English
新闻公告
More
化学进展 2020, Vol. 32 Issue (10): 1592-1607 DOI: 10.7536/PC200322 前一篇   后一篇

• 综述 •

柔性导电高分子复合材料在应变传感器中的应用*

潘朝莹1, 马建中1,**(), 张文博2,**(), 卫林峰3   

  1. 1.陕西科技大学轻工科学与工程学院 国家轻工化学实验工程示范中心 西安 710021
    2.陕西科技大学 陕西省轻化工助剂化学与技术协同创新中心 化学与化工学院 西安 710021
    3.陕西科技大学 材料科学与工程学院 西安 710021
  • 收稿日期:2020-03-24 修回日期:2020-05-10 出版日期:2020-10-24 发布日期:2020-09-02
  • 通讯作者: 马建中, 张文博
  • 基金资助:
    国家自然科学基金项目(21908141); 国家自然科学基金项目(52073164); 陕西省重点研发计划资助(2019GY-171)

Flexible Conductive Polymer Composites in Strain Sensors*

Zhaoying Pan1, Jianzhong Ma1,**(), Wenbo Zhang2,**(), Linfeng Wei3   

  1. 1. National Demonstration Center for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
    2. College of Chemistry and Chemical Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi’an 710021, China
    3. School of Materials Science Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
  • Received:2020-03-24 Revised:2020-05-10 Online:2020-10-24 Published:2020-09-02
  • Contact: Jianzhong Ma, Wenbo Zhang
  • About author:
    **e-mail:(Jianzhong Ma)
  • Supported by:
    National Natural Science Foundation of China(21908141); National Natural Science Foundation of China(52073164); Key Research and Development Program of Shaanxi Province(2019GY-171)

柔性和可穿戴传感器最近十几年来的发展,使得它们在个性化医疗、人机交互和智能机器人等方面拥有良好的应用前景。由导电材料和弹性聚合物组成的柔性导电高分子复合材料具有高的可拉伸性、良好的柔韧性、优异的耐久性等优点,可用来制备传感范围宽、灵敏度高的柔性应变传感器。本文综述了基于柔性导电高分子复合材料的可拉伸应变传感器的分类(填充型、三明治型、吸附型应变传感器)和传感机理(隧穿效应,分离机制,裂纹扩展),并详细介绍了传感器所用复合材料的结构设计,包括内部结构(双逾渗网络、隔离、多孔、“砖混”结构)、表面结构(微裂纹、褶皱结构)和宏观结构(纤维状、网状、薄膜结构)。内部结构设计可降低材料的逾渗阈值,表面结构设计可提高传感器性能,每个宏观结构都有自己的特点。最后对应变传感器的材料选择、制备工艺、结构设计、附加性能、集成技术和应用方向等方面进行了展望。

The development of flexible and wearable sensors in the past decade has made them have good application prospects in personalized medicine, human-computer interaction and intelligent robots. Flexible conductive polymer composite materials composed of conductive materials and elastic polymers, which have high stretchability, excellent flexibility, durability and other characteristics, can be used to prepare flexible sensors with wide sensing range and high sensitivity. This article reviews the composite types (filled type strain sensors, sandwich type strain sensors, adsorption type strain sensors) and sensing mechanisms (tunneling effect, disconnection mechanism, crack propagation) of stretchable strain sensors based on flexible conductive polymer composite materials. The structure design of the composite materials used for the sensor is introduced in detail, including the internal structure (double percolation structure, segregation structure, porous structure, and “brick-and-mortar” structure), surface structure (wrinkles structure and microcrack structure) and macro structure (fiber structure, net structure, film structure). The internal structure design can reduce the materials’ percolation threshold, the surface structure design can improve the sensor performance, and each macro structure has its own characteristics. Finally, the developments of the sensors in material selection, preparation technology, structure design, compound mode, additional performance and application direction are prospected.

Contents

1 Introduction

2 Types of strain sensors based on flexible conductive polymer composites

2.1 Filled-type strain sensors

2.2 Sandwich-type strain sensors

2.3 Adsorption-type strain sensors

3 Internal structures of flexible conductive polymer composites for strain sensors

3.1 Double percolation structure

3.2 Segregation structure

3.3 Porous structure

3.4 “Brick-and-mortar” structure

4 Surface structures of flexible conductive polymer composites for strain sensors

4.1 Wrinkles structure

4.2 Microcrack structure

5 Macro structures of flexible conductive polymer composites for strain sensors

5.1 Fiber structure

5.2 Net structure

5.3 Film structure

6 Sensing mechanisms of strain sensors based on flexible conductive polymer composites

6.1 Tunneling effect

6.2 Disconnection mechanism

6.3 Crack propagation

7 Conclusion and outlook

()
图1 填充型应变传感器的制备过程示意图[34]
Fig.1 Schematic diagram of the filled type strain sensor fabrication process[34]. Copyright 2018, American Chemical Society
图2 三明治型BGB应变传感器的制备工艺图[45]
Fig.2 Fabrication process of sandwich type BGB strain sensor[45]. Copyright 2020, American Chemical Society
图3 基于rGOPEB的吸附型应变传感器制作过程示意图[51]
Fig.3 Fabrication process of adsorption type strain sensor based on rGOPEB[51]. Copyright 2019, John Wiley and Sons Ltd
图4 SBR/NR-GE双逾渗网络结构的(a、b)TEM图像(区域A为SBR相,区域B为含f-GE的NR相)及(c)结构示意图[53]
Fig.4 TEM images (a and b) and structure diagram (c) of SBR/NR-GE double percolation network. Region A corresponds to the SBR phase and region B represents the NR phase containing f-GE[53]. Copyright 2016, Royal Society of Chemistry
图5 PDMS/MWCNTs复合材料隔离结构示意图及SEM图像[57]
Fig.5 Structure diagram and SEM image of segregation structure of PDMS/MWCNTs composite material[57]. Copyright 2017, Royal Society of Chemistry
图6 GPN-PDMS复合材料的多孔结构示意图(a)及SEM图像(b、c)[72]
Fig.6 Structure diagram (a) and SEM images (b,c) of porous structure of GPN-PDMS composite materials[72]. Copyright 2016, American Chemical Society
图7 Ti3C2Tx-AgNW-PDA/Ni2+复合薄膜“砖混”结构示意图(a)和SEM图像(b)[76]
Fig.7 Schematic illustration (a) and SEM image (b) of the Ti3C2Tx-AgNW-PDA/Ni2+ nanocomposite film based on the “brick-and-mortar” architecture[76]. Copyright 2018, American Chemical Society
表1 不同复合材料的内部结构及其优缺点
Table 1 The internal structure of different composites and their advantages and disadvantages
表2 不同复合材料的表面结构及其优缺点
Table 2 The surface structure of different composites and their advantages and disadvantages
图8 (a)PEA基底上沉积rGO的褶皱结构的SEM图像和示意图;(b)HWETC在不同应变下的褶皱结构变化[85]
Fig.8 (a) SEM images and illustrations of typical hierarchical wrinkles in the rGO layer deposited on the released PEA substrate; (b) Wrinkles structure changes under different strain of HWETC and SEM images are shown of short- and long-period wrinkles under the different HWETC strains[85]. Copyright 2016, Wiley-Blackwell
图9 CCTSS的裂纹结构示意图及SEM图像[92]
Fig.9 Crack structure diagram and SEM image of CCTSS[92]. Copyright 2019, American Chemical Society
表3 不同复合材料的宏观结构及其优缺点
Table 3 The macro structure of different composites and their advantages and disadvantages
图10 同轴纤维的光学照片(a、b)和SEM图像(c、d)及其在手指弯曲监测中的响应(e)[96]
Fig.10 Optical photos (a, b) and SEM images (c, d) of coaxial fiber and response (e) of sensor in monitoring finger bending[96]. Copyright 2018, American Chemical Society
图11 MXene/PU复合纤维的单股(a)和四股(b)的针织物网络结构示意图;(c)用四股MXene/PU复合纤维编织的肘套在伸直、弯曲时的照片及肘部套筒的应变传感响应曲线[101]
Fig.11 Single jersey textiles knitted by using (a) single- and (b) four-ply yarn of MXene/PU composite fiber and their schematic illustrations. (c) Photos of Elbow sleeve knitted by using four-ply yarn of MXene/PU composite fiber as-knitted on an elbow at straight and bent conditions and its strain sensing response curve[101]. Copyright 2020, Wiley-VCH Verlag
图12 (a)薄膜应变传感器的光学照片;(b)睡眠呼吸暂停测试[104]
Fig.12 (a) Optical photo of thin film strain sensor; (d) Obstructive sleep apnea test by the human subject[104]. Copyright 2019, American Chemical Society
图13 包含隧穿效应的CNT导电网络示意图[109]
Fig.13 Schematic view of CNT conductive network including tunneling effect[109]. Copyright 2014, American Institute of Physics
图14 石墨/丝纤维传感器分离机制示意图及等效电路图[112]
Fig.14 Schematic diagram of separation mechanism of graphite/silk fiber sensor and the equivalent electrical diagram[112]. Copyright 2016, American Chemical Society
图15 CNTs薄膜/ PDMS应变传感器的裂纹扩展机理(a)将CNTs/ PDMS复合材料从0%拉伸到60%的光学图像;(b)模拟了裂纹形态从非应变状态到应变状态的变化;(c)平均间隙宽度与应变加载之间关系;(d)传感单元的电阻模型[113]
Fig.15 Crack propagation mechanism of CNTs films/PDMS strain sensors. (a) Series of optical images of the CNTs films/PDMS composite being stretched from 0% to 60%; (b) Chinese paper cuttings simulating the change of crack morphology from unstrained to strained states; (c) Average gap width versus strain loading; (d) The resistance model of a sensing unit[113]. Copyright 2018, Royal Society of Chemistry
[1]
魏向东(Wei X D). 郑州大学硕士论文 (Master Dissertation of Zhengzhou University), 2018.
[2]
Sui C, Yang Y, Headrick R J, Pan Z, Wu J, Zhang J, Jia S, Li X, Gao W, Dewey O S, Wang C, He X, Kono J C, Pasquali P, Lou J. Nanoscale, 2018,10:14938.

URL     pmid: 30046774
[3]
高沐(Gao M), 夏志东(XiaZ D), 陈婧晗(ChenJ H), 高园(GaoY), 王金淑(Wang J S). 复合材料学报 (Acta Materiae Compositae Sinica), 2019,36(12):2756.
[4]
Natarajan T S, Eshwaran S B, Stöckelhuber K W, Wießner S, Pötschke P, Heinrich G, Das A. ACS Appl. Mater. Interfaces, 2017,9:4860. doi: 10.1021/acsami.6b13074

URL     pmid: 28094912
[5]
程芳华(Cheng F H), 于云飞(YuY F), 高嘉辰(GaoJ C), 代坤(DaiK), 刘春太(Liu C T). 塑料科技 (Plastics Science and Technology), 2018,46(9):56.
[6]
Wu J, Wang H, Su Z, Zhang M, Hu X, Wang Y, Wang Z, Zhong B, Zhou W, Liu P, Xing G. ACS Appl. Mater. Interfaces, 2017,9:38745. doi: 10.1021/acsami.7b10316

URL     pmid: 29037040
[7]
李贺(Li H), 刘白玲(LiuB L), 高利珍(GaoL Z), 瞿美臻(ZhaiM Z), 于作龙(Yu Z L). 合成化学 (Chinese Journal of Synthetic Chemistry), 2002,10(3):197.
[8]
Zhao B, Zeng S, Li X, Guo X, Bai Z, Fan B, Zhang R. Journal of Materials Chemistry C, 2020,8:500.
[9]
张力(Zhang L), 吴俊涛(WuJ T), 江雷(JiangL). 化学进展 (Progress in Chemistry), 2014,26(4):560.
[10]
Wei L, Ma J, Zhang W, Liu C, Bao Y. Progress in Organic Coatings, 2018,122:64.
[11]
Zhang W, Wei L, Ma J, Bai S. Composites Part A: Applied Science and Manufacturing, 2020,132:105838. doi: 10.1016/j.compositesa.2020.105838
[12]
毛秉鑫(Mao B X). 长春理工大学硕士论文 (Master Dissertation of Changchun University of Science and Technology), 2017.
[13]
Ma Z, Kang S, Ma J, Shao L, Wei A, Liang C, Gu J, Yang B, Dong D, Wei L, Ji Z. ACS Nano, 2019,13:7578.

URL     pmid: 31244039
[14]
Guo Q, Zhang X, Zhao F, Song Q, Su G, Tan Y, Tao Q, Zhou T, Yu Y, Zhou Z, Lu C. ACS Nano, 2020,14:2788.

URL     pmid: 32045216
[15]
Li H, Du Z Q. ACS Appl. Mater. Interfaces, 2019,11:45930.
[16]
Hu C, Li Z, Wang Y, Gao J C, Dai K, Zheng G, Liu C, Shen C, Song H, Guo Z. Journal of Materials Chemistry C, 2017,5:2318.
[17]
Zhao S, Lou D, Zhan P, Li G, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z. Journal of Materials Chemistry C, 2017,5:8233.
[18]
Wang Y, Wang L, Yang T, Li X, Zang X, Zhu M, Wang K, Wu D H, Zhu H. Adv. Funct. Mater., 2014,24:4666.
[19]
Huang W, Dai K, Zhai Y, Liu H, Zhan P, Gao J, Zheng G, Liu C, Shen C. ACS Appl. Mater. Interfaces, 2017,9:42266.

URL     pmid: 29131573
[20]
Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T. Science, 2008,321:1468.
[21]
Pang H, Xu L, Yan D X, Li Z M. Progress in Polymer Science, 2014,39:1908.
[22]
Deng H, Lin L, Ji M, Zhang S, Yang M, Fu Q. Progress in Polymer Science, 2014,39:627.
[23]
任秦博(Ren Q B), 王景平(WangJ P), 杨立(YangL), 李翔(LiX), 王学川(Wang X C). 材料导报 (Materials Reports), 2020,34(1):1080.
[24]
熊耀旭(Xiong Y X), 胡友根(HuY G), 朱朋莉(ZhuP L), 孙蓉(SunR), 汪正平(Wang Z P). 化学进展 (Progress in Chemistry), 2019,31(6):800.
[25]
Mattmann C, Clemens F, Tröster G. Sensors, 2008,8:3719.

URL     pmid: 27879904
[26]
Wei L, Zhang W, Ma J, Bai S, Ren Y, Liu C, Simion D, Qin J. Carbon, 2019,149:679.
[27]
Ke K, Pötschke P, Wiegand N, Masuda Z, Fukunaga H. ACS Appl. Mater. Interfaces, 2016,8:14190.

URL     pmid: 27171017
[28]
Costa P, Maceiras A, San Sebastián M, García-Astrain C, Vilascd J L, Lanceros-Mendezce S. Journal of Materials Chemistry C, 2018,6:10580.
[29]
Lin Y, Dong X, Liu S, Chen S, Wei Y, Liu L. ACS Appl. Mater. Interfaces, 2016,8:24143.

URL     pmid: 27552175
[30]
Zhao B, Deng J, Zhao C, Wang C, Chen Y G, Hamidinejad M, Li R, Park C B. Journal of Materials Chemistry C, 2020,8:58.
[31]
Oh J Y, Jun G H, Jin S, Ryu H J, Hong S H. ACS Appl. Mater. Interfaces, 2016,8:3319.

URL     pmid: 26784473
[32]
Zhang R, Ying C, Gao H, Liu Q, Fu X, Hu S F. Composites Science and Technology, 2019,171:218.
[33]
Costa P, Maceiras A, San Sebastián M, Astrain C G, Vilascd J L, Mendezc S L. Journal of Materials Chemistry C, 2018,6:10580.
[34]
Oh J, Yang J C, Kim J O, Park H, Kwon S Y, Lee S, Sim J Y, Oh H W, Kim J, Park S. ACS Nano, 2018,12:7546.

URL     pmid: 29995382
[35]
王瑞荣(Wang R R), 侯鹏飞(Hou P F). 微纳电子技术 (Micronanoelectronic Technology), 2019,56(3):59.
[36]
Zhang F, Wu S, Peng S, Sha Z, Wang C H. Composites Science and Technology, 2019,172:7.
[37]
Cai Y, Shen J, Ge G, Zhang Y, Jin W, Huang W, Shao J, Yang J, Dong X. ACS Nano, 2018,12:56.
[38]
霍庆生(Huo Q S), 金嘉琦(JinJ Q). 王晓强(Wang X Q), 卢少微(LuS W), 马克明(MaK M), 张璐(Zhang L), 徐涛(Xu T). 工程科学学报 (Chinese Journal of Engineering), 2018,40(6):714.
[39]
Park D W, Kim B S, Park S, Choi W J, Yang C S, Lee J O. Journal of the Korean Physical Society, 2014,64:488.
[40]
赵木森(Zhao M S), 于海波(YuH B), 孙丽娜(SunL N), 周培林(ZhouP L), 邹旿昊(Zou W H), 刘连庆(Liu L Q). 中国科学 (Scientia Sinica), 2019,49(7):851.
[41]
Muth J T, Vogt D M, Truby R L, Mengüç Y, Kolesky D B, Wood R J, Lewis J A. Adv. Mater., 2014,26:6307. doi: 10.1002/adma.201400334

URL     pmid: 24934143
[42]
Lu L, Wei X, Zhang Y, Zheng G, Dai K, Liu C, Shen C. Journal of Materials Chemistry C, 2017,5:7035.
[43]
Wang Q, Jian M, Wang C, Zhang Y Y. Adv. Funct. Mater., 2017,27:1605657.
[44]
Hwang B U, Lee J H, Trung T Q, Roh E, Kim D I, Kim S W, Lee N E. ACS Nano, 2015,9:8801.

URL     pmid: 26277994
[45]
Li Y, He T, Shi L, Wang R R, Sun J. ACS Appl. Mater. Interfaces, 2020,12:17691.
[46]
Yang Y, Shi L, Cao Z, Wang R R, Sun J. Adv. Funct. Mater., 2019,29:1807882.
[47]
Cui X, Zhu G, Pan Y, Shao Q, Zhao C, Dong M, Zhang Y, Guo Z. Polymer, 2018,138:203.
[48]
Wu Y, Liu H, Chen S, Dong X, Wang P, Liu S, Lin Y, Wei Y, Liu L. ACS Appl. Mater. Interfaces, 2017,9:20098. doi: 10.1021/acsami.7b04605

URL     pmid: 28541651
[49]
Wang Y, Hao J, Huang Z, Zheng G, Dai K, Liu C, Shen C. Carbon, 2018,126:360.
[50]
Yang K, Yin F, Xia D, Peng H, Yang J, Yuan W. Nanoscale, 2019,11:9949.

URL     pmid: 31070651
[51]
Reddy K R, Gandla S, Gupta D. Adv. Mater. Interfaces, 2019,6:1900409.
[52]
Li Y, Zhou B, Zheng G, Liu X, Li T, Yan C, Cheng C, Dai K, Liu C T, Shen C, Guo Z. Journal of Materials Chemistry C, 2018,6:2258.
[53]
Lin Y, Liu S, Chen S, Wei Y, Dong X, Liu L. Journal of Materials Chemistry C, 2016,4:6345.
[54]
Duan L, D’hooge D R, Spoerk M, Cornillie P, Cardon L. ACS Appl. Mater. Interfaces, 2018,10:22678. doi: 10.1021/acsami.8b03967

URL     pmid: 29808670
[55]
Duan L, Spoerk M, Wieme T, Cornillie P, Xia H, Zhang J, Cardon L, D'hooge D R. Composites Science and Technology, 2019,171:78.
[56]
Wang S, Zhang X, Wu X, Lu C. Soft Matter, 2016,12:845.
[57]
Wang M, Zhang K, Dai X, Yin L, Guo J, Liu H, Li G, Tan Y, Zeng J, Guo Z. Nanoscale, 2017,9:11017.

URL     pmid: 28574065
[58]
Sang Z, Ke K, Manas-Zloczower I. ACS Appl. Mater. Interfaces, 2018,10:36483.

URL     pmid: 30280558
[59]
Sang Z, Ke K, Manas-Zloczower I. ACS Applied Polymer Materials, 2019,1:714.
[60]
Wang Y, Gong S, Wang S J, Yang X, Ling Y, Yap L W, Dong D, Simon G P, Cheng W. ACS Nano, 2018,12:9742.

URL     pmid: 30226045
[61]
Oh J Y, Lee D, Hong S H. ACS Appl. Mater. Interfaces, 2018,10:21666.

URL     pmid: 29873236
[62]
Zhai T, Zheng Q, Cai Z, Turng L, Xia H, Gong S. ACS Appl. Mater. Interfaces, 2015,7:7436. doi: 10.1021/acsami.5b01679
[63]
Yue X, Jia Y, Wang X, Zhou K, Zhai W, Zheng G, Dai K, Mi L, Liu C, Shen C. Composites Science and Technology, 2020,189:108038.
[64]
Qin Y, Peng Q, Ding Y, Lin Z, Wang C, Li Y, Xu F, Li J, Yuan Y, He X, Li B. ACS Nano, 2015,9:8933. doi: 10.1021/acsnano.5b02781

URL     pmid: 26301319
[65]
Li J, Zhao S, Zeng X, Huang W, Gong Z, Zhang G, Sun R, Wong C. ACS Appl. Mater. Interfaces, 2016,8:18954. doi: 10.1021/acsami.6b05088

URL     pmid: 27384320
[66]
Song D, Li X, Li X, Jia X, Min P, Yu Z. Journal of Colloid and Interface Science, 2019,555:751.

URL     pmid: 31419625
[67]
Han F, Li J, Zhao S, Zhang Y, Huang W, Zhang G, Sun R, Wong C. Journal of Materials Chemistry C, 2017,5:10167.
[68]
Yu X, Li Y, Zhu W, Huang P, Wang T, Ning H, Fu S. Nanoscale, 2017,9:6680.

URL     pmid: 28485457
[69]
Yu G, Yan X, Yu M, Jia M, Pan W, He X, Han W, Zhang Z, Yu L, Long Y. Nanoscale, 2016,8:2944. doi: 10.1039/c5nr08618c

URL     pmid: 26781815
[70]
Wu S, Ladani R B, Zhang J, Ghorbani K, Zhang X, Mouritz A P, Kinloch A G, Wang C. ACS Appl. Mater. Interfaces, 2016,8:24853. doi: 10.1021/acsami.6b06012

URL     pmid: 27572689
[71]
Wu S, Peng S, Wang C. Sensors and Actuators A: Physical, 2018,279:90.
[72]
Pang Y, Tian H, Tao L, Li Y, Wang X, Deng N, Yang Y, Ren. T. ACS Appl. Mater. Interfaces, 2016,8:26458.

URL     pmid: 27684520
[73]
Wang X, Sun H, Yue X, Yu Y, Zheng G, Dai K, Liu C, Shen C. Composites Science and Technology, 2018,168:126.
[74]
Long Y, He P, Xu R, Hayasaka T, Shao Z, Zhong J, Lin L. Carbon, 2020,157:594.
[75]
Duan J, Gong S, Gao Y, Xie X, Jiang L, Cheng Q. ACS Appl. Mater. Interfaces, 2016,8:10545.

URL     pmid: 27054460
[76]
Shi X, Wang H, Xie X, Xue Q, Zhang J, Kang S, Wang C, Liang J, Chen Y S. ACS Nano, 2018,13:649.

URL     pmid: 30566329
[77]
Meng X, Zhao S, Zhang Z, Zhang R, Li J, Leng J, Cao D, Zhang G, Sun R. Journal of Materials Chemistry C, 2019,7:7061.
[78]
Yang S, Khare K, Lin P C. Adv. Funct. Mater., 2010,20:2550.
[79]
Lacour S P, Wagner S, Huang Z, Suo Z. Applied Physics letters, 2003,82:2404.
[80]
Park S J, Kim J, Chu M, Khine M. Adv. Mater. Technologies, 2016,1:1600053.
[81]
Wang X, Hu H, Shen Y, Zhou X, Zheng Z. Adv. Mater., 2011,23:3090. doi: 10.1002/adma.201101120

URL     pmid: 21598315
[82]
Wei Y, Chen S, Yuan X, Wang P, Liu L. Adv. Funct. Mater., 2016,26:5078.
[83]
Ho X, Nie Tey J, Liu W, Cheng C K, Wei J. Journal of Applied Physics, 2013,113:044311.
[84]
Kim K K, Hong S, Cho H M, Lee J, Suh Y D, Ham J, Ko S H. Nano Lett., 2015,15:5240. doi: 10.1021/acs.nanolett.5b01505

URL     pmid: 26150011
[85]
Mu J, Hou C, Wang G, Wang X, Zhang Q, Li Y, Wang H, Zhu M. Adv. Mater., 2016,28:9491. doi: 10.1002/adma.201603395

URL     pmid: 27629525
[86]
Han Z, Liu L, Zhang J, Han Q, Wang K, Song H, Wang Z, Jiao Z, Niu S, Ren L. Nanoscale, 2018,10:15178. doi: 10.1039/c8nr02514b

URL     pmid: 29892757
[87]
Barth F G. Current opinion in neurobiology, 2004,14:415.

URL     pmid: 15321061
[88]
Kang D, Pikhitsa P V, Choi Y W, Lee C, Shin S S, Piao L, Park B, Suh K Y, Kim T, Choi M. Nature, 2014,516:222. doi: 10.1038/nature14002

URL     pmid: 25503234
[89]
Park B, Kim J, Kang D, Jeong C, Kim K S, Kim J U, Yoo P J, Kim T. Adv. Mater., 2016,28:8130.

URL     pmid: 27396592
[90]
Chen S, Wei Y, Wei S, Lin Y, Liu L. ACS Appl. Mater. Interfaces, 2016,8:25563. doi: 10.1021/acsami.6b09188

URL     pmid: 27599264
[91]
Jung H, Park C, Lee H, Hong S, Kim H, Cho S J. Sensors, 2019,19:2834.
[92]
Zhou Y, Zhan P, Ren M, Zheng G, Dai K, Mi L, Liu C, Shen C. ACS Appl. Mater. Interfaces, 2019,11:7405. doi: 10.1021/acsami.8b20768

URL     pmid: 30698944
[93]
Xin Y, Zhou J, Tao R, Xu X, Lubineau G. ACS Appl. Mater. Interfaces, 2018,10:33507. doi: 10.1021/acsami.8b08166

URL     pmid: 30211536
[94]
Zhang S, He Z, Zhou G, Jung B M, Kim T H, Park B J, Byun J H, Chou T W. Composites Science and Technology, 2020,189:108011.
[95]
He Z, Byun J H, Zhou G, Park B J, Kim T H, Lee S B, Yi J W, Um M K, Chou T W. Carbon, 2019,146:701.
[96]
Tang Z, Jia S, Wang F, Bian C, Chen Y, Wang Y, Li B. ACS Appl. Mater. Interfaces, 2018,10:6624.

URL     pmid: 29384359
[97]
Liu Z, Qi D, Hu G, Wang H, Jiang Y, Chen G, Luo Y, Loh X J, Liedberg B, Chen X. Adv. Mater., 2018,30:1704229.
[98]
Wang S, Ning H, Hu N, Liu Y, Liu F, Zou R, Huang K, Wu X, Weng S, Alamusi . IAdv. Mater. nterfaces, 2020,7:1901507.
[99]
Seyedin S, Razal J M, Innis P C, Jeiranikhameneh A, Beirne S, Wallace G G. ACS Appl. Mater. Interfaces, 2015,7:21150. doi: 10.1021/acsami.5b04892

URL     pmid: 26334190
[100]
Xie R, Hou S, Chen Y, Zhang K, Zou B, Liu Y, Liang J, Guo S, Li H, Zheng B, Li S, Zhang W, Wu J, Huo F. Adv. Mater. Technologies, 2019,4:1900442.
[101]
Seyedin S, Uzun S, Levitt A, Anasori B, Dion G, Gogotsi Y, Razal J M. Adv. Funct. Mater., 2020, DOI: 10.1002/adfm.201910504 doi: 10.1002/adfm.201909218

URL     pmid: 32952492
[102]
Yan T, Zhou H, Niu H, Shao H, Wang H, Pan Z, Lin T. Journal of Materials Chemistry C, 2019,7:10049.
[103]
Zhang H, Han W, Xu K, Zhang Y, Lu Y, Nie Z, Du Y, Zhu J, Huang W. Nano Lett., 2020, DOI: 10.1021/acs.nanolett.0c00372

URL     pmid: 33231075
[104]
Ramírez J, Rodriquez D, Urbina A D, Cardenas A M, Lipomi D. ACS Applied Nano Materials, 2019,2:2222.
[105]
Yang Y, Cao Z, He P, Shi L, Ding G, Wang R, Sun J. Nano Energy, 2019,66:104134.
[106]
Amjadi M, Kyung K U, Park I, Sitti M. Adv. Funct. Mater., 2016,26:1678.
[107]
Cao X, Wei X, Li G, Hua C, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z. Polymer, 2017,112:1.
[108]
Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H, 2008,56:2929.
[109]
De Vivo B, Lamberti P, Spinelli G, Tucci V, Vertuccio L, Vittoria V. Journal of Applied Physics, 2014,116:054307.
[110]
Hu N, Karube Y, Arai M, Watanabe T, Yan C, Li Y, Liu Y, Fukunaga H. Carbon, 2010,48:680.
[111]
Li G, Dai K, Ren M, Wang Y, Zheng G, Liu C, Shen C. Journal of Materials Chemistry C, 2018,6:6575.
[112]
Zhang M, Wang C, Wang Q, Jian M, Zhang Y. ACS Appl. Mater. Interfaces, 2016,8:20894. doi: 10.1021/acsami.6b06984

URL     pmid: 27462991
[113]
Wang S, Xiao P, Liang Y, Zhang J, Huang Y, Wu S, Kuo S W, Hen T. Journal of Materials Chemistry C, 2018,6:5140.
[114]
Jang S, Kim J, Kim D W, Kim J W, Chun S, Lee H J, Yi G, Pang C. ACS Appl. Mater. Interfaces, 2019,11:15079. doi: 10.1021/acsami.9b03204

URL     pmid: 30920201
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[5] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[6] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[7] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[8] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[9] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[12] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[13] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[14] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[15] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.