English
新闻公告
More
化学进展 2016, Vol. 28 Issue (11): 1682-1688 DOI: 10.7536/PC160517 前一篇   后一篇

• 综述与评论 •

超级电容器用细菌纤维素基电极材料

夏文1, 李政1*, 徐银莉1, 庄旭品1, 贾士儒2, 张健飞1   

  1. 1. 天津工业大学纺织学院 先进纺织复合材料教育部重点实验室 天津 300387;
    2. 天津科技大学 工业发酵微生物教育部重点实验室 天津 300457
  • 收稿日期:2016-05-01 修回日期:2016-09-01 出版日期:2016-11-15 发布日期:2016-10-08
  • 通讯作者: 李政 E-mail:lizheng_nx@163.com
  • 基金资助:
    国家自然科学基金项目(No.31200719,51403152,51473122)、天津市科技特派员项目(No.16JCTPJC44400)和天津市应用基础及前沿技术研究计划(No.14JCQNJC14200)资助

Bacterial Cellulose Based Electrode Material for Supercapacitors

Xia Wen1, Li Zheng1*, Xu Yinli1, Zhuang Xupin1, Jia Shiru2, Zhang Jianfei1   

  1. 1. Key Laboratory of Advanced Textile Composites, Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China;
    2. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
  • Received:2016-05-01 Revised:2016-09-01 Online:2016-11-15 Published:2016-10-08
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31200719,51403152,51473122) and the Tianjin Sci-Tech Commissioner System(No. 16JCTPJC44400,No. 14JCQNJC14200).
超级电容器由于能提供比电池更高的功率密度,比传统电容器更高的能量密度而备受关注。但目前其应用仍存在能量密度低的问题。碳材料、金属氧化物和导电聚合物是常见的三种超级电容器电极材料,而其中不同形式碳材料是电容器中研究和应用最广泛的电极材料。细菌纤维素是由细菌分泌产生的具有一定纳米级孔径分布的多孔生物材料,具有高强度和模量、高孔隙率、极好的尺寸和热稳定性的特性。以细菌纤维素为原料制备电极材料是近年来超级电容器领域的热点研究方向之一。本文以细菌纤维素基电极材料的种类、制备方法和性能为线索,综述了国内外细菌纤维素基超级电容器电极材料的研究进展,并归纳总结了电极材料最优的形态和制备方法,进一步对该类电极材料的发展趋势进行了展望。
Supercapacitors as a new-type energy storage devices have drawn much attention because they can provide higher power density than batteries and higher energy density than traditional dielectric capacitors. But at present their application are still exist the defect of low energy density. Carbon materials, metal oxides and conductive polymers are three more commonly utilized electrode materials for supercapacitors, and the different forms of carbon materials are the most widely research and application of capacitor electrode materials.Bacterial cellulose (BC) is a porous and biological polymer which secreted by some bacterias, and BC has special properties of high mechanical strength and modulus, high porosity, good size and thermal stability. Consequently, significant research interest has been directed into the research of the carbon electrode materials which use bacterial cellulose as a raw material. In this paper, we present a review of the research progress of the BC based electrode material for supercapacitor application in term of the types of materials, preparation methods and performances. Furthermore, the optimum configuration, synthesizing method and the developing trend for the bacterial cellulose composite are summarized.

Contents
1 Introduction
2 BC and BC based carbon nanofiber electrode material for supercapacitors
2.1 BC based flexible electrical double-layer capacitive supercapacitor
2.2 BC based pseudo-capacitive supercapacitor
3 Conclusion

中图分类号: 

()
[1] Merlet C, Rotenberg B, Madden P A, Taberna P, Simon P, Gogotsi Y, Salanne M. Nat. Mater., 2012, 11(4):306.
[2] Xu B, Hou S, Cao G, Wu F, Yang Y. J. Mater. Chem., 2012, 22(36):19088.
[3] Shi S, Zhuang X, Cheng B, Wang X. J. Mater. Chem. A, 2013, 1(44):13779.
[4] 周永宁(Zhou Y N), 傅正文(Fu Z W). 化学进展(Prog. Chem.), 2011, 23(2/3):336.
[5] Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H. Carbohyd. Polym., 2015, 120:115.
[6] Cavka A, Guo X, Tang S, Winestrand S, Jonsson L J, Hong F. Biotechnol. Biofuels, 2013, 6(1):1.
[7] Lin D, Lopez-Sanchez P, Li R, Li Z. Bioresource Technol., 2014, 151C(1):113.
[8] Duarte E B, Das Chagas B S, Andrade F K, Brigida A I S, Borges M F, Muniz C R, Souza Filho M D S M, Morais J P S, Feitosa J P A, Rosa M F. Cellulose, 2015, 22(5):3177.
[9] Li Y, Wang S, Huang R, Huang Z, Hu B, Zheng W, Yang G, Jiang X. Biomacromolecules, 2015, 16(3):780.
[10] Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi L M, Levinson D, Rouabhia M. Amb Express, 2012, 2(1):1.
[11] Gadim T D O, Figueiredo A G P R, Rosero-Navarro N C, Vilela C, Gamelas J A F, Barros-Timmons A, Pascoal Neto C, Silvestre A J D, Freire C S R, Figueiredo F M L. ACS Appl. Mater. Interfaces, 2014, 6(10):7864.
[12] Chen C, Yu Y, Li K, Zhao M, Liu L, Yang J, Liu J, Sun D. Cellulose, 2015, 22(6):3929.
[13] Yuan D, Huang X, Yan J, Yu W, Meng H, Rong J. Sci. Adv. Mater., 2013, 5(11):1694.
[14] Kaburagi Y, Ohoyama M, Yamaguchi Y, Shindou E, Yoshida A, Iwashita N, Yoshizawa N, Kodama M. Carbon, 2012, 50(12):4757.
[15] Farjana S, Toomadj F, Lundgren P, Sanz-Velasco A, Naboka O, Enoksson P. J. Sens, 2013, 2013(1):77.
[16] Yoon S H, Jin H J, Kook M C, Pyun Y R. Biomacromolecules, 2006, 7(4):1280.
[17] Yan Z, Chen S, Wang H, Wang B, Jiang J. Carbohyd. Polym., 2008, 74(3):659.
[18] Yan Z, Chen S, Wang H, Wang B, Wang C, Jiang J. Carbohyd. Res., 2008, 343(1):73.
[19] Chen X, Yuan F, Zhang H, Huang Y, Yang J, Sun D. J. Mater. Sci., 2016, 51(12):5573.
[20] Kang Y J, Chun S, Lee S, Kim B, Kim J H, Chung H, Lee S, Kim W. ACS Nano, 2012, 6(7):6400.
[21] Kiziltas E E, Kiziltas A, Rhodes K, Emanetoglu N W, Blumentritt M, Gardner D J. Carbohyd. Polym., 2016, 136:1144.
[22] Xu B, Yue S, Sui Z, Zhang X, Hou S, Cao G, Yang Y. Energ. Environ. Sci., 2011, 4(8):2826.
[23] Luo H, Xiong G, Yang Z, Raman S R, Si H, Wan Y. RSC Adv., 2014, 4(28):14369.
[24] Feng Y, Zhang X, Shen Y, Yoshino K, Feng W. Carbohyd. Polym., 2012, 87(1):644.
[25] Liang H, Guan Q, Zhu-Zhu, Song L, Yao H, Lei X, Yu S. NPG Asia Mater., 2012, 4(6):1.
[26] Bispo-Fonseca I, Aggar J, Sarrazin C, Simon P, Fauvarque J F. J. Power Sources, 1999, 79(2):238.
[27] Paraknowitsch J P, Thomas A. Energ. Environ. Sci., 2013, 6(10):2839.
[28] Lu X, Yu M, Wang G, Zhai T, Xie S, Ling Y, Tong Y, Li Y. Adv. Mater., 2013, 25(2):267.
[29] Liu S, Yan W, Cao X, Zhou Z, Yang R. Int. J. Hydrogen Energ., 2016, 41(11):5351.
[30] Miyajima N, Jinguji K, Matsumura T, Matsubara T, Sakane H, Akatsu T, Tanaike O. J. Phys. Chem. Solids, 2016, 91:122.
[31] Lai F, Miao Y, Huang Y, Zhang Y, Liu T. ACS Appl. Mater. Interfaces, 2016, 8(6):3558.
[32] Wu Z, Ren W, Wang D, Li F, Liu B, Cheng H. ACS Nano, 2010, 4(10):5835.
[33] Dai C, Chien P, Lin J, Chou S, Wu W, Li P, Wu K, Lin T. ACS Appl. Mater. Interfaces, 2013, 5(22):12168.
[34] Chen L, Huang Z, Liang H, Guan Q, Yu S. Adv. Mater., 2013, 25(34):4746.
[35] Wang B, Li X H, Luo B, Yang J X, Wang X J, Song Q, Chen S Y, Zhi L J. Small, 2013, 9(14):2399.
[36] Zhu T, Wu H B, Wang Y, Xu R, Lou X W D. Adv. Energy Mater., 2012, 2(12):1497.
[37] Yu W, Lin W, Shao X, Hu Z, Li R, Yuan D. J. Power Sources, 2014, 272:137.
[38] Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W. J. Phys. Chem. C., 2012, 116(24):13013.
[39] Wang H, Bian L, Zhou P, Tang J, Tang W. J. Mater. Chem. A, 2013, 1(3):578.
[40] Li S, Huang D, Zhang B, Xu X, Wang M, Yang G, Shen Y. Adv. Energy Mater., 2014, 4(10):867.
[41] Li S, Huang D, Yang J, Zhang B, Zhang X, Yang G, Wang M, Shen Y. Nano Energy, 2014, 9:309.
[42] Liu Y, Zhou J, Tang J, Tang W. Chem. Mater., 2015, 27(20):7034.
[43] Long C, Qi D, Wei T, Yan J, Jiang L, Fan Z. Adv. Funct. Mater., 2014, 24(25):3953.
[44] Paraknowitsch J P, Thomas A. Energ. Environ. Sci., 2013, 6(10):2839.
[45] Yang S, Zhi L, Tang K, Feng X, Maier J, Muellen K. Adv. Funct. Mater., 2012, 22(17):3634.
[46] Liang J, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Edit., 2012, 51(46):11496.
[47] Wu Z, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Muellen K. Adv. Mater., 2012, 24(37):5130.
[48] Xu B, Duan H, Chu M, Cao G, Yang Y. J. Mater. Chem. A, 2013, 1(14):4565.
[49] Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W. Nano Lett., 2011, 11(6):2472.
[50] Chen L, Zhang X, Liang H, Kong M, Guan Q, Chen P, Wu Z, Yu S. ACS Nano, 2012, 6(8):7092.
[51] Chen L, Huang Z, Liang H, Yao W, Yu Z, Yu S. Energ. Environ. Sci., 2013, 6(11):3331.
[52] Zhao X, Zhang Q, Zhang B, Chen C M, Wang A Q, Zhang T, Su D S. J. Mater. Chem, 2012, 22(11):4963.
[53] Chen L F, Huang Z H, Liang H W, Gao H L, Yu S H.Adv. Funct. Mater., 2014, 24(32):5104.
[54] Hu Z, Li S, Cheng P, Yu W, Li R, Shao X, Lin W, Yuan D. J. Mater. Sci., 2016, 51(5):2627.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[5] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[8] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[9] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[10] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[11] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[12] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[13] 王金岭, 温玉真, 汪华林, 刘洪来, 杨雪晶. FeOCl层状材料及其插层化合物:结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280.
[14] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[15] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.