English
新闻公告
More
化学进展 2020, Vol. 32 Issue (7): 1003-1014 DOI: 10.7536/PC191005 前一篇   

• 综述 •

高安全、高比能固态锂硫电池电解质

李栋1, 郑育英1, 南皓雄1, 方岩雄1, 刘全兵1,**(), 张强2,**()   

  1. 1. 广东工业大学轻工化工学院 广州 510006
    2. 清华大学化学工程系 北京 100084
  • 收稿日期:2019-10-11 出版日期:2020-07-24 发布日期:2020-07-10
  • 通讯作者: 刘全兵, 张强
  • 基金资助:
    国家自然科学基金基金项目(U1801257); 国家自然科学基金基金项目(21606050); 国家自然科学基金基金项目(21975056); 珠江科技新星项目(201806010039); 广东省普通高校特色创新项目(2017KTSCX055)

Electrolyte for Solid Lithium-Sulfur Batteries with High Safety and High Specific Energy

Dong Li1, Yuying Zheng1, Haoxiong Nan1, Yanxiong Fang1, Quanbing Liu1,**(), Qiang Zhang2,**()   

  1. 1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
    2. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2019-10-11 Online:2020-07-24 Published:2020-07-10
  • Contact: Quanbing Liu, Qiang Zhang
  • About author:
    ** e-mail:(Quanbing Liu);
  • Supported by:
    National Natural Science Foundation of China(U1801257); National Natural Science Foundation of China(21606050); National Natural Science Foundation of China(21975056); Zhujiang Science and Technology New Star Project(201806010039); Characteristic Innovation Projects of Colleges in Guangdong Province(2017KTSCX055)

锂硫电池具有理论能量密度高、成本低廉和环境友好等优点,是最有前途的下一代高比能二次电池系统之一。当前,基于有机电解液的液态锂硫电池存在多硫化锂穿梭效应、电解液易燃以及锂枝晶等问题,致使电池的库仑效率低、循环性能差,且存在严重的安全隐患。采用固态电解质(如凝胶聚合物、固态聚合物、陶瓷、复合电解质等)替代有机电解液是解决上述问题的有效途径。本文总结了近年来固态锂硫电池电解质的研究现状,评述了各类固态电解质的优缺点及改性策略,重点介绍了陶瓷固态电解质的研究进展。最后,对固态锂硫电池的未来发展趋势进行预测与展望。

Lithium-sulfur batteries have the advantages of high theoretical energy density, low cost and environmental friendliness, and they are the most promising next-generation high-energy density secondary battery systems. Currently, liquid lithium-sulfur batteries based on organic electrolytes have some problems such as lithium polysulfides(LiPSs) shuttle effect, electrolyte flammability and lithium dendrite, resulting in low coulombic efficiency and poor cycle stability of lithium-sulfur batteries, and there are serious safety hazards. The uses of solid electrolytes(gel polymers, solid polymers, ceramics, composite electrolytes, etc.) in place of organic liquid electrolytes are effective strategies to address the above problems. Herein, we present the research status of solid-state electrolytes of lithium-sulfur batteries, and summarize their advantages/disadvantages and improvement strategies, and focuses on the research progress of ceramic solid electrolytes. Finally, we forecast future development trends of solid lithium-sulfur batteries.

Contents

1 Introduction

2 Solid electrolytes

2.1 Gel polymer electrolytes

2.2 Solid-state polymer electrolytes

2.3 Ceramic electrolytes

2.4 Composite electrolytes

3 Conclusion and outlook

()
图1 锂离子在PPZr-GPE膜上的迁移和抑制多硫化物机理说明[18]
Fig.1 Schematic illustration of Li+ ion transport and polysulfide blocking mechanism for the membrane of PPZr-GPE[18]. Copyright 2017, Royal Society of Chemistry.
图2 基于多功能PDA-PVDF固态锂硫电池示意图[19]
Fig.2 Scheme of the multifunction of PDA-PVDF for quasi-solid-state Li-S battery[19]. Copyright 2018, Royal Society of Chemistry.
图3 (a)LiFSI有助于形成稳定的界面层[28],(b)Al2O3包覆LATP固态聚合物电解质的制备和全固态锂硫电池结构图[30],(c)HNT添加剂提高离子电导率机理图[35]
Fig.3 (a) LiFSI helps the forming of stable interface layer[28]. Copyright 2017, American Chemical Society.(b) Schematic diagram showing the preparation of an ALD coated LATP SSE and the configuration of ASSLSBs[30]. Copyright 2018, Royal Society of Chemistry.(c) Schematic mechanism of HNT addition for enhanced ionic conductivity[35]. Copyright 2017, Elsevier.
图4 陶瓷电解质晶体结构示意图,(a) Li6PS5Cl[46],(b) Li9.54Si1.74P1.44S11.7C l 0.3 [ 64 ] ,(c) Li10GeP2 S 12 [ 65 ] ,(d) NaSICON[63],(e) Li3 x La2/3- x Ti O 3 [ 66 ] ,(f) Li7La3Zr2 O 12 [ 67 ]
Fig.4 Crystal structure of (a) Li6PS5Cl[46]. Copyright 2019, Royal Society of Chemistry. (b) Li9.54Si1.74P1.44S11.7C l 0.3 [ 64 ] . Copyright 2018, Wiley. (c) Li10GeP2 S 12 [ 65 ] . Copyright 2016, American Chemical Society. (d) NaSICON[63]. Copyright 2014, American Chemical Society. (e) Li3 x La2/3- x Ti O 3 [ 66 ] . Copyright 2003, American Chemical Society. (f) Li7La3Zr2 O 12 [ 67 ] . Copyright 2013, American Chemical Society.
图5 (a)夹层结构电解质的电池示意图;(b)锂硫电池基于不同电解质的充放电曲线图[76](c)混合电解质锂硫电池结构示意图;(d)不同浓度LLZO纳米复合材料对离子电导率的影响[1]
Fig.5 (a) Sketch of the cell with a bilayer electrolyte configuration;(b) Discharge/charge profiles of the Li-S battery with different electrolytes[76].(c) Schematic illustration of an all solid-state Li-S battery based on hybrid electrolytes;(d) Arrhenium plots of the conductivity of nanocomposite LLZO-PEO-LiClO4 with different LLZO concentrations[1]. Copyright 2017, American Chemical Society.
图6 (a) LPS-PEO-LiClO4复合固态电解质的工艺流程图;(b)LPS-PEO-LiClO4固态锂硫电池结构示意图[77]
Fig.6 (a) Schematic of fabrication process of LPS-PEO-LiClO4 hybrid solid electrolyte,(b) Schematic illustration of an all solid-state Li-S battery structure based on LPS-PEO-LiClO4 hybrid solid electrolyte[77]. Copyright 2018, American Chemical Society.
表1 不同固态电解质对锂硫电池电化学性能的影响
Table 1 The electrochemical performances of Li-S batteries with various solid-state electrolytes
表2 用于锂硫电池的不同类型固态电解质参数及优缺点比较列表
Table 2 Comparison of advantages and disadvantages of various SSEs electrolytes for lithium-sulfur batteries
[1]
Tao X Y , Liu Y Y , Liu W , Zhou G M , Zhao J , Lin D C , Zu C X , Sheng O W , Zhang W K , Lee H W , Cui Y . Nano Lett., 2017,17:2967. doi: 10.1021/acs.nanolett.7b00221 https://www.ncbi.nlm.nih.gov/pubmed/28388080

URL     pmid: 28388080
[2]
Ji X L , Lee K T , Nazar L F . Nat. Mater., 2009,8:500. https://www.ncbi.nlm.nih.gov/pubmed/19448613

URL     pmid: 19448613
[3]
Pang Q , Tang J T , Huang H , Liang X , Hart C , Tam K C , Nazar L F . Adv. Mater., 2015,27:6021. doi: 10.1002/adma.201502467 https://www.ncbi.nlm.nih.gov/pubmed/26314378

URL     pmid: 26314378
[4]
Song J X , Xu T , Gordin M L , Zhu P Y , Lu D P , Jiang Y B , Chen Y S , Duan Y H , Wang D H . Adv. Funct. Mater., 2014,24:1243.
[5]
Ji L W , Rao M M , Zheng H M , Zhang L , Li Y C , Duan W H , Guo J H , Cairns E J , Zhang Y G . J. Am. Chem. Soc., 2011,133:18522. doi: 10.1021/ja206955k https://www.ncbi.nlm.nih.gov/pubmed/22017295

URL     pmid: 22017295
[6]
Pang Q , Kundu D , Cuisinier M , Nazar L F . Nat. Commun., 2014,5:4759. doi: 10.1038/ncomms5759 https://www.ncbi.nlm.nih.gov/pubmed/25154399

URL     pmid: 25154399
[7]
Wang X L , Li G , Li J D , Zhang Y , Wook A , Yu A P , Chen Z W . Energ. Environ. Sci., 2016,9:2533.
[8]
Pu J , Shen Z H , Zheng J X , Wu W L , Zhu C , Zhou Q W , Zhang H G , Pan F . Nano Energy, 2017,37:7.
[9]
Yu X W , Manthiram A . Adv. Funct. Mater., 2019,29:1805996.
[10]
Liu W , Lee S W , Lin D C , Shi F F , Wang S , Sendek A D , Cui Y . Nat. Energy, 2017,2:17035.
[11]
Xu R C , Xia X H , Li S H , Zhang S Z , Wang X L , Tu J P . J. Mater. Chem. A, 2017,5:6310. doi: 10.1039/C7TA01147D http://xlink.rsc.org/?DOI=C7TA01147D
[12]
Wang Y , Richards W D , Ong S P , Miara L J , Kim J C , Mo Y F , Ceder G . Nat. Mater., 2015,14:1026. doi: 10.1038/nmat4369 https://www.ncbi.nlm.nih.gov/pubmed/26280225

URL     pmid: 26280225
[13]
Gu S , Huang X , Wang Q , Jin J , Wang Q S , Wen Z Y , Qian R . J. Mater. Chem. A, 2017,5:13971.
[14]
Xin S , You Y , Wang S F , Gao H C , Yin Y X , Guo Y G . ACS Energy Lett., 2017,2:1385
[15]
Han F D , Yue J , Fan X L , Gao T , Luo C , Ma Z H , Suo L M , Wang C S . Nano Lett., 2016,16:4521. doi: 10.1021/acs.nanolett.6b01754 https://www.ncbi.nlm.nih.gov/pubmed/27322663

URL     pmid: 27322663
[16]
Sun C W , Liu J , Gong Y D , Wilkinson D P , Zhang J J . Nano Energy, 2017,33:363.
[17]
Lei D N , Shi K , Ye H , Wan Z P , Wang Y Y , Shen L , Li B H , Yang Q H , Kang F Y , He Y B . Adv. Funct. Mater., 2018,28:1707570.
[18]
Gao S , Wang K L , Wang R X , Jiang M , Han J , Gu T T , Cheng S J , Jiang K . J. Mater. Chem. A, 2017,5:17889.
[19]
Han D D , Liu S , Liu Y T , Zhang Z , Li G R , Gao X P . J. Mater. Chem. A, 2018,6:18627.
[20]
Song D Y , Yu C , Chen Y F , He J R , Zhao Y , Li P J , Lin W , Fu L . Solid State Ionics, 2015,282:31.
[21]
Ahn J H , Wang G X , Liu H K , Dou S W . J. Power Sources, 2003,11:422.
[22]
Manuel A , Nahm K S . Polymer, 2006,47:5952.
[23]
Nagajothi A J , Kannan R , Rajashabala S . Polym. Bull., 2017,74:4887.
[24]
Natarajan A , Stephan A M , Chan C H , Kalarikkal N , Thomas S . J. Appl. Polym. Sci., 2017,134. https://www.ncbi.nlm.nih.gov/pubmed/28579635

URL     pmid: 28579635
[25]
Tsutsumi H , Matsuo A , Takase K , Doi S , Hisanaga A , Onimura K , Oishi T . J. Power Sources, 2000, 90: 33. doi: 10.1016/S0378-7753(00)00444-4 https://linkinghub.elsevier.com/retrieve/pii/S0378775300004444
[26]
Raghavan P , Manuel J , Zhao X H , Kim D S , Ahn J H , Nah C W . J. Power Sources, 2011,196:6742.
[27]
Fenton D E , Parker J M , Wright P V . Polymer, 1973,14:589.
[28]
Judez X , Zhang H , Li C M , Gonzalez-Marcos J A , Zhou Z B , Armand M , Rodriguez Martinez L M . J. Phys. Chem. Lett., 2017,8:1956. doi: 10.1021/acs.jpclett.7b00593 https://www.ncbi.nlm.nih.gov/pubmed/28407471

URL     pmid: 28407471
[29]
Zhang Y G , Zhao Y , Gosselink D , Chen P . Ionics, 2014,21:381.
[30]
Liang J N , Sun Q , Zhao Y , Sun Y P , Wang C H , Li W H , Li M S , Wang D W , Li X , Liu Y L , Adair K , Li R Y , Zhang L , Yang R , Lu S G , Huang H , Sun X L . J. Mater. Chem. A, 2018,6:23712.
[31]
Zhu P , Yan C Y , Dirican M , Zhu J D , Zang J , Selvan R K , Chung C C , Jia H , Li Y , Kiyak Y , Wu N Q , Zhang X W . J. Mater. Chem. A, 2018,6:4279.
[32]
Wang C , Yang Y F , Liu X J , Zhong H , Xu H , Xu Z B , Shao H X , Ding F . ACS Appl. Mater. Inter., 2017,9:13694.
[33]
Zhao Y R , Wu C , Peng G , Chen X T , Yao X Y , Bai Y , Wu F , Chen S J , Xu X X . J. Power Sources, 2016,301:47.
[34]
Li X , Wang D H , Wang H C , Yan H F , Gong Z L , Yang Y . ACS Appl. Mater. Inter., 2019,11:22745.
[35]
Lin Y , Wang X M , Liu J , Miller J D . Nano Energy, 2017,31:478.
[36]
Kataoka K , Akimoto J . J. Ceram. Soc. Jpn., 2019,127:521.
[37]
Gao Z H , Sun H B , Fu L , Ye F L , Zhang Y , Luo W , Huang Y H . Adv. Mater., 2018,30:1705702.
[38]
Ma Z , Xue H G , Guo S P . J. Mater. Sci., 2017,53:3927.
[39]
Sun Y Z , Huang J Q , Zhao C Z , Zhang Q . Sci. China Chem., 2017,60:1508.
[40]
Kennedy J G , Zhang Z . J. Electrochem. Soc., 1988,135:859.
[41]
Minami T , Hayashi A , Tatsumisago M . Solid State Ionics, 2000,136:1015.
[42]
Tsukasaki H , Mori S , Shiotani S , Yamamura H . Solid State Ionics, 2018,317:122.
[43]
Seino Y , Ota T , Takada K , Hayashi A , Tatsumisago M . Energ. Environ. Sci., 2014,7:627.
[44]
Yubuchi S , Uematsu M , Hotehama C , Sakuda A , Hayashi A , Tatsumisago M . J. Mater. Chem. A, 2019,7:558.
[45]
Wang S , Zhang Y B , Zhang X , Liu T , Lin Y H , Shen Y , Li L L , Nan C W . ACS Appl. Mater. Inter., 2018,10:42279.
[46]
Ghidiu M , Ruhl J , Culver S P , Zeier W G . J. Mater. Chem. A, 2019,7:17735.
[47]
Rangasamy E , Liu Z C , Gobet M , Pilar K , Sahu G , Zhou W , Wu H , Greenbaum S , Liang C D . J. Am. Chem. Soc., 2015,137:1384.
[48]
Minafra N , Culver S P , Krauskopf T , Senyshyn A , Zeier W G . J. Mater. Chem. A, 2018,6:645.
[49]
Yubuchi S , Uematsu M , Deguchi M , Hayashi A , Tatsumisago M . ACS Appl. Energy Mater., 2018,1:3622.
[50]
Zhou L , Park K H , Sun X , Lalère F , Adermann T , Hartmann P , Nazar L F . ACS Energy Lett., 2018,4:265.
[51]
Choi S , Ann J , Do J , Lim S , Park C , Shin D W . J. Electrochem Soc., 2018,166:A5193.
[52]
Chida S , Miura A , Rosero-Navarro N C , Higuchi M , Phuc N H H , Muto H , Matsuda A , Tadanaga K . Ceram Int., 2018,44:742.
[53]
Kanno R , Murayama M . J. Electrochem. Soc., 2001,148:A742.
[54]
Wang Y M , Liu Z Q , Zhu X L , Tang Y F , Huang F Q . J. Power Sources, 2013,224:225.
[55]
Zhou P F , Wang J B , Cheng F Y . Chem. Commun., 2016,52:6091.
[56]
Sahu G , Lin Z , Li J H , Liu Z C , Dudney N , Liang C D . Energ. Environ. Sci., 2014,7:1053.
[57]
Kamaya N , Homma K , Yamakawa Y , Hirayama M , Kanno R , Yonemura M , Kamiyama T , Kato Y , Hama S , Kawamoto K , Mitsui A . Nat. Mater., 2011,10:682. doi: 10.1038/nmat3066 https://www.ncbi.nlm.nih.gov/pubmed/21804556

URL     pmid: 21804556
[58]
Bron P , Johansson S , Zick K , Schmedt auf der Günne J , Dehnen S , Roling B . J. Am. Chem. Soc., 2013,135:15694. doi: 10.1021/ja407393y https://www.ncbi.nlm.nih.gov/pubmed/24079534

URL     pmid: 24079534
[59]
Bron P , Dehnen S , Roling B . J. Power Sources, 2016,329:530. doi: 10.1016/j.jpowsour.2016.08.115 https://linkinghub.elsevier.com/retrieve/pii/S0378775316311351
[60]
Ong S P , Mo Y F , Richards W D , Miara L , Lee H S , Ceder G . Energ. Environ. Sci., 2013,6:148.
[61]
Xu R C , Wu Z , Zhang S Z , Wang X L , Xia Y , Xia X H , Huang X H , Tu J P . Chem. Eur. J., 2017,23:13950. doi: 10.1002/chem.201703116 https://www.ncbi.nlm.nih.gov/pubmed/28722816

URL     pmid: 28722816
[62]
Yao X Y , Huang N , Han F , Zhang Q , Wan H L , Mwizerwa J P , Wang C S , Xu X X . Adv. Energy Mater., 2017,7:1602923.
[63]
Goodenough J B , Hong H Y P , Kafalas J A . Mat. Res. Bull., 1976,11:203.
[64]
Xu R C , Zhang S Z , Wang X L , Xia Y , Xia X H , Wu J B , Gu C D , Tu J P . Chem. Eur. J., 2018,24:6007. doi: 10.1002/chem.201704568 https://www.ncbi.nlm.nih.gov/pubmed/29071773

URL     pmid: 29071773
[65]
Weber D A , Senyshyn A , Weldert K S , Wenzel S , Zhang W B , Kaiser R , Berendts S , Janek J , Zeier W G . Chem. Mater., 2016,28:5905.
[66]
Stramare S , Thangadurai V , Weppner W . Chem. Mater., 2003,15:3974.
[67]
Jalem R , Yamamoto Y , Shiiba H , Nakayama M , Munakata H , Kasuga T , Kanamura K . Chem. Mater., 2013,25:425.
[68]
Hallopeau L , Bregiroux D , Rousse G , Portehault D , Stevens P , Toussaint G , Laberty R C . J. Power Sources, 2018,378:48.
[69]
Wang S F , Ding Y , Zhou G M , Yu G H , Manthiram A . ACS Energy Lett., 2016,1:1080.
[70]
Hartmann P , Leichtweiss T , Busche M R , Schneider M , Reich M , Sann J , Adelhelm P , Janek J . J. Phys. Chem. C, 2013,117:21064. doi: 10.1021/jp4051275 https://pubs.acs.org/doi/10.1021/jp4051275
[71]
Li Y T , Zhou W D , Chen X , Lu X J , Cui Z M , Xin S , Xue L G , Jia Q X , Goodenough J B . Proc. Natl. Acad. Sci., 113:13313. doi: 10.1073/pnas.1615912113 https://www.ncbi.nlm.nih.gov/pubmed/27821751

URL     pmid: 27821751
[72]
Yu X W , Bi Z H , Zhao F , Manthiram A . Adv. Energy Mater., 2016,6:1601392. doi: 10.1002/aenm.201601392 http://doi.wiley.com/10.1002/aenm.201601392
[73]
Luo J B , Zhong S W , Huang Z Y , Huang B , Wang C A . Solid State Ionics, 2019,338:1. doi: 10.1016/j.ssi.2019.04.010 https://linkinghub.elsevier.com/retrieve/pii/S0167273819301766
[74]
Hayashi A , Harayama T , Mizuno F , Tatsumisago M . J. Power Sources, 2006,163:289. doi: 10.1016/j.jpowsour.2006.06.018 https://linkinghub.elsevier.com/retrieve/pii/S0378775306011682
[75]
Chen S J , Zhao Y R , Yang J , Yao L L , Xu X X . Ionics, 2017,23:2603. doi: 10.1007/s11581-016-1905-9 http://link.springer.com/10.1007/s11581-016-1905-9
[76]
Judez X , Zhang H , Li C M , Eshetu G G , Zhang Y , Gonzalez-Marcos J A , Armand M , Rodriguez M L M . J. Phys. Chem. Lett., 2017,8:3473. doi: 10.1021/acs.jpclett.7b01321 https://www.ncbi.nlm.nih.gov/pubmed/28696704

URL     pmid: 28696704
[77]
Xu X Y , Hou G M , Nie X K , Ai Q , Liu Y , Feng J K , Zhang L , Si P C , Guo S R , Ci L J . J. Power Sources, 2018,400:212. doi: 10.1016/j.jpowsour.2018.08.016 https://linkinghub.elsevier.com/retrieve/pii/S0378775318308759
[78]
Zhang X , Liu T , Zhang S F , Huang X , Xu B Q , Lin Y H , Xu B , Li L L , Nan C W , Shen Y . J. Am. Chem. Soc., 2017,139:13779. doi: 10.1021/jacs.7b06364 https://www.ncbi.nlm.nih.gov/pubmed/28898065

URL     pmid: 28898065
[79]
Hood Z D , Wang H , Li Y C , Pandian A S , Parans P M , Liang C D . Solid State Ionics, 2015,283:75. doi: 10.1016/j.ssi.2015.10.014 https://linkinghub.elsevier.com/retrieve/pii/S016727381500404X
[80]
Rangasamy E , Sahu G , Keum J K , Rondinone A J , Dudney N J , Liang C D . J. Mater. Chem. A, 2014,2:4111.
[81]
Umeshbabu E , Zheng B Z , Zhu J P , Wang H C , Li Y X , Yang H . ACS Appl. Mater. Inter., 2019,11, 18436.
[82]
Xia Y , Liang Y F , Xie D , Wang X L , Zhang S Z , Xia X H , Gu C D , Tu J P . Chem. Eng. J., 2019,358:1047.
[83]
Liu M , Zhou D , He Y B , Fu Y Z , Qin X Y , Miao C , Du H D , Li B H , Yang Q H , Lin Z Q , Zhao T S , Kang F Y . Nano Energy, 2016,22:278.
[84]
Yang W , Yang W , Feng J N , Ma Z P , Shao G J . Electrochim Acta, 2016,210:71.
[85]
Li W Y , Pang Y , Zhu T C , Wang Y G , Xia Y Y . Solid State Ionics, 2018,318:82. doi: 10.1016/j.ssi.2017.08.018 https://linkinghub.elsevier.com/retrieve/pii/S0167273817305593
[86]
Xu R C , Xia X H , Wang X L , Xia Y , Tu J P . J. Mater. Chem. A, 2017,5:2829.
[87]
Huang X , Liu C , Lu Y , Xiu T P , Jin J , Badding M E , Wen Z Y . J. Power Sources, 2018,382:190. doi: 10.1016/j.jpowsour.2017.11.074 https://linkinghub.elsevier.com/retrieve/pii/S0378775317315574
[88]
Li W L , Xing Y J , Xing X Y , Li Y H , Yang G , Xu L X . Electrochim Acta, 2013,112:183.
[89]
He W S , Cui Z L , Liu X C , Cui Y Y , Chai J C , Zhou X H , Liu Z H , Cui G L . Electrochim Acta, 2017,225:151.
[90]
Dhatarwal P , Choudhary S , Sengwa R J . Compos. Commun., 2018,10:11.
[91]
Adnan S B R S , Mohamed N S . Mater. Charact., 2014,96:249.
[92]
He Z J , Chen L , Zhang B C , Liu Y C , Fan L Z . J. Power Sources, 2018,392:232.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[7] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[8] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[9] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[10] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[11] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[12] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[13] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[14] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[15] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.