.1021/acs.est.8b06244

URL     pmid: 30933484
[71]
Sun Q, Zhu L, Aguila B, Thallapally P K, Xu C, Chen J, Wang S, Rogers D, Ma S. Nat. Comm., 2019,10(1):1646.
[72]
Li J, Yang X, Bai C, Tian Y, Li B, Zhang S, Yang X, Ding S, Xia C, Tan X, Ma L, Li S. J. Colloid Interface Sci., 2015,437:211.

URL     pmid: 25313486
[73]
Sun Q, Aguila B, Earl L D, Abney C W, Wojtas L, Thallapally P K, Ma S. Adv. Mater., 2018,30(20):1705479.
[74]
Li B, Sun Q, Zhang Y, Abney C W, Aguila B, Lin W, Ma S. ACS Appl. Mater. Interfaces, 2017,9(14):12511. doi: 10.1021/acsami.7b01711

URL     pmid: 28350432
[75]
Xiong X H, Yu Z W, Gong L L, Tao Y, Gao Z, Wang L, Yin W H, Yang L X, Luo F. Adv. Sci., 2019,6(16):1900547.
[76]
Wen R, Li Y, Zhang M, Guo X, Li X, Li X, Han J, Hu S, Tan W, Ma L, Li S. J. Hazard. Mater., 2018,358:273. doi: 10.1016/j.jhazmat.2018.06.059

URL     pmid: 29990815
[77]
Yuan Y, Yang Y, Ma X, Meng Q, Wang L, Zhao S, Zhu G. Adv. Mater., 2018,30(12):1706507.
[78]
Chu S, Majumdar A. Nature, 2012,488(7411):294. doi: 10.1038/nature11475

URL     pmid: 22895334
[79]
Fan S, You S, Wang Y, Lang X, Yu C, Wang S, Li Z, Li W, Liu Y, Zhou Z. J. Chem. Eng. Data, 2019,64(12):5929.
[80]
Comyns A E. Appl. Organomet. Chem 2001,15:12.
[81]
Yan T, Lan Y, Tong M, Zhong C. ACS Sustain. Chem. Eng, 2019,7(1):1220.
[82]
Hu X, Long Y, Fan M, Yuan M, Zhao H, Ma J, Dong Z. Appl. Catal. B-Environ., 2019,244:25.
[83]
Pan F, Guo W, Su Y, Khan N A, Yang H, Jiang Z. Sep. Purif. Technol, 2019,215:582.
[84]
Zhu X, An S, Liu Y, Hu J, Liu H, Tian C, Dai S, Yang X, Wang H, Abney C W, Dai S. AICHE J., 2017,63(8):3470.
[85]
Zhang Y, Hu Y, Zhao J, Park E, Jin Y, Liu Q, Zhang W. J. Mater. Chem. A, 2019,7(27):16364.
[86]
Wang R L, Li D P, Wang L J, Zhang X, Zhou Z Y, Mu J L, Su Z M. Dalton Trans, 2019,48(3):1051. doi: 10.1039/c8dt04458a

URL     pmid: 30601501
[87]
Yao Y, Hu Y, Hu H, Chen L, Yu M, Gao M, Wang S. J. Colloid Interface Sci., 2019,554:376. doi: 10.1016/j.jcis.2019.07.002

URL     pmid: 31306948
[88]
Wang W, Deng S, Ren L, Li D, Wang W, Vakili M, Wang B, Huang J, Wang Y, Yu G. ACS Appl. Mater. Interfaces, 2018, 10, 36:30265.
[89]
Doonan C J, Tranchemontagne D J, Glover T G, Hunt J R, Yaghi O M. Nat. Chem, 2010,2(3):235. doi: 10.1038/nchem.548

URL     pmid: 21124483
[90]
Yang Y, Zhao Z, Yan Y, Li G, Hao C. New J. Chem., 2019,43(23):9274.
[91]
Wang J, Wang J, Zhuang W, Shi X, Du X. J. Chem., 2018,2018:9321347.
[92]
Lee G Y, Lee J, Vo H T, Kim S, Lee H, Park T. Sci Rep, 2017,7(1):557. doi: 10.1038/s41598-017-00738-z

URL     pmid: 28373706
[93]
Liu M, Jiang K, Ding X, Wang S, Zhang C, Liu J, Zhan Z, Cheng G, Li B, Chen H, Jin S, Tan B. Adv. Mater., 2019,31(19):1807865.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[6] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[7] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[10] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[11] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[12] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[13] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[14] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[15] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.