English
新闻公告
More
化学进展 2020, Vol. 32 Issue (10): 1582-1591 DOI: 10.7536/PC200211 前一篇   后一篇

• 综述 •

自支撑硫镍基电极材料制备及其赝电容性能

赵少飞1, 刘鹏1, 程高1, 余林1,**(), 曾华强1,2,**()   

  1. 1.广东工业大学轻工化工学院 广州 510006
    2.纳米生物实验室 新加坡 138669
  • 收稿日期:2020-02-16 修回日期:2020-04-29 出版日期:2020-10-24 发布日期:2020-09-02
  • 通讯作者: 余林, 曾华强
  • 基金资助:
    国家自然科学基金项目资助(No.21306026); 国家自然科学基金项目资助(21576054); 国家自然科学基金项目资助(51678160)

Preparation and Pseudocapacitor Properties of Self-Supported Nickel Sulfides Electrode Materials

Shaofei Zhao1, Peng Liu1, Gao Cheng1, Lin Yu1,**(), Huaqiang Zeng1,2,**()   

  1. 1. School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China
    2. Nanobio laboratory, Singapore 138669, Singapore
  • Received:2020-02-16 Revised:2020-04-29 Online:2020-10-24 Published:2020-09-02
  • Contact: Lin Yu, Huaqiang Zeng
  • About author:
    **e-mail:(Lin Yu)
  • Supported by:
    National Natural Science Foundation of China(No.21306026); National Natural Science Foundation of China(21576054); National Natural Science Foundation of China(51678160)

硫镍基赝电容超级电容器具有较高的比电容和功率密度等优点,是下一代理想的储能装置之一,但其实际应用受到其活性材料的制约,如导电性低和循环性能差等。研究者围绕增强硫镍基赝电容电极材料导电性和提升循环稳定性进行了大量的研究工作。其中,构建自支撑的电极材料被认为是一种降低活性材料和集流体之间界面电阻的有效方法。本文综述了制备自支撑硫镍基赝电容电极的常见方法,并就活性材料的形貌与性能关系进行了总结,主要着眼于集流体改性、离子掺杂、复合材料构建及形貌调控优化等。最后对自支撑硫镍基赝电容电极材料的研究方向进行了展望。

With the advantages of ultra-high power density, and super specific capacitance, nickel sulfides pseudocapacitors have been supposed as one of the ideal devices for energy storage. However, the application of those pseudocapacitors have been subjected to the poor cycle stability and low conductivity. Up to now, extensive efforts have been made to increase the conductivity and cycle stability. Among which, the self-supported electrode materials have been regarded as a effective solution to reduce internal resistance for high rate capacitance. This paper reviews the main methods to prepare self-supported nickel sulfides pseudocapacitor electrode materials, and summarize the relationship between morphology and capacitance property, which focus on the modification of conductive substrates, the compositing with graphene or others elements, the design of flexible materials, etc. Finally, the research directions of these materials are further proposed.

Contents

1 Introduction

2 Preparation of nickel sulfides materials

2.1 Solvothermal method

2.2 Electrodeposition method

2.3 Other preparation methods

3 Structural optimization of nickel sulfides materials

3.1 Modification of current collector

3.2 Doping with other ions

3.3 Preparation of composite materials

3.4 Design of flexible electrode

4 Conclusion and outlook

()
图1 不同氧化还原机理赝电容的示意图[16]
Fig.1 Schematic of different types of redox mechanisms of pseudocapacitances[16]
图2 一步溶剂热法制备的网状结构Ni3S2的SEM图片[14, 22]
Fig.2 SEM micrographs of Ni3S2 with net structure prepared by one pot hydrothermal method[14, 22]
图3 不同反应温度下制备的Ni3S2膜的SEM图片,(a) 140 ℃, (b) 160 ℃, (c) 180 ℃和(d)NS-160膜的侧视图[33]
Fig.3 SEM images of the Ni3S2 films developed at different temperatures of (a) 140 ℃, (b) 160 ℃, and (c) 180 ℃. (d) Side view image of the NS-160 film on Ni foam[33]
图4 不同孔径Ni3S2薄膜制备示意图及电解液离子与孔径大小接触关系[35]
Fig.4 Schematic diagram for preparation of Ni3S2 thin film with different pore size, and the contact relation between electrolyte ions and pores with different sizes in the electrochemical reaction process[35]
图5 (A~D)不同放大倍率下泡沫镍直接负载海胆状Ni3S2微球SEM图片[29]
Fig.5 Characterization results of the urchin-like Ni3S2 grown on the Ni foam substrate (Ni3S2@Ni): scanning electron microscopy (SEM) images (A~D) at different magnifications[29]
图6 不同形貌Ni3S2材料的SEM图(a~c) G2, (d~f) G0, (g~i) G1[39]
Fig.6 SEM images with different magnifications for (a~c) G2, (d~f) G0, (g~i) G1[39]
图7 两步溶剂热法合成Ni3S2纳米片示意图[41]
Fig.7 Illustration of the two-step approach to prepare Ni3S2 nanosheets[41]
图8 Ni(Cu) (a, b)、Ni3S2/Ni 6 min(c~e) SEM图;Ni(Cu) (f)、Ni3S2/Ni 2 min(g)、Ni3S2/Ni 6 min (h)的截面SEM图;Ni3S2/Ni的制备示意图(i)[42]
Fig.8 SEM images of (a,b) Ni(Cu) and the (c-e) Ni3S2/Ni 6 min electrode. Cross-sectional SEM images of (f) Ni(Cu), (g) Ni3S2/Ni 2 min electrode, and (h) Ni3S2/Ni 6 min electrode. (i) Schematic illustration of Ni3S2/Ni electrode preparation[42]
图9 不同反应时间得到的NiCo前驱体SEM图片:(a) 480, (b) 540, (c) 600, and (d) 720 min;不同NH4F浓度下得到的NiCo前驱体SEM图片:(e) 0, (f) 10, (g) 12, and (h) 15 mmol[65]
Fig.9 SEM images of the intermediates obtained at different time for Ni-Co precursor: (a) 480, (b) 540, (c) 600, and (d) 720 min; SEM images of Ni-Co precursor samples synthesized with different concentrations of NH4F: (e) 0, (f) 10, (g) 12, and (h) 15 mmol[65]
[1]
Zhao S F, Zeng L Z, Cheng G, Yu L, Zeng H Q. Chinese Chemical Letters, 2019,30(3):605.
[2]
Osman S, Senthil R A, Pan J, Li W. Journal of Power Sources, 2018,391:162.
[3]
Song X, Ma X, Yu Z, Ning G, Li Y, Sun Y. ChemElectroChem, 2018,5(11):1474.
[4]
Ramesh S, Khandelwal S, Rhee K Y, Hui D. Composites Part B: Engineering, 2018,138:45.
[5]
Wu M S, Wang M J. Chemical Communications, 2010,46(37):6968.
[6]
Wen Y X, Liu Y P, Dang S, Tian S H, Li H Q, Wang Z L, He D Y, Wu Z S, Cao G Z, Peng S L. Journal of Power Sources, 2019,423:106.
[7]
Wang N, Han G Y, Chang Y Z, Hou W J, Xiao Y M, Li H G. Electrochimica Acta, 2019,317:322.
[8]
Su W, Wu F, Fang L, Hu J, Liu L, Guan T, Long X, Luo H, Zhou M. Journal of Alloys and Compounds, 2019,799:15.
[9]
Zhao Y, Ran W, He J, Huang Y, Liu Z, Liu W, Tang Y, Zhang L, Gao D, Gao F. Small, 2015,11(11):1310.

URL     pmid: 25384679
[10]
陈志远(Chen Z Y), 颜冬(YanD), 钱凡(QianF), 李文翠(LiW C). 化工学报 (CIESC Journal), 2019,70(12):4864.
[11]
Weng Y T, Wu N L. Journal of Power Sources, 2013,238:69.
[12]
Zhang J, Zhao X S. Journal of Physical Chemistry C, 2012,116(9):5420.
[13]
Cai D P, Wang D D, Wang C X, Liu B, Wang L, Liu Y, Li Q, Wang T. Electrochimica Acta, 2015,151:35.
[14]
Huo H H, Zhao Y Q, Xu C L. Journal of Materials Chemistry A, 2014,2(36):15111.
[15]
乔少明(Qiao S M), 黄乃宝(HuangN B), 高正远(GaoZ Y), 周仕贤(ZhouS X) , 孙银(Sun Y). 化学进展 (Progress in Chemistry), 2019,31(8):1177.
[16]
Augustyn V, Simon P, Dunn B. Energy & Environmental Science, 2014,7(5):1597.
[17]
Herrero E, Buller L J, Abruña H D. Chemical Reviews, 2001,101(7):1897. doi: 10.1021/cr9600363

URL     pmid: 11710235
[18]
Palomar-Pardave M, Gonzalez I, Batina N. Journal of Physical Chemistry B, 2000,104(15):3545.
[19]
Simon P, Gogotsi Y. Nature Materials, 2008,7(11):845.
[20]
Jiang H, Guo Y, Wang T, Zhu P L, Yu S H, Yu Y, Fu X Z, Sun R, Wong C P. RSC Advances, 2015,5(17):12931.
[21]
Yu Z Y, Cheng Z X, Wang X L, Dou S X, Kong X Y. Journal of Materials Chemistry A, 2017,5(17):7968.
[22]
Krishnamoorthy K, Veerasubramani G K, Radhakrishnan S, Kim S J. Chemical Engineering Journal, 2014,251:116.
[23]
Tran V C, Sahoo S, Shim J J. Materials Letters, 2018,210:105.
[24]
Li S, Wen J, Chen T, Xiong L, Wang J, Fang G. Nanotechnology, 2016,27(14):145401.

URL     pmid: 26905933
[25]
Cao F, Zhao M, Yu Y, Chen B, Huang Y, Yang J, Cao X, Lu Q, Zhang X, Zhang Z, Tan C, Zhang H. Journal of the American Chemical Society, 2016,138(22):6924.

URL     pmid: 27197611
[26]
吴丹丹(Wu D D), 仇微微(QiuW W), 赵家琳(ZhaoJ L), 任素贞(RenS Z), 郝策(Hao C). 化工进展 (Chemical Industry and Engineering Progress), 2019,38(11):172.
[27]
Shi B B, Saravanakumar B, Wei W, Dong G P, Wu S J, Lu X B, Zeng M, Gao X S, Wang Q M, Zhou G F, Liu J M, Kempa K, Gao J W. Journal of Alloys and Compounds, 2019,790:693.
[28]
Kamali-Heidari E, Xu Z L, Sohi M H, Ataie A, Kim J K. Electrochimica Acta, 2018,271:507.
[29]
He Q, Wang Y, Liu X X, Blackwood D J, Chen J S. Journal of Materials Chemistry A, 2018,6(44):22115.
[30]
李丹(Li D), 刘玉荣(LiuY R), 林保平(LinB P), 孙莹(SunY), 杨洪(Yang H), 张雪勤(Zhang X Q). 化学进展 (Progress in Chemistry), 2015,27(4):404.
[31]
田晓冬(Tian X D), 李肖(LiX), 杨桃(YangT), 宋燕(SongY), 刘占军(Liu Z J), 郭全贵(Guo Q G). 无机材料学报 (Journal of Inorganic Materials), 2017,32(5):459.
[32]
Fu W, Zhao Y, Mei J, Wang F, Han W, Wang F, Xie E. Electrochimica Acta, 2018,283:737.
[33]
Ji F Z, Jiang D, Chen X M, Pan X X, Kuang L P, Zhang Y, Alameh K, Ding B F. Applied Surface Science, 2017,399:432.
[34]
Wang Y Q, Wang F W, Jin F M, Jing Z Z. Industrial & Engineering Chemistry Research, 2013,52(16):5616.
[35]
Li J, Wang S L, Xiao T, Tan X Y, Xiang P, Jiang L H, Deng C, Li W, Li M M. Applied Surface Science, 2017,420:919.
[36]
Shinde N M, Xia Q X, Shinde P V, Yun J M, Mane R S, Kim K H. ACS Appl. Mater. Interfaces, 2019,11(4):4551.

URL     pmid: 30601660
[37]
Zhang Z, Huang Z, Ren L, Shen Y, Qi X, Zhong J. Electrochimica Acta, 2014,149:316.
[38]
Zhuo M, Zhang P, Chen Y, Li Q. RSC Advances, 2015,5(32):25446.
[39]
Chen L, Guan L X, Tao J G. Journal of Materials Science, 2019,54(19):12737.
[40]
Zhang Y, Xu J, Zhang Y, Hu X. Journal of Materials Science: Materials in Electronics, 2016,27(8):8599.
[41]
Chen J S, Guan C, Gui Y, Blackwood D J. ACS Appl. Mater. Interfaces, 2017,9(1):496.

URL     pmid: 27976843
[42]
Kim D, Kannan P K, Mateti S, Chung C H. ACS Applied Energy Materials, 2018,1(12):6945.
[43]
Chou S W, Lin J Y. Journal of the Electrochemical Society, 2013,160(4):D178.
[44]
Chou S W, Lin J Y. Journal of the Electrochemical Society, 2015,162(14):A2762.
[45]
Xu J S, Sun Y D, Lu M J, Wang L, Zhang J, Liu X Y. Science China Materials, 2019,62(5):699.
[46]
赵少飞(Zhao S F), 刘鹏(LiuP), 李婉萍(LiW P), 曾小红(ZengX H), 钟远红(Zhong Y H), 余林(Yu L), 曾华强(Zeng H Q). 化工学报 (CIESC Journal), 2020,71(4):1836.
[47]
Dhaiveegan P, Hsu Y K, Tsai Y H, Hsieh C K, Lin J Y. Surface & Coatings Technology, 2018,350:1003.
[48]
Yao M Q, Sun B L, He L X, Wang N, Hu W, Komarneni S. ACS Sustainable Chemistry & Engineering, 2019,7(5):5430.
[49]
Yu L, Yang B, Liu Q, Liu J, Wang X, Song D, Wang J, Jing X. Journal of Electroanalytical Chemistry, 2015,739:156.
[50]
Rama Raju G S, Pavitra E, Nagaraju G, Sekhar S C, Ghoreishian S M, Kwak C H, Yu J S, Huh Y S, Han Y K. Journal of Materials Chemistry A, 2018,6(27):13178.
[51]
张勇(Zhang Y), 梅寒馨(MeiH X), 高海丽(GaoH L), 王诗文(WangS W), 闫继(Yan J). 电源技术 (Chinese Journal of Power Sources), 2019,43(9):1554.
[52]
Lv J L, Liang T X, Yang M, Suzuki K, Miura H. Journal of Electroanalytical Chemistry, 2017,786:8. doi: 10.1016/j.jelechem.2017.01.004
[53]
Ghosh D, Das C K. ACS Appl Mater Interfaces, 2015,7(2):1122.

URL     pmid: 25539030
[54]
Huang X, Zhang Z G, Li H, Zhao Y Y, Wang H X, Ma T L. Journal of Alloys and Compounds, 2017,722:662.
[55]
Liu Y P, Li Z L, Yao L, Chen S M, Zhang P X, Deng L B. Chemical Engineering Journal, 2019,366:550. doi: 10.1016/j.cej.2019.02.125
[56]
Li Y J, Ye K, Cheng K, Yin J L, Cao D X, Wang G L. Journal of Power Sources, 2015,274:943.
[57]
Xing Z, Chu Q, Ren X, Tian J, Asiri A M, Alamry K A, Al-Youbi A O, Sun X. Electrochemistry Communications, 2013,32:9.
[58]
Peng S, Li L, Tan H, Cai R, Shi W, Li C, Mhaisalkar S G, Srinivasan M, Ramakrishna S, Yan Q. Advanced Functional Materials, 2014,24(15):2155.
[59]
Zou Y N, Cui Y H, Zhou Z G, Zan P, Guo Z X, Zhao M, Ye L, Zhao L J. Journal of Solid State Chemistry, 2018,267:53.
[60]
Liu Y D, Liu G Q, Nie X, Pan A Q, Liang S Q, Zhu T. Journal of Materials Chemistry A, 2019,7(18):11044.
[61]
Wu C, Liu B, Wang J, Su Y, Yan H, Ng C, Li C, Wei J. Applied Surface Science, 2018,441:1024.
[62]
Chen H C, Jiang J J, Zhang L, Xia D D, Zhao Y D, Guo D Q, Qi T, Wan H Z. Journal of Power Sources, 2014,254:249.
[63]
Liu L, Chen T, Rong H, Wang Z H. Journal of Alloys and Compounds, 2018,766:149.
[64]
Zha D S, Fu Y S, Zhang L L, Zhu J W, Wang X. Journal of Power Sources, 2018,378:31.
[65]
Chen X J, Chen D, Guo X Y, Wang R M, Zhang H Z. ACS Appl Mater Interfaces, 2017,9(22):18774.

URL     pmid: 28497684
[66]
Cai D, Yang T, Wang D, Duan X, Liu B, Wang L, Liu Y, Li Q, Wang T. Electrochimica Acta, 2015,159:46.
[67]
Fu D, Li H, Zhang X M, Han G, Zhou H, Chang Y. Materials Chemistry and Physics, 2016,179:166.
[68]
He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, Xie E. ACS Nano, 2013,7(1):174. doi: 10.1021/nn304833s

URL     pmid: 23249211
[69]
Wen P, Gong P, Sun J, Wang J, Yang S. Journal of Materils Chemistry A, 2015,3(26):13874.
[70]
Liang M, Zhao M, Wang H, Shen J, Song X. Journal of Materils Chemistry A, 2018,6(6):2482.
[71]
Han T, Jiang L Y, Jiu H F, Chang J X. Journal of Physics and Chemistry of Solids, 2017,110:1.
[72]
Xing Z, Chu Q, Ren X, Ge C, Qusti A H, Asiri A M, Al-Youbi A O, Sun X. Journal of Power Sources, 2014,245:463.
[73]
Long L, Yao Y, Yan M, Wang H, Zhang G, Kong M, Yang L, Liao X, Yin G, Huang Z. Journal of Materials Science, 2017,52(7):3642.
[74]
Xiong X, Huo P, Xie H. Journal of Polymer Research, 2019,26(9):209.
[75]
Liu X, Qi X, Zhang Z, Ren L, Liu Y, Meng L, Huang K, Zhong J. Ceramics International, 2014,40(6):8189.
[76]
Han T, Guo G Z, Wei Y, Zhang Y H, Sun Y Y. International Journal of Electrochemical Science, 2018,13(11):10539.
[77]
Chen Y Z, Zhou T F, Liu Y N, Guo Z P. Journal of Materials Chemistry A, 2017,5(45):23476.
[1] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[2] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[3] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[4] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[5] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[6] 乔少明, 黄乃宝, 高正远, 周仕贤, 孙银. 超级电容器用镍锰基二元金属氧化物电极材料[J]. 化学进展, 2019, 31(8): 1177-1186.
[7] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[8] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.
[9] 许頔, 沈沪江*, 袁慧慧, 王炜, 解俊杰. 聚(3,4-乙撑二氧噻吩)基电极材料:制备、改性及在电子器件中的应用[J]. 化学进展, 2018, 30(2/3): 252-271.
[10] 易锦馨, 霍志鹏, Abdullah M. Asiri, Khalid A. Alamry, 李家星. 电解质在超级电容器中的应用[J]. 化学进展, 2018, 30(11): 1624-1633.
[11] 夏文, 李政, 徐银莉, 庄旭品, 贾士儒, 张健飞. 超级电容器用细菌纤维素基电极材料[J]. 化学进展, 2016, 28(11): 1682-1688.
[12] 李丹, 刘玉荣, 林保平, 孙莹, 杨洪, 张雪勤. 超级电容器用石墨烯/金属氧化物复合材料[J]. 化学进展, 2015, 27(4): 404-415.
[13] 康怡然, 蔡锋, 陈宏源, 陈名海, 张锐, 李清文. 碳纳米管/石墨烯复合结构及其电化学电容行为[J]. 化学进展, 2014, 26(09): 1562-1569.
[14] 冯晓苗, 李瑞梅, 杨晓燕, 侯文华. 新型碳纳米材料在电化学中的应用[J]. 化学进展, 2012, 24(11): 2158-2166.
[15] 陈人杰, 张海琴, 吴锋. 离子液体在电池中的应用[J]. 化学进展, 2011, 23(0203): 366-373.