English
新闻公告
More
化学进展 2014, Vol. 26 Issue (09): 1562-1569 DOI: 10.7536/PC140347 前一篇   后一篇

所属专题: 电化学有机合成

• 综述与评论 •

碳纳米管/石墨烯复合结构及其电化学电容行为

康怡然1,2, 蔡锋2,3, 陈宏源2, 陈名海*2, 张锐1,4, 李清文2   

  1. 1. 郑州大学材料科学与工程学院 郑州 450001;
    2. 中国科学院苏州纳米技术与纳米仿生研究所 苏州 215123;
    3. 中国科学技术大学纳米科学技术学院 苏州 215123;
    4. 郑州航空工业管理学院 郑州 450046
  • 收稿日期:2014-03-01 修回日期:2014-05-01 出版日期:2014-09-15 发布日期:2014-07-09
  • 通讯作者: 陈名海 E-mail:mhchen2008@sinano.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 21203238)资助

Carbon Nanotube/Graphene Hybrid Nanostructures and Their Application in Supercapacitors

Kang Yiran1,2, Cai Feng2,3, Chen Hongyuan2, Chen Minghai*2, Zhang Rui1,4, Li Qingwen2   

  1. 1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
    2. Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123;
    3. School of Nano Science and Technology, University of Science and Technology of China, Suzhou, 215123, China;
    4. Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450046, China
  • Received:2014-03-01 Revised:2014-05-01 Online:2014-09-15 Published:2014-07-09
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21203238)

本文综述了超级电容器电极材料碳纳米管/石墨烯复合结构的制备方法,以及由该结构和赝电容活性物质形成的三元复合体系的电化学电容行为研究进展,并提出合理设计的碳纳米管和石墨烯复合结构可以有效发挥其高电导率、高比表面积和合理孔隙结构的优势,实现活性物质的高密度负载,从而获得具有高容量、良好倍率特性和长寿命的电化学超级电容器电极材料。

In this paper, we review the preparation methods of carbon nanotube (CNT)/graphene composite materials for the electrode of supercapacitors, and introduce the developments of CNT/graphene/pseudo-capacitive material ternary composite materials with highly electrochemical performance. The rational designed CNT/graphene composite nanostructures could largely utilize the characteristics of carbon nanomaterials for electrochemical double-large supercapacitors, such as large specific area, high conductivity and befitting porous structure, and also achieve large mass loading of pseudo-capacitive materials with high dispersion for pseudo-capacitors. As a result, these composite materials are promising candidates for the electrode materials of high-performance supercapacitors with high capacitance, excellent rate performance and long lifetime.

Contents
1 Introduction
2 The preparation strategies of carbon nanotube/graphene composites
2.1 The assembling based on π-π interaction
2.2 The assembling based on electrostatic attraction
2.3 In-situ growth
2.4 Other methods
3 Ternary composite electrodes based on graphene, carbon nanotube and pseudo-capacitive materials
3.1 Carbon nanotube/graphene/conductive polymer
3.2 Carbon nanotube/graphene/metallic oxides (hydroxides)
4 Conclusion

中图分类号: 

()

[1] Simon P, Gogotsi Y. Nat. Mater., 2008, 7: 845.
[2] Sillars F B, Fletcher S I, Mirzaeian M, Hall P J. Energy Environ. Sci., 2011, 4: 695.
[3] Miller J R, Simon P. Science, 2008, 321: 651.
[4] Peng C, Zhang S W, Jewell D, Chen G Z.. Prog. Nat. Sci., 2008, 18: 777.
[5] Hu C C, Chang K H, Lin M C, Wu Y T. Nano Lett., 2006, 6: 2690.
[6] Jurewicz K, Babet K, ?ió?kowski A, Wachowska H. Electrochim. Acta, 2003, 48: 1491.
[7] Huang Y, Liang J J, Chen Y S. Small, 2012, 8: 1805.
[8] Jha N, Ramesh P, Bekyarova E, Itkis M E, Haddon R C. Adv. Energy Mater., 2012, 2: 438.
[9] Wu Y P, Zhang T F, Zhang F, Wang Y, Ma Y F, Huang Y, Liu Y Y, Chen Y S. Nano Energy, 2012, 1: 820.
[10] Dai L M, Chang D W, Baek J B, Lu W. Small, 2012, 8: 1130.
[11] Iijima S. Nature, 1991, 354: 56.
[12] Du X, Skachko I, Barker A, Andrei E Y. Nat. Nanotechnol., 2008, 3: 491.
[13] Tamailarasan P, Ramaprabhu S. J. Phys. Chem. C, 2012, 116: 14179.
[14] Aravind S S J, Ramaprabhu S. ACS Appl. Mater. Interfaces, 2012, 4: 3805.
[15] Yu K H, Lu G H, Bo Z. J. Phys. Chem. Lett., 2011, 2: 1556.
[16] Lu X J, Dou H, Yuan C Z, Yang S D, Hao L, Zhang F, Shen L F, Zhang L J, Zhang X G. Journal of Power Sources, 2012, 197: 319.
[17] Kim J Y, Cote L J, Kim F, Yuan W, Shull K R, Huang J X. J. Am. Chen. Soc., 2010, 132: 8180.
[18] Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L C. Phys. Chem., 2011, 13: 17615.
[19] Zhang D S, Yan T T, Shi L Y, Peng Z, Wen X R, Zhang J P. J. Mater.Chem., 2012, 22: 14696.
[20] Peng L W, Feng Y Y, Lv P, Lei D, Shen Y T, Li Y, Feng W. J. Phys. Chem.C, 2012, 116: 4970.
[21] Lu X J, Dou H, Gao B, Yuan C Z, Yang S D, Hao L, Shen L F, Zhang X G. Electrochim. Acta, 2011, 56: 5115.
[22] Huang Z D, Zhang B, Oh S W, Zheng Q B, Lin X Y, Yousefi N, Kim J K. J. Mater. Chem., 2012, 22: 3591.
[23] Li J J, Ma Y W, Jiang X, Feng X M, Fan Q L, Huang W. IEEE Transactions on Nanotechnology, 2012, 11: 3.
[24] Tamailarasan P, Ramaprabhu S. J. Phys. Chem. C, 2012, 116: 14179.
[25] Yu D S, Dai L M. J. Phys. Chem. Lett., 2010, 1: 467.
[26] Sridhar V, Kim H J, Jung J H, Lee C G, Park S J, Oh I K. ACS Nano, 2012, 6: 10562.
[27] Lee D H, Kim J E, Han T H, Hwang J W, Jeon S, Choi S Y, Hong S H, Lee W J, Ruoff R S, Kim S O. Adv. Mater., 2010, 22: 1247.
[28] Kim Y S, Kumar K, Fisher F T, Yang E H. Nanotechnology, 2012, 23: 1.
[29] Fan Z J, Yan J, Zhi L J, Zhang Q, Wei T, Feng J, Zhang M L,Qian W Z, Wei F. Adv. Mater., 2010, 22: 3723.
[30] Wang W, Guob S, Penchev M, Ruiz I, Bozhilov K N, Yan D,Ozkan M, Ozkan C S. Nano Energy, 2012, 2: 294.
[31] Yan Z, Ma L L, Zhu Y, Lahiri I, Hahm M G, Liu Z, Yang S B,Xiang C S, Lu W, Peng Z W, Sun Z Z, Kittrell C, Lou J, Choi W, Ajayan P M, Tour J M. ACS Nano, 2013, 7: 58.
[32] Lin J, Zhang C G, Yan Z, Zhu Y,Peng Z W, Hauge R H, Natelson D, Tour J M. Nano Lett., 2013, 13: 72.
[33] Kim K S, Park S J. Electrochim. Acta, 2011, 56: 1629.
[34] Yan J, Wei T, Fan Z J, Qian W Z, Zhang M L, Shen X D, Wei F. Journal of Power Sources, 2010, 195: 3041.
[35] Lu X J, Dou H, Yang S D, Hao L, Zhang L J, Shen L F, Zhang F, Zhang X G. Electrochim. Acta, 2011, 56: 9224.
[36] Lu X J, Zhang F, Dou H, Yuan C Z, Yang S D, Hao L, Shen L F, Zhang L J, Zhang X G. Electrochimica Acta, 2012, 69: 160.
[37] Li S M, Wang Y S, Yang S Y, Liu C H, Chang K H, Tien H W, Wen N T, Ma C C M, Hu C C.Journal of Power Sources, 2013, 225: 347.
[38] Jin Y, Chen H Y, Chen M H, Liu N, Li Q W. ACS Appl. Mater. Interfaces, 2013, 5: 3408.
[39] Lei Z B, Shi F H, Lu L. ACS Appl. Mater. Interfaces, 2012, 4: 1058.
[40] Cheng Y W, Lu S T, Zhang H B, Varanasi C V, Liu J. Nano Lett., 2012, 12: 4206.
[41] Rakhi R B, Alshareef N H. Journal of Power Sources, 2011, 196: 8858.
[42] Du F, Yu D S, Dai L M, Ganguli S, Varshney V, Roy A K. Chem. Mater., 2011, 23: 4810.
[43] Yang W L, Gao Z, Wang J, Ma J, Zhang M L, Liu L H. ACS Appl. Mater.Interfaces, 2013, 5: 5443.

[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[3] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[4] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[5] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[6] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[7] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[8] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[9] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[10] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[11] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[12] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[13] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[14] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[15] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.