English
新闻公告
More
化学进展 2022, Vol. 34 Issue (2): 434-446 DOI: 10.7536/PC210108 前一篇   后一篇

• 综述 •

金属草酸盐基负极材料——离子电池储能材料的新选择

高耕1,2†, 张克宇1,2†, 王倩雯1,2, 张利波2, 崔丁方2,*(), 姚耀春1,2,*()   

  1. 1 昆明理工大学锂离子电池与材料制备技术国家地方联合工程实验室 昆明 650093
    2 昆明理工大学冶金与能源工程学院 昆明 650093
  • 收稿日期:2021-01-14 修回日期:2021-04-01 出版日期:2022-02-20 发布日期:2021-07-29
  • 通讯作者: 崔丁方, 姚耀春
  • 基金资助:
    国家自然科学基金项目(52064031); 国家自然科学基金项目(52104302); 云南省自然科学基金项目(2018HB012); 云南省自然科学基金项目(202101BZ070001-020); 兴滇英才支持计划项目(KKS9202052010)

Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries

Geng Gao1,2†, Keyu Zhang1,2†, Qianwen Wang1,2, Libo Zhang2, Dingfang Cui2(), Yaochun Yao1,2()   

  1. 1 National Local Joint Engineering Laboratory of Lithium Ion Battery and Material Preparation Technology, Kunming University of Science and Technology,Kunming 650093, China
    2 Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2021-01-14 Revised:2021-04-01 Online:2022-02-20 Published:2021-07-29
  • Contact: Dingfang Cui, Yaochun Yao
  • About author:
    † These authors contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(52064031); National Natural Science Foundation of China(52104302); Natural Science Foundation of Yunnan Province(2018HB012); Natural Science Foundation of Yunnan Province(202101BZ070001-020); Xingdian Talent Support Project(KKS9202052010)

商业化锂离子电池石墨负极和锂盐过渡金属氧化物正极材料的储锂容量都已接近各自的理论值,探索下一代高能量密度电极材料是解决现阶段锂离子电池容量限制的关键。近年来,新型金属草酸基负极材料,借助其在金属离子电池中多元化储能机制诱发的较高储能效应在碱金属离子电池绿色储能材料领域备受关注。本文就金属草酸基材料在锂、钠、钾金属离子电池方面的最新研究进行了综述,着重介绍了材料的晶型结构、多元化储能机制及储能过程中的动力学特征,简单阐述了材料在电化学储能中存在的问题,分析了金属草酸基负极材料在形貌晶型控制、界面碳复合改性和金属元素掺杂方面的改性策略。最后,预测了金属草酸基负极材料在碱金属离子电池体系的发展方向。

Recently, the capacities and energy densities of graphite anode material and lithium transition metal oxide cathode materials for commercial lithium ion batteries are approaching their theoretical values. Exploring the next generation of high-energy density electrode materials is the key factor to solve the capacity limitation of lithium ion batteries at the present stage. New metal oxalate-based anode materials have been considered as a kind of green energy storage material with broad application prospects in metal ion batteries by virtue of the high energy density and excellent cycling stability with the aid of their diversified energy storage mechanism. In this paper, we review the latest research on metal oxalate-based anode materials in lithium, sodium and potassium metal ion batteries, and emphatically introduce their crystal structures, diversified energy storage mechanism and dynamics characteristics in the process of energy storage. The problems existing in electrochemical energy storage of materials are briefly described and their modification strategies based on controlling of crystal structure and morphology, interface carbon composite and metal elements doping are analyzed. Furthermore, the development direction of metal oxalate-base anode materials in alkali metal (Li, Na, K) ion battery system is predicted.

Contents

1 Introduction

2 Structural characterization of metal oxalate

3 Application in lithium ion batteries

3.1 Traditional lithium storage mechanism

3.2 Novel lithium storage mechanism

3.3 Lithium storage kinetics of metal oxalate based materials

3.4 Modification strategy of electrochemistry property

4 Application in other metal ion batteries

4.1 Sodium-ion batteries

4.2 Potassium ion batteries

5 Conclusion and outlook

()
图1 过渡金属基电极材料放电比容量与嵌锂电位图(过渡金属草酸盐[26⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~39]、过渡金属含氧酸盐[22⇓⇓~25,40⇓⇓⇓⇓~45]、氧化物[11⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~22]和其他类型的负极材料[7,8,10])
Fig. 1 Lithiation potential (cathodic peak) vs. specific capacity for various transition metal-based electrode materials (transition metal oxalates[26⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~39], transition metal oxysalt[22⇓⇓~25,40⇓⇓⇓⇓~45], oxides[11⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~22],other types of negative electrodes[7,8,10])
图2 不同金属草酸盐晶体结构示意图: a) CoC2O4[53]; b) FeC2O4·2H2O[37]; c) FeC2O4·2H2O晶型演变机理图[57]; d) α-MnC2O4·2H2O, e) γ-MnC2O4·2H2O, f) MnC2O4·3H2O[54]
Fig. 2 Diagram of crystal structure of different metal oxalates: a) CoC2 O4[53].Copyright 2018, American Chemical Society; b) FeC2O4·2H2O[37].Copyright 2020, Elsevier; c) FeC2O4·2H2O crystal evolution mechanism diagram[57].Copyright 2020, Elsevier; d) α-MnC2O4·2H2O, e) γ-MnC2O4·2H2O, f) MnC2O4·3H2O[54]. Copyright 2020, American Chemical Society.
图3 不同温度下FeC2O4·xH2O (x∈[0,2])层状结构演变示意图: a) 材料结构内部应力分布与结晶水含量变化关系示意图: b) 材料内部锂离子扩散通道和应力分布[37]
Fig. 3 Schematic of the evolution in layered structure sintered at different temperatures: a) The stress distribution vs. Crystal water content; b) Diagram of lithium ion diffusion channel and stress distribution[37]. Copyright 2020, Elsevier
图4 FeC2O4·2H2O 电极在首次放/充循环期间不同电位下的非原位FT-IR图谱[37]
Fig. 4 Ex situ FT-IR spectrum of FeC2O4·2H2O electrode during first discharge/charge cycle at different voltages[37]. Copyright 2020, Elsevier
图5 a) α@β-FeC2O4电极在0.5 C倍率下循环100圈后的TEM图; b) α@β-FeC2O4材料恒流充放电曲线; c) 首次循环后电极反应产物的XPS图谱[36]; d) SnC2O4/rGO复合电极材料在放、充电及长循环的TEM图[26]
Fig. 5 a) TEM image of α@β-FeC2O4 electrode material after 100 cycles at 0.5 C rate; b) Galvanostatic discharge/charge curves of the different cycles for α@β-FeC2O4 electrodes at 0.1 C (0.1 A/g); c) XPS spectra of Fe 2p for α@β-FeC2O4 electrodes upon lithiation and delithiation during the first cycle[37]. Copyright 2020, Elsevier; d) TEM image of SnC2O4 /rGO electrode during discharge, charge and after extensive cycles[26].Copyright 2017,American Chemical Society
图6 a) 层状草酸亚铁电极材料循环性能, b)多层介孔结构草酸亚铁形成机理图[38]; c)茧状草酸亚铁电极材料反应活性位点图[35]
Fig. 6 a) Cycle performance curve of multilayer iron oxalate with mesoporous nanostructure,b) Schematic illustration for synthesis of multilayer iron oxalate with mesoporous nanostructure[38].Copyright 2018, Elsevier; c) Diagram for active site of cocoon iron oxalate[35]. Copyright 2012, American Chemical Society
图7 a) α, β-FeC2O4晶体结构内部锂离子传输路径示意图; b) α@β-FeC2O4电极脱/嵌过程中阳极峰电流(Ip)与循环伏安扫描速率平方根(γ1/2)线性关系图; c) α-FeC2O4、β-FeC2O4、α@β-FeC2O4三种材料长循环性能曲线[36]
Fig. 7 a) Mobility mechanism for Li+ ions in different polymorphs; b) Linear relation of the anodic peak current (Ip) and the square root of the scan rate (γ1/2) for intercalation and deintercalation process; c) Long-term cycling performance and coulombic efficiency at constant of 0.5 A/g[36]. Copyright 2019, Elsevier.
表1 不同形貌金属草酸基材料性能对比表
Table 1 Electrochemistry property of various metal oxalates with different morphologies (1 C = 1 Li h-1·mol-1)
Metal oxalates Theoretical capacity (mAh /g) Coulombic efficiency (1st) Long-term cycle behavior
(capacity, cycle, current (A/g))
Capacity retention ref
MnC2O4 nanoribbon 374.95 47.62% 250 (100th, 1 C) 23.81% 28
MnC2O4 microtubes 374.95 48.10% 990 (100th, 0.375) 76.94% 39
FeC2O4 multilayer and mesoporous 372.58 63.29% 993.3 (200th, 1 C) 65.30% 38
FeC2O4·2H2O(A-FCO-55) 297.95 47.92% 550 (300th, 0.5) 36.26% 37
FeC2O4(A-FCO-300) 372.58 72.22% 1040 (300th, 0.5) 72.22% 37
α@β-FeC2O4 372.58 79.86% 1156.27 (500th, 0.5) 72.69% 36
FeC2O4 concoons 372.58 - 825 (100th, 1 C) 63.95% 35
FeC2O4 rods 372.58 - 906 (100th, 1 C) 69.16% 35
FeC2O4·2H2O microrods 372.58 - 346 (100th, 0.5 C) 25.82% 70
FeC2O4 array 372.58 - 1267 (200th, 0.756) 34
CoC2O4 nanorods 364.77 61.96% 924 (100th, 0.05) 57.43% 33
CoC2O4 nanorods 364.77 62.16% 959 (100th, 1 C) 59.97% 32
CoC2O4 nanosheets 364.77 64.89% 741 (100th, 1 C) 48.81% 32
Porous CoC2O4 nanorods 364.77 - 1230 (100th, 0.5) 80.60% 31
NiC2O4·2H2O nanorods 293.32 67.70% 578.9 (100th, 0.5) 54% 59
NiC2O4 nanorods 365.36 59.20% 300 (100th, 0.5) 42.86% 59
NiC2O4 nanoribbon 365.36 67.00% 250 (60th, 2 C) 22.73% 28
CuC2O4·0.14H2O cylinder 43.10% 970 (100th, 0.2) 105.40% 30
CuC2O4·0.53H2O rod 42.00% 849.3 (100th, 0.2) 70.11% 30
CuC2O4·0.14H2O spherical 57% 1260.4 (100th, 0.2) 87.77% 29
CuC2O4·0.49H2O cotton 37.60% 1181.1 (100th, 0.2) 69.93% 29
CuC2O4·xH2O caky 51.20% 873 (100th, 0.1) 106.59% 71
ZnC2O4 nanoribbon - 200 (75th, 2 C) 18.52% 28
SnC2O4 46.00% 170 (200th, 0.1) 12.20% 26
图8 a) C-NaCrO2//C-CoC2O4全电池示意图; b) C-NaCrO2//C-CoC2O4全电池在(0.1~5 C)电流倍率下的放电曲线(插图: 不同循环次数对应的放电曲线); c) C-CoC2O4电极循环稳定性测试曲线[53]。
Fig. 8 a) Schematic illustration of the C-NaCrO2//C-CoC2O4 full cell; b) Discharge profile vs cycle number at different current rates (0.1~5 C) of the C-NaCrO2//C-CoC2O4 full cell (inset: discharge curves vs cycle number); c) C-CoC2O4 electrode cyclability (blue line: Coulombic efficiency of C-CoC2O4)[53]. Copyright 2018, American Chemical Society.
图9 a) CoC2O4结构模型; b) CoC2O4/CNTs复合材料扫描电镜图; c ) CoC2O4/CNTs复合电极循环200圈后SEM图; d) CoC2O4/CNTs复合电极材料循环示意图[87]
Fig. 9 a) CoC2O4 structural model; b) SEM image of CoC2O4/CNTs composite; c) SEM image of CoC2O4/CNTs composite electrode after 200 cycle; d) Schematic illustration for the degradation of CoC2O4/CNTs composite[86]. Copyright 2020, American Chemical Society.
[1]
Xu C F, Fang X, Zhan J, Chen J X, Liang F. Prog. Chem., 2020, 32(6): 836.
( 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 化学进展, 2020, 32(6): 836.)

doi: 10.7536/PC190924    
[2]
Li H, Wu C, Wu F, Bai Y, Acta Chimica Sinica, 2014, 72(01):21.

doi: 10.6023/A13080830     URL    
( 李慧, 吴川, 吴锋, 白莹. 化学学报, 2014, 72(01):21.)
[3]
Liang S Z, Cheng Y J, Zhu J, Xia Y G, Müller-Buschbaum P. Small Methods, 2020, 4(8): 2000218.

doi: 10.1002/smtd.v4.8     URL    
[4]
Liang Y R, Zhao C Z, Yuan H, Chen Y, Zhang W C, Huang J Q, Yu D S, Liu Y L, Titirici M M, Chueh Y L, Yu H J, Zhang Q. InfoMat, 2019, 1(1): 6.

doi: 10.1002/inf2.v1.1     URL    
[5]
Fan E S, Li L, Wang Z P, Lin J, Huang Y X, Yao Y, Chen R J, Wu F. Chem. Rev., 2020, 120(14): 7020.

doi: 10.1021/acs.chemrev.9b00535     URL    
[6]
Wang Y Q, Gu L, Guo Y G, Li H, He X Q, Tsukimoto S, Ikuhara Y, Wan L J. J. Am. Chem. Soc., 2012, 134(18): 7874.

doi: 10.1021/ja301266w     URL    
[7]
Ren H, Yu R B, Wang J Y, Jin Q, Yang M, Mao D, Kisailus D, Zhao H J, Wang D. Nano Lett., 2014, 14(11): 6679.

doi: 10.1021/nl503378a     URL    
[8]
Wang J, Zhou Y K, Hu Y Y, O’Hayre R, Shao Z P. J. Phys. Chem. C, 2011, 115(5): 2529.

doi: 10.1021/jp1087509     URL    
[9]
Jin H C, Xin S, Chuang C H, Li W D, Wang H Y, Zhu J, Xie H Y, Zhang T M, Wan Y Y, Qi Z K, Yan W S, Lu Y R, Chan T S, Wu X J, Goodenough J B, Ji H X, Duan X F. Science, 2020, 370(6513): 192.

doi: 10.1126/science.aav5842     URL    
[10]
Li C L, Liu C, Wang W, Mutlu Z, Bell J, Ahmed K, Ye R, Ozkan M, Ozkan C S. Sci. Rep., 2017, 7(1): 1.

doi: 10.1038/s41598-016-0028-x     URL    
[11]
Zuo X X, Zhu J, Müller-Buschbaum P, Cheng Y J. Nano Energy, 2017, 31: 113.

doi: 10.1016/j.nanoen.2016.11.013     URL    
[12]
Yin X M, Li C C, Zhang M, Hao Q Y, Liu S, Chen L B, Wang T H. J. Phys. Chem. C, 2010, 114(17): 8084.

doi: 10.1021/jp100224x     URL    
[13]
Usui H, Kono T, Sakaguchi H. International Journal of Electrochemical ence, 2012, 7(5):4322.
[14]
Bresser D, Mueller F, Fiedler M, Krueger S, Kloepsch R, Baither D, Winter M, Paillard E, Passerini S. Chem. Mater., 2013, 25(24): 4977.

doi: 10.1021/cm403443t     URL    
[15]
Kim M C, Kim S J, Han S B, Kwak D H, Hwang E T, Kim D M, Lee G H, Choe H S, Park K W. J. Mater. Chem. A, 2015, 3(45): 23003.

doi: 10.1039/C5TA05455A     URL    
[16]
Bell J, Ye R, Ahmed K, Liu C, Ozkan M, Ozkan C S. Nano Energy, 2015, 18: 47.

doi: 10.1016/j.nanoen.2015.09.013     URL    
[17]
Liu H, Wang G X, Liu J, Qiao S Z, Ahn H. J. Mater. Chem., 2011, 21(9): 3046.

doi: 10.1039/c0jm03132a     URL    
[18]
Cao K Z, Jiao L F, Liu Y C, Liu H Q, Wang Y J, Yuan H T. Adv. Funct. Mater., 2015, 25(7): 1082.

doi: 10.1002/adfm.v25.7     URL    
[19]
Ma Y, Liu P, Xie Q, Zhang C, Wang L, Peng D. Materials today energy (Materials Today Energy), 2020, 16:100383.

doi: 10.1016/j.mtener.2020.100383     URL    
[20]
Fu C P, Mahadevegowda A, Grant P S. J. Mater. Chem. A, 2016, 4(7): 2597.

doi: 10.1039/C5TA09141A     URL    
[21]
Gao J, Lowe M A, Abruña H D. Chem. Mater., 2011, 23(13): 3223.

doi: 10.1021/cm201039w     URL    
[22]
Wang L B, Tang W J, Jing Y, Su L W, Zhou Z. ACS Appl. Mater. Interfaces, 2014, 6(15): 12346.

doi: 10.1021/am5021233     URL    
[23]
Zhong Y R, Su L W, Yang M, Wei J P, Zhou Z. ACS Appl. Mater. Interfaces, 2013, 5(21): 11212.

doi: 10.1021/am403453r     URL    
[24]
Zhao S Q, Yu Y, Wei S S, Wang Y X, Zhao C H, Liu R, Shen Q. J. Power Sources, 2014, 253: 251.

doi: 10.1016/j.jpowsour.2013.12.055     URL    
[25]
Zhou L K, Kong X H, Gao M, Lian F, Li B J, Zhou Z F, Cao H Q. Inorg. Chem., 2014, 53(17): 9228.

doi: 10.1021/ic501321z     URL    
[26]
Park J S, Jo J H, Yashiro H, Kim S S, Kim S J, Sun Y K, Myung S T. ACS Appl. Mater. Interfaces, 2017, 9(31): 25941.

doi: 10.1021/acsami.7b03325     URL    
[27]
Shi S, Hua X, Guo H. Ceramics International (Ceramics International), 2018, 44(12):13495.

doi: 10.1016/j.ceramint.2018.04.179     URL    
[28]
LÓpez M C, Tirado J L, PÉrez Vicente C. J. Power Sources, 2013, 227: 65.

doi: 10.1016/j.jpowsour.2012.08.100     URL    
[29]
Qi Z Q, Wu Y D, Li X F, Qu Y, Yang Y Y, Mei D J. Ionics, 2020, 26(1): 33.

doi: 10.1007/s11581-019-03181-4     URL    
[30]
Kang W P, Shen Q. J. Power Sources, 2013, 238: 203.

doi: 10.1016/j.jpowsour.2013.03.087     URL    
[31]
Zhang Y H, Lu Z X, Guo M Q, Bai Z C, Tang B. JOM, 2016, 68(11): 2952.

doi: 10.1007/s11837-016-2126-4     URL    
[32]
Ang W A, Cheah Y L, Wong C L, Prasanth R, Hng H H, Madhavi S. J. Phys. Chem. C, 2013, 117(32): 16316.

doi: 10.1021/jp404049f     URL    
[33]
Xu J M, He L, Liu H, Han T, Wang Y J, Zhang C J, Zhang Y H. Electrochimica Acta, 2015, 170: 85.

doi: 10.1016/j.electacta.2015.04.114     URL    
[34]
Zhong Y. Doctoral Dissertation of Zhejiang University, 2016.
( 钟媛. 浙江大学博士论文, 2016.).
[35]
Ang W A, Gupta N, Prasanth R, Madhavi S. ACS Appl. Mater. Interfaces, 2012, 4(12): 7011.

doi: 10.1021/am3022653     URL    
[36]
Zhang K Y, Li Y, Wang Y K, Zhao J Y, Chen X M, Dai Y N, Yao Y C. Chem. Eng. J., 2020, 384: 123281.

doi: 10.1016/j.cej.2019.123281     URL    
[37]
Zhang K Y, Li Y, Hu X J, Liang F, Wang L, Xu R H, Dai Y N, Yao Y C. Chem. Eng. J., 2021, 404: 126464.

doi: 10.1016/j.cej.2020.126464     URL    
[38]
Zhang K Y, Liang F, Wang Y K, Dai Y N, Yao Y C. J. Alloys Compd., 2019, 779: 91.

doi: 10.1016/j.jallcom.2018.11.011     URL    
[39]
Yang Y, He L, Lu J F, Liu Z Y, Wang N Y, Su J, Long Y F, Lv X, Wen Y X. Electrochimica Acta, 2019, 321: 134673.

doi: 10.1016/j.electacta.2019.134673     URL    
[40]
Kim H, Choi W I, Jang Y, Balasubramanian M, Lee W, Park G O, Park S B, Yoo J, Hong J S, Choi Y S, Lee H S, Bae I T, Kim J M, Yoon W S. ACS Nano, 2018, 12(3): 2909.

doi: 10.1021/acsnano.8b00435     URL    
[41]
Huang X L, Chai J, Jiang T, Wei Y J, Chen G, Liu W Q, Han D X, Niu L, Wang L M, Zhang X B. J. Mater. Chem., 2012, 22(8): 3404.

doi: 10.1039/c2jm15377g     URL    
[42]
Pramanik A, Maiti S P, Mahanty S. Sciense Letters, 2015, 4:104.
[43]
Li B J, Cao H Q, Shao J, Zheng H, Lu Y X, Yin J F, Qu M Z. Chem. Commun., 2011, 47(11): 3159.

doi: 10.1039/c0cc04507a     URL    
[44]
Inamdar A I, Chavan H S, Aqueel Ahmed A T, Jo Y, Cho S, Kim J, Pawar S M, Kim H, Im H. J. Alloys Compd., 2020, 829: 154593.

doi: 10.1016/j.jallcom.2020.154593     URL    
[45]
Pramanik A, Maiti S, Mahanty S. J. Mater. Chem. A, 2014, 2(43): 18515.

doi: 10.1039/C4TA03379E     URL    
[46]
AragÓn M J, LeÓn B, PÉrez Vicente C, Tirado J L. Inorg. Chem., 2008, 47(22): 10366.

doi: 10.1021/ic8008927     URL    
[47]
Ang W A E, Cheah Y L, Wong C L, Hng H H, Madhavi S. J. Alloys Compd., 2015, 638: 324.

doi: 10.1016/j.jallcom.2015.02.203     URL    
[48]
Baran E J, Monje P V. Met. Ions Life Sci. 2008, 8: 219.
[49]
Baran E J. J. Coord. Chem., 2014, 67(23/24): 3734.

doi: 10.1080/00958972.2014.937340     URL    
[50]
Krishnamurty K V, Harris G M. Chem. Rev., 1961, 61(3): 213.

doi: 10.1021/cr60211a001     URL    
[51]
Lenchev A, Trifonova E P. Cryst. Res. Technol., 1990, 25(9): 1017.

doi: 10.1002/(ISSN)1521-4079     URL    
[52]
Molinier M, Price D J, Wood P T, Powell A K. J. Chem. Soc., Dalton Trans., 1997(21): 4061.
[53]
Jo C H, Yashiro H, Yuan S, Shi L Y, Myung S T. ACS Appl. Mater. Interfaces, 2018, 10(47): 40523.

doi: 10.1021/acsami.8b13641     URL    
[54]
Barazorda-Ccahuana H L, Nedyalkova M, Kichev I, Madurga S, Donkova B, Simeonov V. ACS Omega, 2020, 5(16): 9071.

doi: 10.1021/acsomega.9b03434     pmid: 32363259
[55]
Su Y Z, Chen H Y, Hu Z X, Liu S N, Xiao L H, Jiang M. Journal of Central South University(Science and Technology), 2013, 44(06):2237.
( 苏玉长, 陈宏艳, 胡泽星, 刘赛男, 肖立华, 江敏. 中南大学学报(自然科学版), 2013, 44(06):2237.)
[56]
Nie L C. Master's Dissertation of Zhejiang University, 2014.
( 聂林才. 上海大学硕士论文, 2014.).
[57]
Zhang K Y, Xu R H, Wei R H, Li Y, Wang Y K, Zhang Y N, Dai Y N, Yao Y C. Mater. Chem. Phys., 2020, 243: 122676.

doi: 10.1016/j.matchemphys.2020.122676     URL    
[58]
Yeoh J S, Armer C F, Lowe A. Mater. Today Energy, 2018, 9: 198.
[59]
Oh H J, Jo C H, Yoon C S, Yashiro H, Sun J K, Passerini S, Sun YK, Myung S T. NPG Asia materials. 2016, 8(5):270.
[60]
Zhang Y, Wang C, Dong Y, Wei R, Zhang J. Chem.-A Eur. J., 2021, 27(3):993.

doi: 10.1002/chem.v27.3     URL    
[61]
Zhang K Y, Gao G, Li Y, Wang Y K, Xu R H, Dai Y N, Yao Y C. Mater. Lett., 2020, 266: 127476.

doi: 10.1016/j.matlet.2020.127476     URL    
[62]
AragÓn M J, LeÓn B, PÉrez Vicente C, Tirado J L, Chadwick A V, Berko A, Beh S Y. Chem. Mater., 2009, 21(9): 1834.

doi: 10.1021/cm803435p     URL    
[63]
LeÓn B, Vicente C P, Tirado J L. Solid State Ion., 2012, 225: 518.

doi: 10.1016/j.ssi.2011.12.012     URL    
[64]
AragÓn M J, LeÓn B, Serrano T, PÉrez Vicente C, Tirado J L. J. Mater. Chem., 2011, 21(27): 10102.

doi: 10.1039/c0jm03880f     URL    
[65]
Wu X H, Guo J H, McDonald M J, Li S G, Xu B B, Yang Y. Electrochimica Acta, 2015, 163: 93.

doi: 10.1016/j.electacta.2015.02.134     URL    
[66]
Li Q, Li H S, Xia Q T, Hu Z Q, Zhu Y, Yan S S, Ge C, Zhang Q H, Wang X X, Shang X T, Fan S T, Long Y Z, Gu L, Miao G X, Yu G H, Moodera J S. Nat. Mater., 2021, 20(1): 76.

doi: 10.1038/s41563-020-0756-y     URL    
[67]
Yu L P, Zhou X H, Lu L, Wu X L, Wang F J. ChemSusChem, 2020, 13(20): 5361.

doi: 10.1002/cssc.v13.20     URL    
[68]
Lu X X, Mao Q N, Chen Y F, Bao L, Tong L C, Xiong Q Q, Qin H Y, Pan H G, Ji Z G. Electrochimica Acta, 2018, 282: 351.

doi: 10.1016/j.electacta.2018.06.069     URL    
[69]
Taberna P L, Mitra S, Poizot P, Simon P, Tarascon J M. Nat. Mater., 2006, 5(7): 567.

pmid: 16783360
[70]
Pang H, Wang S, Li X, Zhao S, Li S. International Journal of Electrochemical Science, 2013, 8(3):4174.
[71]
Hu Y N, Lin Z H, Min F X, Teng F, Wu H M, Wang S Q, Liu J W, Feng C Q. J. Nanosci. Nanotechnol., 2020, 20(3): 1740.

doi: 10.1166/jnn.2020.17139     URL    
[72]
Feng F, Kang W P, Yu F Q, Zhang H, Shen Q. J. Power Sources, 2015, 282: 109.

doi: 10.1016/j.jpowsour.2015.02.043     URL    
[73]
Deng J T, Wang L, Deng J, Fang Y, Lin Y, Hu Y H. J. Mater. Chem. A, 2020, 8(6): 3397.

doi: 10.1039/C9TA10982J     URL    
[74]
Zhang K Y, Zhang D, Li Y, Wang L, Liang F, Dai Y N, Yao Y C. Appl. Surf. Sci., 2020, 507: 145051.

doi: 10.1016/j.apsusc.2019.145051     URL    
[75]
Li L, Zheng Y, Zhang S L, Yang J P, Shao Z P, Guo Z P. Energy Environ. Sci., 2018, 11(9): 2310.

doi: 10.1039/C8EE01023D     URL    
[76]
Wu X Y, Leonard D P, Ji X L. Chem. Mater., 2017, 29(12): 5031.

doi: 10.1021/acs.chemmater.7b01764     URL    
[77]
Irisarri E, Ponrouch A, Palacin M R. J. Electrochem. Soc., 2015, 162(14): A2476.

doi: 10.1149/2.0091514jes     URL    
[78]
Ramireddy T, Sharma N, Xing T, Chen Y, Leforestier J, Glushenkov A M. ACS Appl. Mater. Interfaces, 2016, 8(44): 30152.

doi: 10.1021/acsami.6b09619     URL    
[79]
Li C L, Chen K Y, Zhou X J, Maier J. Npj Comput. Mater., 2018, 4(1): 1.

doi: 10.1038/s41524-017-0060-9     URL    
[80]
Lu Y C, Ma C Z, Alvarado J, Kidera T, Dimov N, Meng Y S, Okada S. J. Power Sources, 2015, 284: 287.

doi: 10.1016/j.jpowsour.2015.03.042     URL    
[81]
Vaalma C, Buchholz D, Passerini S. Curr. Opin. Electrochem., 2018, 9: 41.
[82]
Hosaka T, Kubota K, Hameed A S, Komaba S. Chem. Rev., 2020, 120(14): 6358.

doi: 10.1021/acs.chemrev.9b00463     URL    
[83]
Ju Z C, Li P Z, Ma G Y, Xing Z, Zhuang Q C, Qian Y T. Energy Storage Mater., 2018, 11: 38.
[84]
Chen Z, Yin D G, Zhang M. Small, 2018, 14(17): 1703818.

doi: 10.1002/smll.v14.17     URL    
[85]
Li D P, Zhu M, Chen L N, Chen L, Zhai W, Ai Q, Hou G M, Sun Q, Liu Y, Liang Z, Guo S R, Lou J, Si P C, Feng J K, Zhang L, Ci L J. Adv. Mater. Interfaces, 2018, 5(15): 1800606.

doi: 10.1002/admi.v5.15     URL    
[86]
Wang L F, Wei K Y, Zhang P J, Wang H, Qi X J, Wu X, Zhao W, Ju Z C. J. Nanosci. Nanotechnol., 2019, 19(6): 3610.

doi: 10.1166/jnn.2019.16106     URL    
[87]
Jo C H, Jo J H, Choi J U, Yashiro H, Kim H, Myung S T. ACS Sustainable Chem. Eng., 2020, 8(9): 3743.

doi: 10.1021/acssuschemeng.9b06951     URL    
[1] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[2] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.