English
新闻公告
More
化学进展 2022, Vol. 34 Issue (12): 2686-2699 DOI: 10.7536/PC220405 前一篇   后一篇

• 综述 •

钴铁水滑石基材料在电催化析氧中的应用

薛世翔, 吴攀, 赵亮, 南艳丽*(), 雷琬莹*()   

  1. 西安建筑科技大学材料科学与工程学院 西安 710055
  • 收稿日期:2022-04-05 修回日期:2022-06-05 出版日期:2022-07-20 发布日期:2022-07-15
  • 通讯作者: 南艳丽, 雷琬莹
  • 作者简介:

    南艳丽 2019年获西安交通大学工学博士学位,现为西安建筑科技大学材料科学与工程学院副教授。主要从事碳纳米材料的可控制备及其电催化等方面的研究。

    雷琬莹 2018年于北京大学获博士学位,现为西安建筑科技大学材料科学与工程学院副教授。主要从事低维纳米催化材料的设计与构建、裂解水和环境污染治理等方面的研究。

  • 基金资助:
    国家自然科学基金项目(51902243)

The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction

Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan(), Wanying Lei()   

  1. College of Materials Science and Engineering, Xi’an University of Architecture and Technology,Xi’an 710055, China
  • Received:2022-04-05 Revised:2022-06-05 Online:2022-07-20 Published:2022-07-15
  • Contact: Yanli Nan, Wanying Lei
  • Supported by:
    National Natural Science Foundation of China(51902243)

析氧反应(OER)是电催化裂解水、二次金属-空气电池和可再生燃料电池等绿色可持续能源储存和转化技术中的关键步骤,但其较高的势垒和迟滞的动力学过程限制了反应的效率。因此,设计开发高效、稳定的非贵金属催化剂是新能源领域面临的挑战之一。钴铁水滑石(CoFe LDH)材料具有独特的二维层状结构、丰富多变的化学组成、高分散的金属阳离子、优异的稳定性和成本低廉等优点,在OER反应中有广泛的应用前景。但不良的导电性和有限的活性位点阻碍了CoFe LDH的工业化应用。本文首先介绍了CoFe LDH的结构并阐述了其OER反应机理,接着总结了CoFe LDH的制备工艺,并详细综述了近年来提升其 OER性能的改性策略:插层剥离、空位制造、材料复合、离子取代和衍生物等。最后讨论了水滑石材料现阶段存在的问题和未来在能源转化和利用领域的发展方向。

Oxygen evolution reaction (OER) is a key process for green and sustainable energy storage and transfer technologies like electrocatalytic water splitting, rechargeable metal-air batteries, regenerative fuel cells, etc. Nevertheless, the high potential barrier and sluggish kinetic process limit its overall performance. Thus, designing and exploiting high-efficient, robust and noble-metal-free catalysts is one of the challenges in the field of new energy. CoFe layered double hydroxide (CoFe LDH) possesses broad prospects in OER due to the extraordinary features such as unique 2D layered structures, multiple and flexible chemical compositions, high dispersive metal cations, excellent stability and low cost. However, the poor conductivity and insufficient reactive sites hamper its industrial application. Beginning with the introduction of the structure of CoFe LDH and the elaboration of the proposed mechanisms for OER, the preparation of CoFe LDH and the current modification strategies for CoFe LDH to thoroughly boost its reactivity are summarized including intercalation and exfoliation, vacancy creation, hybridization, ions substitution and their derivatives. At last, the current challenges and future directions for LDH-based nanostructures in energy conversion and utilization are discussed.

Contents

1 Introduction

2 Fundamentals of LDHs for OER

2.1 Structure of LDHs

2.2 OER mechanisms of LDHs

3 Preparation of CoFe LDH

3.1 Precipitation and solvothermal methods

3.2 Electrodeposition

4 Modification strategies of CoFe LDH

4.1 Intercalation and exfoliation

4.2 Vacancy creation

4.3 Hybridization

4.4 Ions substitution

4.5 Derivatives

5 Conclusion and outlook

()
表1 CoFe LDH基电催化剂的改性策略
Table 1 Summary of the modification strategies for CoFe LDH-based electrocatalysts
Catalyst Current density/
mA·cm-2
Overpotential/
mV
Tafel slope/
mV·dec-1
Modification strategies ref
CoFe LDH/NF 10 260 47 Intercalation & Vacancy creation 62
HNO3 Exfoliated CoFe LDH(GC) 10 300 41 Intercalation & Vacancy creation 63
H2O-Plasma Exfoliated CoFe LDH(NF) 10 232 36 Exfoliation & Vacancy creation 64
Ar-Plasma Exfoliated CoFe LDH(NF) 10 237 38 Exfoliation & Vacancy creation 53
CoFe LDH(GC) 10 283 34 Intercalation and exfoliation &
Vacancy creation
65
Co8Fe1 LDH(NF) 10 262 42 Intercalation and exfoliation &
Vacancy creation
66
Se@CoFe LDH(NF) 50 251 47 Vacancy creation & Ions substitution 67
CeO2-x@CoFe LDH/NF 100 204 24 Vacancy creation & Hybridization 68
Rh-doped CoFe ZLDH/NF 100 245 - Vacancy creation & Ions substitution 69
N2-Plasma Exfoliated CoFe LDH(GC) 10 281 40 Vacancy creation & exfoliation 70
DH-CoFe LDH(GC) 10 280 40 Vacancy creation & exfoliation 71
CoO/CoFe LDH(CFP) 10 254 34 Hybridization 61
Co3O4/CoFe LDH(GC) 10 290 77 Hybridization 72
NiCo2O4@CoFe LDH/NF 20 273 108 Hybridization 73
CuO@CoFe LDH/CF 10 213 165 Hybridization 74
Cu@CoFe-LDH 10 240 45 Hybridization 75
CoP@CoFe LDH/NF 100 278 69.2 Hybridization 76
FeCo2S4@CoFe LDH/NF 100 259 68.9 Hybridization 77
Co0.4Fe0.6 LDH/g-CNx(GC) 10 280 29 Hybridization 78
CoFeV LDH/NF 10 242 57 Ions substitution 79
CoFeV LDH/CP 10 242 41.4 Ions substitution 80
CoFeMo LDH/NF 100 240 82.8 Ions substitution 81
Cr-CoFe LDH/NF 10 238 107 Ions substitution 82
CoFeCr LDH/NF 10 202 83 Ions substitution 83
Co0.4Fe0.6Se2/NF 10 217 41 Derivatives 84
Cr-CoFe LDH/NF 10 238 107 Ions substitution 82
CoFeCr LDH/NF 10 202 83 Ions substitution 83
Co0.4Fe0.6Se2/NF 10 217 41 Derivatives 84
CoFeP/NF 100 242 53 Derivatives 85
CoFeNx/NF 50 259 58 Derivatives 86
PO-CoFe LDH/NF 10 365 121 Derivatives 87
CoFeOOH@C(CFP) 10 254 33 Derivatives 88
CoFe LDH/TEG(GC) 10 301 52 Hybridization 89
图1 水滑石结构示意图[27]
Fig.1 Schematic illustration of the structure of LDHs[27]. Copyright 2021 The Royal Society of Chemistry
图2 AEM和LOM示意图[35]
Fig.2Sche matic illustration of AEM and LOM[35]. Copyright 2018 American Chemical Society
图3 (a) 水等离子体剥离CoFe LDH示意图[64], (b) Ar等离子体剥离CoFe LDH示意图, Ar等离子体剥离前后CoFe LDH的 (c) 通过AFM获得的厚度图, (d) LSV图[53]
Fig.3 (a) Schematic showing the preparation of CoFe LDH nanosheets by water-plasma-enabled plasma exfoliation[64]. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) Schematic representation of CoFe LDH by Ar plasma exfoliation method, (c) Height profiles of the samples by AFM images and (d) LSV curves of CoFe LDH and CoFe LDH-Ar[53]. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图4 CoFe LDH和Se@CoFe LDH的 (a) EPR图, (b) Tauc图[67], (c) Rh掺杂的CoFe LDH/NF合成示意图[69]
Fig. 4 (a) EPR curves and (b) Tauc plots of CoFe LDH and Se@CoFe LDH[67]. Copyright 2021 American Chemical Society. (c) Schematic illustrating the synthesis method of the Rh-doped CoFe LDH@NF[69]. Copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图5 (a-b) N2等离子体剥离后的AFM图, N2等离子体剥离 (c) 前 (d) 后的XPS O 1s光谱图[70]
Fig. 5 (a-b) AFM images of the N2-CoFe LDH nanosheets, The XPS O 1s spectrum of (b) CoFe LDH and (c) CoFe LDH-N2[70]. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图6 (a) CoO/CoFe LDH的合成方法示意图, (b) CoO/CoFe LDH界面电子传输示意图, (c) LSV图[61]
Fig. 6 (a) Schematic showing the preparation of CoO/CoFe LDH composites, (b) Schematic illustration of the electron transfer at the interface of the CoO/CoFe LDH hybrid, (c) LSV curves of the prepared catalysts[61]. Copyright 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图7 (a) CuO/NF和 (b) CuO@CoFe LDH/NF的SEM图, CuO/NF和Cu@CoFe LDH/NF的 (c) 极化曲线和 (d) 电流密度对扫速的斜率曲线[74]
Fig. 7 SEM images of (a) CuO and (b) Cu@CoFe LDH core-shell nanomaterials, (c) Polarization curves and (d) charging current density plots with different scan rates of CuO and Cu@CoFe LDH core-shell nanohybrid electrocatalysts[74]. Copyright 2020 American Chemical Society
图8 (a) CrCoFe LDH/NF的合成示意图, (b) 通过DFT计算的中间产物的吸附能, (c) 所制备的催化剂的LSV图[82]
Fig. 8 (a) Schematic showing the synthesis procedure of CrCoFe LDH/NF, (b) DFT calculations of the free energy of the intermediates, (c) LSV curves of the as-prepared catalysts[82]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图9 (a) CoFeNx/NF的合成方法示意图, (b-c) CoFeNx/NF 的SEM图[86]
Fig. 9 (a) Schematic illustration of the preparation of CoFeNx/NF, (b-c) SEM images of CoFeNx /NF[86]. Copyright 2020 American Chemical Society
图10 (a) Co0.8Fe0.2OOH@C复合材料的合成示意图, 所制备催化剂的 (b) 极化曲线和 (c) Tafel斜率[88]
Fig. 10 (a) Schematic diagram of the fabrication of Co0.8Fe0.2OOH@C, (b) Polarization curves and (c) Tafel slopes of the prepared catalysts[88]. Copyright 2020 Wiley-VCH GmbH
表2 各种改性方法的优缺点
Table 2 Advantages and disadvantages of various modification methods
[1]
Chu S, Cui Y, Liu N. Nat. Mater., 2017, 16(1): 16.
[2]
Turner J A. Science, 2004, 305(5686): 972.

doi: 10.1126/science.1103197     pmid: 15310892
[3]
Lei W Y, Pang X, Ge G L, Liu G. Nano Today, 2021, 39: 101183.
[4]
Pang X, Xue S X, Zhou T, Yuan H D, Lei W Y. Progress in Chemistry, 2022, 34(3): 630.

doi: 10.7536/PC210318    
(庞欣, 薛世翔, 周彤, 袁蝴蝶, 雷琬莹. 化学进展, 2022, 34(3): 630.).

doi: 10.7536/PC210318    
[5]
Du Y, Liu D P, Yan S C, Yu T, Zou Z G. Progress in Chemistry, 2020, 32(9): 16.
(杜宇, 刘德培, 闫世成, 于涛, 邹志刚. 化学进展, 2020, 32(9): 16.).
[6]
Song F, Bai L C, Moysiadou A, Lee S, Hu C, Liardet L, Hu X L. J. Am. Chem. Soc., 2018, 140(25): 7748.
[7]
Wang W, Xu X M, Zhou W, Shao Z P. Adv. Sci., 2017, 4(4): 1600371.
[8]
Dincer I. Int. J. Hydrog. Energy, 2012, 37(2): 1954.
[9]
Lei W Y, Zhou T, Pang X, Xue S X, Xu Q L. J. Mater. Sci. Technol., 2022, 114: 143.
[10]
Pang X, Xue S X, Zhou T, Qiao M T, Li H X, Liu X, Xu Q L, Liu G, Lei W Y. Adv. Sustainable Syst., 2022: 2100507.
[11]
Pang X, Xue S X, Zhou T, Xu Q L, Lei W Y. Ceram. Int., 2022, 48(3): 3659.
[12]
Wang J, Jiang M Q, Yao Y H, Zhang Y M, Cao J Q. Fuel, 2009, 88(9): 1572.
[13]
Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. ChemCatChem, 2010, 2(7): 724.
[14]
Wismann S T, Engbæk J S, Vendelbo S B, Bendixen F B, Eriksen W L, Aasberg-Petersen K, Frandsen C, Chorkendorff I, Mortensen P M. Science, 2019, 364(6442): 756.
[15]
Huang G, Xiao Z H, Chen R, Wang S Y. ACS Sustainable Chem. Eng., 2018, 6(12): 15954.
[16]
Xu Z J. Sci. China Mater., 2020, 63(1): 3.
[17]
Zhang Y C, Han C D, Gao J, Pan L, Wu J T, Zhu X D, Zou J J. ACS Catal., 2021, 11(20): 12485.
[18]
Du P W, Eisenberg R. Energy Environ. Sci., 2012, 5(3): 6012.
[19]
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Chem. Soc. Rev., 2017, 46(2): 337.
[20]
Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S. Chem. Rev., 2010, 110(11): 6446.
[21]
Yang M Q, Wang J, Wu H, Ho G W. Small, 2018, 14(15): 1703323.
[22]
Zhang W, Zhou K. Small, 2017, 13(32): 1700806.
[23]
Lee Y, Suntivich J, May K J, Perry E E, Shao-Horn Y. J. Phys. Chem. Lett., 2012, 3(3): 399.
[24]
Wan H, Chen F S, Ma W, Liu X H, Ma R Z. Nanoscale, 2020, 12(42): 21479.
[25]
Pei Y, Ge Y C, Chu H, Smith W, Dong P, Ajayan P M, Ye M X, Shen J F. Appl. Catal. B Environ., 2019, 244: 583.
[26]
Long X, Wang Z L, Xiao S, An Y M, Yang S H. Mater. Today, 2016, 19(4): 213.
[27]
Zhou D J, Li P S, Lin X, McKinley A, Kuang Y, Liu W, Lin W F, Sun X M, Duan X. Chem. Soc. Rev., 2021, 50(15): 8790.
[28]
Cai Z Y, Bu X M, Wang P, Ho J C, Yang J H, Wang X Y. J. Mater. Chem. A., 2019, 7(10): 5069.
[29]
Yu J F, Wang Q, O’Hare D, Sun L Y. Chem. Soc. Rev., 2017, 46(19): 5950.
[30]
Wang Y Y, Yan D F, El Hankari S, Zou Y Q, Wang S Y. Adv. Sci., 2018, 5(8): 1800064.
[31]
Wang Q, O’Hare D. Chem. Rev., 2012, 112(7): 4124.
[32]
Williams G R, O’Hare D. J. Mater. Chem., 2006, 16(30): 3065.
[33]
Liu X H, Ma R Z, Bando Y, Sasaki T. Angewandte Chemie Int. Ed., 2010, 49(44): 8253.
[34]
Gong M, Dai H J. Nano Res., 2015, 8(1): 23.
[35]
Yoo J S, Rong X, Liu Y S, Kolpak A M. ACS Catal., 2018, 8(5): 4628.
[36]
Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. Chem. Soc. Rev., 2015, 44(8): 2060.

doi: 10.1039/c4cs00470a     pmid: 25672249
[37]
Zhu Y L, Tahini H A, Hu Z W, Chen Z G, Zhou W, Komarek A C, Lin Q, Lin H J, Chen C T, Zhong Y J, Fernández-Díaz M T, Smith S C, Wang H T, Liu M L, Shao Z P. Adv. Mater., 2020, 32(1): 2070001.
[38]
Zhang L S, Wang L P, Lin H P, Liu Y X, Ye J Y, Wen Y Z, Chen A, Wang L, Ni F L, Zhou Z Y, Sun S G, Li Y Y, Zhang B, Peng H S. Angewandte Chemie Int. Ed., 2019, 58(47): 16820.
[39]
Zagalskaya A, Alexandrov V. ACS Catal., 2020, 10(6): 3650.
[40]
Zhang Q, Kuang Y, Li Y P, Jiang M, Cai Z, Pang Y C, Chang Z, Sun X M. J. Mater. Chem. A, 2019, 7(16): 9517.

doi: 10.1039/c9ta02010a    
[41]
Tang L N, Fan T T, Chen Z, Tian J L, Guo H Q, Peng M L, Zuo F, Fu X Z, Li M, Bu Y F, Luo Y, Li J H, Sun Y F. Chem. Eng. J., 2021, 417: 129324.
[42]
Zhu Y L, Tahini H A, Hu Z W, Yin Y C, Lin Q, Sun H N, Zhong Y J, Chen Y B, Zhang F F, Lin H J, Chen C T, Zhou W, Zhang X W, Smith S C, Shao Z P, Wang H T. EcoMat, 2020, 2(2): 12021.
[43]
Huang Z F, Song J J, Du Y H, Xi S B, Dou S, Nsanzimana J M V, Wang C, Xu Z J, Wang X. Nat. Energy, 2019, 4(4): 329.
[44]
Tkalych A J, Zhuang H L, Carter E A. ACS Catal., 2017, 7(8): 5329.
[45]
Rong X, Parolin J, Kolpak A M. ACS Catal., 2016, 6(2): 1153.
[46]
Zhang N, Chai Y. Energy Environ. Sci., 2021, 14(9): 4647.
[47]
Aleksandra V, Jens K N. Science, 2011, 334(6061): 1355.

doi: 10.1126/science.1215081     pmid: 22158809
[48]
Karmakar A, Karthick K, Sankar S S, Kumaravel S, Madhu R, Kundu S. J. Mater. Chem. A., 2021, 9(3): 1314.
[49]
Zhou Y, Hu J L, Yang L C, Gao Q S. Chin. Chem. Lett., 2021, DOI: 10.1016/j.cclet.2021.10.034.

doi: 10.1016/j.cclet.2021.10.034     URL    
[50]
Lv L, Yang Z X, Chen K, Wang C D, Xiong Y J. Adv. Energy Mater., 2019, 9(17): 1803358.
[51]
Feitknecht W, Gerber M. Helvetica Chimica Acta, 1942, 25(1): 131.
[52]
Tian M, Jiang Y, Tong H L, Xu Y M, Xia L X. ChemNanoMat, 2020, 6(1): 154.
[53]
Wang Y Y, Zhang Y Q, Liu Z J, Xie C, Feng S, Liu D D, Shao M F, Wang S Y. Angewandte Chemie Int. Ed., 2017, 56(21): 5867.
[54]
Ma K Y, Cheng J P, Zhang J, Li M, Liu F, Zhang X B. Electrochimica Acta, 2016, 198: 231.
[55]
Patil D S, Pawar S A, Lee S H, Shin J C. J. Electroanal. Chem., 2020, 862: 114012.
[56]
Deng B, Liang J, Yue L C, Li T S, Liu Q, Liu Y, Gao S Y, Alshehri A A, Alzahrani K A, Luo Y L, Sun X P. Chin. Chem. Lett., 2022, 33(2): 890.
[57]
Yang R, Zhou Y M, Xing Y Y, Li D, Jiang D L, Chen M, Shi W D, Yuan S Q. Appl. Catal. B Environ., 2019, 253: 131.
[58]
Tizfahm J, Safibonab B, Aghazadeh M, Majdabadi A, Sabour B, Dalvand S. Colloids Surf. A Physicochem. Eng. Aspects, 2014, 443: 544.
[59]
Gualandi I, Monti M, Scavetta E, Tonelli D, Prevot V, Mousty C. Electrochimica Acta, 2015, 152: 75.
[60]
Wang W H, Chee S W, Yan H W, Erofeev I, Mirsaidov U. Nano Lett., 2021, 21(14): 5977.
[61]
Gao Z W, Ma T, Chen X M, Liu H, Cui L, Qiao S Z, Yang J, Du X W. Small, 2018, 14(17): 1800195.
[62]
Liu P F, Yang S, Zhang B, Yang H G. ACS Appl. Mater. Interfaces, 2016, 8(50): 34474.
[63]
Zhou P, Wang Y Y, Xie C, Chen C, Liu H W, Chen R, Huo J, Wang S Y. Chem. Commun., 2017, 53(86): 11778.
[64]
Liu R, Wang Y Y, Liu D D, Zou Y Q, Wang S Y. Adv. Mater., 2017, 29(30): 1701546.
[65]
Gao R, Yan D P. Nano Res., 2018, 11(4): 1883.
[66]
Zhao J, Wang X R, Chen F W, He C, Wang X J, Li Y P, Liu R H, Chen X M, Hao Y J, Yang M, Li F T. Inorg. Chem. Front., 2020, 7(3): 737.
[67]
Karmakar A, Karthick K, Kumaravel S, Sankar S S, Kundu S. Inorg. Chem., 2021, 60(3): 2023.

doi: 10.1021/acs.inorgchem.0c03514     pmid: 33480247
[68]
Hu Y M, Liu W J, Jiang K, Xu L, Guan M L, Bao J, Ji H B, Li H M. Inorg. Chem. Front., 2020, 7(22): 4461.
[69]
Zhu K Y, Chen J Y, Wang W J, Liao J W, Dong J C, Chee M O L, Wang N, Dong P, Ajayan P M, Gao S P, Shen J F, Ye M X. Adv. Funct. Mater., 2020, 30(35): 2003556.
[70]
Wang Y Y, Xie C, Zhang Z Y, Liu D D, Chen R, Wang S Y. Adv. Funct. Mater., 2018, 28(4): 1703363.
[71]
Zhou P, He J Y, Zou Y Q, Wang Y Y, Xie C, Chen R, Zang S Q, Wang S Y. Sci. China Chem., 2019, 62(10): 1365.
[72]
Ma P, Yang H D, Luo Y T, Liu Y, Zhu Y, Luo S, Hu Y P, Zhao Z M, Ma J T. ChemSusChem, 2019, 12(19): 4442.
[73]
Zhang Y X, Yang M, Jiang X, Lu W, Xing Y. J. Alloys Compd., 2020, 818: 153345.
[74]
Wang Y T, Wang T, Zhang R, Liu Q, Luo Y S, Cui G W, Lu S Y, Wang J H, Ma Y J, Sun X P. Inorg. Chem., 2020, 59(14): 9491.
[75]
Yu L, Zhou H Q, Sun J Y, Qin F, Luo D, Xie L X, Yu F, Bao J M, Li Y, Yu Y, Chen S, Ren Z F. Nano Energy, 2017, 41: 327.
[76]
Feng H, Sun X, Guan X, Zheng D C, Tian W L, Li C Y, Li C Y, Yan M L, Yao Y D. FlatChem, 2021, 26: 100225.
[77]
Huang Y X, Chen X J, Ge S P, Zhang Q Q, Zhang X R, Li W P, Cui Y M. Catal. Sci. Technol., 2020, 10(5): 1292.
[78]
Bhowmik T, Kundu M K, Barman S. ACS Appl. Energy Mater., 2018, 1(3): 1200.
[79]
Hu Y M, Wang Z L, Liu W J, Xu L, Guan M L, Huang Y P, Zhao Y, Bao J, Li H M. ACS Sustainable Chem. Eng., 2019, 7(19): 16828.
[80]
Yang Y B, Ou Y Q, Yang Y, Wei X J, Gao D, Yang L, Xiong Y L, Dong H M, Xiao P, Zhang Y H. Nanoscale, 2019, 11(48): 23296.
[81]
Ding Y Y, Du X Q, Zhang X S. Dalton Trans., 2020, 49(43): 15417.
[82]
Wen L L, Zhang X L, Liu J Y, Li X Y, Xing C C, Lyu X J, Cai W P, Wang W C, Li Y. Small, 2019, 15(35): 1902373.
[83]
Wang Z L, Liu W J, Hu Y M, Guan M L, Xu L, Li H P, Bao J, Li H M. Appl. Catal. B Environ., 2020, 272: 118959.
[84]
Zhang J Y, Lv L, Tian Y F, Li Z S, Ao X, Lan Y C, Jiang J J, Wang C D. ACS Appl. Mater. Interfaces, 2017, 9(39): 33833.
[85]
Zhang W Q, Li Y, Zhou L X, Zheng Q J, Xie F Y, Lam K H, Lin D M. Electrochimica Acta, 2019, 323: 134595.
[86]
Li D, Xing Y Y, Yang R, Wen T, Jiang D L, Shi W D, Yuan S Q. ACS Appl. Mater. Interfaces, 2020: 29253.
[87]
Zhong D Z, Li T, Wang D, Li L N, Wang J C, Hao G Y, Liu G, Zhao Q, Li J P. Nano Res., 2022, 15: 162.
[88]
Han X T, Yu C, Niu Y Y, Wang Z, Kang Y B, Ren Y W, Wang H, Park H S, Qiu J S. Small Methods, 2020, 4(10): 2000546.
[89]
Yu C, Han X T, Liu Z B, Zhao C T, Huang H W, Yang J, Niu Y Y, Qiu J S. Carbon, 2018, 126: 437.
[90]
Yin Q, Rao D M, Zhang G J, Zhao Y J, Han J B, Lin K, Zheng L R, Zhang J, Zhou J S, Wei M. Adv. Funct. Mater., 2019, 29(36): 1900983.
[91]
Parker L M, Milestone N B, Newman R H. Ind. Eng. Chem. Res., 1995, 34(4): 1196.
[92]
Song F, Hu X L. Nat. Commun., 2014, 5(1): 4477.
[93]
Yu J F, Martin B R, Clearfield A, Luo Z P, Sun L Y. Nanoscale, 2015, 7(21): 9448.
[94]
Wang Y Y, Qiao M, Li Y F, Wang S Y. Small, 2018, 14(17): 1800136.
[95]
Yan D F, Li Y X, Huo J, Chen R, Dai L M, Wang S Y. Adv. Mater., 2017, 29(48): 1606459.
[96]
Ge R Y, Li W X, Huo J J, Liao T, Cheng N Y, Du Y, Zhu M Y, Li Y, Zhang J J. Appl. Catal. B Environ., 2019, 246: 129.
[97]
Wang L, Zheng X S, Chen L, Xiong Y J, Xu H X. Angewandte Chemie Int. Ed., 2018, 57(13): 3454.
[98]
Song Y H, Xu B S, Liao T, Guo J J, Wu Y C, Sun Z Q. Small, 2021, 17(9): 2002240.
[99]
Han X T, Yu C, Yang J, Zhao C T, Huang H W, Liu Z B, Ajayan P M, Qiu J S. Adv. Mater. Interfaces, 2016, 3(7): 1500782.
[100]
Li Z, Feng H, Song M, He C, Zhuang W, Tian L. Mater. Today Energy, 2021, 20: 100698.
[101]
Chen S Y, Bi F F, Xiang K, Zhang Y, Hao P P, Li M H, Zhao B, Guo X F. ACS Sustainable Chem. Eng., 2019, 7(18): 15278.
[1] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[2] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[3] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[4] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[5] 谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 外场强化电解水析氢[J]. 化学进展, 2021, 33(9): 1571-1585.
[6] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[7] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[8] 刘亚迪, 刘锋, 王诚, 赵波, 王建龙. 固体聚合物电解池析氧催化剂[J]. 化学进展, 2018, 30(9): 1434-1444.
[9] 吕宪伟, 胡忠攀, 赵挥, 刘玉萍, 袁忠勇. 自支撑型过渡金属磷化物电催化析氢反应研究[J]. 化学进展, 2018, 30(7): 947-957.
[10] 彭立山, 魏子栋*. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28.
[11] 李鹏, 孙彦平* . 非水系二次锂-氧电池正极[J]. 化学进展, 2012, 24(12): 2457-2471.