English
新闻公告
More
化学进展 2020, Vol. 32 Issue (9): 1402-1411 DOI: 10.7536/PC200107 前一篇   后一篇

• 综述 •

锂硫电池隔膜功能化设计

孙皓1, 宋程威1, 庞越鹏1, 郑时有1,**()   

  1. 1. 上海理工大学材料科学与工程学院 上海 200093
  • 收稿日期:2020-01-09 修回日期:2020-04-17 出版日期:2020-09-24 发布日期:2020-06-30
  • 通讯作者: 郑时有
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    *国家自然科学基金项目(51671135)

Functional Design of Separator for Li-S Batteries

Hao Sun1, Chengwei Song1, Yuepeng Pang1, Shiyou Zheng1,**()   

  1. 1. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2020-01-09 Revised:2020-04-17 Online:2020-09-24 Published:2020-06-30
  • Contact: Shiyou Zheng
  • Supported by:
    the National Natural Science Foundation of China(51671135)

锂硫电池具有较高的理论比容量(以硫计1675 mAh·g-1和2600 Wh·kg-1),以及低成本和绿色环保等优势,成为最有前景的下一代可充电储能器件之一。然而,锂硫电池内部严重的多硫化锂穿梭现象导致了电池容量的下降和使用寿命的快速降低。为实现锂硫电池的商业化,其严重的“穿梭效应”亟需改善。普通的商业隔膜有很大的孔径(500 nm),且不具有阻碍多硫化锂迁移的功能。因此,对隔膜进行表面修饰,引入功能化修饰层就成为了一种很有效的策略。本文综述了近年来隔膜表面修饰所遵循的方法以及在此基础上开发的新型隔膜,并对功能化的隔膜在提升锂硫电池性能上的前景进行了展望。

With its excellent theoretical performance (1675 mAh·g-1 and 2600 Wh·kg-1 based on S), low cost and environmental friendliness, Li-S batteries have become one of the most promising candidates for next generation rechargeable energy storage devices. However, the severe shuttling of lithium polysulfides results in the decrease of capacity and short life. In order to promote its commercial application, it is the key point to suppress the shuttling effect. The commercial separator has a large pore size up to about 500 nm, and is ineffective in suppressing the migration of soluble lithium polysulfides. Hence, it is an effective strategy to introduce the functional modification layer to the separator. This article reviews the principles for surface modification of separator and the newly developed separator based on the principle. Moreover, the prospect of separator modification in improving Li-S batteries is prospected.

Contents

1 Introduction

2 Suppressing the diffusion of lithium polysulfides by physical process

3 Suppressing the diffusion of lithium polysulfides by chemical adsorption

4 Novel organic separators

5 Conclusion and outlook

()
图1 (a)锂硫电池电化学反应过程示意图;(b)锂硫电池的典型二平台充放电过程的比容量-电压曲线[11]
Fig.1 (a)Schematic of the electrochemistry;(b)a typical 2-plateau charge/discharge voltage profile of lithium-sulfur batteries[11]
图2 (a) BTO极化示意图以及多硫化锂的穿梭对比实验,分别为普通PE隔膜、未极化BTO修饰隔膜以及极化BTO修饰后的隔膜[33]; (b) MOF@GO隔膜在锂硫电池内效果示意图,MOF@GO隔膜表征,倍率性能和1 C下的长循环性能[36]
Fig.2 (a) Schematic of the polarization of BTO and the PS rejection tests for the bare PE separator, the PE-BTO separator, and the PE-poled BTO separator during the course of PS diffusion[33]; (b) Illustration of MOF@GO separator and its characterization, the rate performance and long cycle performance at the high rate of 1 C[36]
图3 (a) MnO2修饰隔膜制备方法和原理以及Li2S6扩散实验[49];(b) MoS2修饰的隔膜及其离子电导率测试对比[51];(c) 黑磷修饰的隔膜及其表征[56];(d) N/S掺杂碳材料修饰隔膜[59]
Fig.3 (a) Preparation procedure of MnO2 modified separator and the Li2S6 diffusion tests[49]; (b) MoS2/Celgard separator and the electrochemical parameters[51]; (c) Black-phosphorus modified separator and its characterization[56]; (d) N/S-doped carbon materials modified separator[59]
图4 (a)富含磺酸基的离子筛选膜和其多硫化锂穿透实验[73];(b)PVA基隔膜照片以及多硫化锂扩散实验[75]
Fig.4 (a) Ion selective membrane containing S O 3 2 ? groups and its LPS transportation test[73]; (b) Pictures of PVA-based separator and its LPS diffusing test[75]
[1]
杨凯( Yang K ), 章胜男(Zhang S N), 韩东梅(Han D M), 肖敏(Xiao M), 王拴紧(Wang S J), 孟跃中(Meng Y Z). 化学进展(Prog. Chem.), 2018, 30(12): 1942.
[2]
Li G , Wang X L , Seo M H , Matthew L , Lu M , Yuan Y F , Wu T P , Yu A P , Wang S , Lu J , Chen Z W. Nature Commun., 2018, 9(1): 705.
[3]
Xiao L , Connor H , Quan P , Arnd G , Thomas W , Linda F N. Nature Commun., 2015, 6(1): 5682.
[4]
Chen M F , Jiang S X , Huang C , Wang X Y , Cai S Y , Xiang K X , Zhang Y P , Xue J X. ChemSusChem, 2017, 10(8): 803.
[5]
王惠亚( Wang H Y ), 赵立敏(Zhao L M), 张芳(Zhang F),何丹农(He D N). 化学进展(Prog. Chem.), 2019,31(9):125.
[6]
Bao W Z , Liu L , Wang C Y , Choi S H , Wang D , Wang G X. Adv. Energy Mater., 2018. 8(13): 1702485.
[7]
黄佳琦( Huang J Q ), 孙滢智(Sun Y Z), 王云飞(Wang Y F), 张强(Zhang Q). 化学学报(Acta Chimica Sinica), 2017, 75:173
[8]
He X , Shuai Y , Na L , Chen K H , Zhang Y Q , Zhang Z P , Gan F Y. Mater. Lett., 2018, 215: 91.
[9]
Peng H J , Wang D W , Huang J Q , Cheng X B , Yuan Z , Wei F , Zhang Q. Adv. Sci., 2016, 3(1): 1500268.
[10]
Xu G Y , Yan Q B , Wang S T , Kushima A , Bai P , Liu K , Zhang X G , Tang Z L , Li J. Chem. Sci., 2017, 8(9): 6619.
[11]
Seh Z W , Sun Y , Zhang Q , Cui Y. Chem. Soc. Rev., 2016, 45: 5605.
[12]
Zhou W , Yu Y , Chen H , Di Salvo F J, Abruña H D. J. Am Chem Soc., 2013, 135(44): 16736.
[13]
Peng H J , Zhang Z W , Huang J Q , Zhang G , Xie J , Xu W T , Shi J L , Chen X , Cheng X B , Zhang Q. Adv. Mater., 2016, 28(43): 9551.
[14]
Zhu M , Li S , Liu J H , Li B. Appl. Surf. Sci., 2019, 473: 1002.
[15]
Ma S , Wang L , Wang Y , Zu P J , He M X , Zhang H , Ma L , Wu T P , Yin G P. Carbon, 2019, 143: 878.
[16]
Zhao H , Peng Z , Wang W J , Chen X K , Fang J H , Xu J Q. J. Power Sources, 2014, 245: 529.
[17]
Qiu Y , Li W , Zhao W , Li G Z , Hou Y , Liu M N , Zhou L S , Ye F M , Li H F , Wei Z H , Yang S H , Duan W H , Ye Y F , Guo J H , Zhang Y G. Nano Lett., 2014, 14(8): 4821.
[18]
Chiochan P , Phattharasupakun N , Wutthiprom J , Suksomboon M , Kaewruang S , Suktha P , Sawangphruk M. Electrochim. Acta, 2017, 237: 78.
[19]
Yuan G , Wang G , Wang H , Bai J T. J. Solid State Electr., 2015, 19(4): 1143.
[20]
Xiao L F , Cao Y L , Xiao J , Schwenzer B , Engelhard M H , Saraf L V , Nie Z M , Exarhos G J , Liu J. Adv. Mater., 2012, 24(9): 1176.
[21]
Bu Y K , Wu J , Zhao X T , Ding K , Liu Q , Huang Y Y , Lv J Q , Wang Y B. RSC Adv., 2016, 6(106): 104591.
[22]
Hu G J , Sun Z , Shi C , Fang R P , Chen J , Hou P X , Liu C , Cheng H M , Li F. Adv. Mater., 2017, 29(11): 1603835.
[23]
Zheng S Y , Yi F , Li Z P , Zhu Y J , Xu Y H , Luo C , Yang J H , Wang C S. Adv. Funct. Mater., 2014, 24(26): 4156.
[24]
Wang X W , Gao T , Fan X L , Han F D , Wu Y Q , Zhang Z A , Li J , Wang C S. Adv. Funct. Mater., 2016, 26(39): 7164.
[25]
Bian Z H , Yuan T , Xu Y , Pang Y P , Yao H F , Li J , Yang J H , Zheng S Y. Carbon, 2019, 150: 216.
[26]
Chen T , Zhang Z W , Cheng B R , Chen R P , Hu Y , Ma L B , Zhu G Y , Liu J , Jin Z. J. Am. Chem. Soc., 2017, 139(36): 12710.
[27]
Zhou G M , Tian H Z , Jin Y , Tao X Y , Liu B F , Zhang R F , She W Z , Zhuo D , Liu Y Y , Sun J , Zhao J , Zu C X , Wu D S , Zhang Q F , Cui Y. PNAS, 2017, 114(5): 840.
[28]
Ghazi Z A , Zhu L , Wang H , Naeem A , Khattak A M , Liang B , Khan N A , Wei Z X , Li L S , Tang Z Y. Adv. Energy Mater., 2016, 6(24): 1601250.
[29]
Meng Y , Lin G , Ding H , Liao H P , Wang C. J. Mater. Chem. A, 2018, 6(35): 17186.
[30]
Huang J Q , Zhang Q , Wei F. Energy Storage Mater. 2015, 1:127.
[31]
Gupta A , Sivaram S. Energy Tech. 2019, 7: 1800819.
[32]
Jeong Y C , Kim J H , Nam S , Park C R , Yang S J. Adv. Funct. Mater,2018, 28: 1707411.
[33]
Yim T , Han S H , Park N H , Park M S , Lee J H , Shin J , Choi J W , Jung Y J , Yong N J , Yu J S , Kim K J. Adv. Funct. Mater., 2016. 26(43): 7817.
[34]
Raja M , Suriyakumar S , Angulakshmi N , Stephan A M. Inorg. Chem. Front., 2017, 4(6): 1013.
[35]
Song C W , Peng C X , Bian Z H , Dong F , Xu H Y , Yang J H , Zheng S Y. Energy & Environ. Mater., 2019, 2: 216.
[36]
Bai S Y , Liu X Z , Zhu K , Wu S C , Zhou H S. Nature Energy, 2016, 1(7): 16094.
[37]
Chen H H , Xiao Y W , Chen C , Yang J Y , Gao C , Chen Y S , Wu J S , Shen Y , Zhang W N , Li S , Huo F W , Zheng B. ACS Appl. Mater. Interfaces, 2019, 11: 11459.
[38]
Tian M , Pei F , Yao M S , Fu Z H , Lin L L , Wu G D , Xu G , Kitagawa H , Fang X L. Energy Storage Mater., 2019, 21:14.
[39]
He Y B , Chang Z , Wu S C , Qiao Y , Bai S Y , Jiang K Z , He P , Zhou H S. Adv. Energy Mater., 2018, 1802130.
[40]
Jiang G Y , Zheng N , Chen X , Ding G Y , Li Y H , Sun F G , Li Y S. Chem. Eng. J., 2019, 373: 1309.
[41]
Huang J Q , Zhang Q , Peng, H J , Liu X Y , Qian W Z , Wei F. Energy Environ. Sci., 2014, 7: 347.
[42]
Xu R , Sun Y Z , Wang Y F , Huang J Q , Zhang Q. Chin. Chem. Lett., 2017, 28: 2235.
[43]
Kong L , Jin Q , Zhang X T , Li B Q , Chen J X , Zhu W C , Huang J Q , Zhang Q. J. Enery Chem., 2019, 39: 17.
[44]
Zhou G M , Li L , W D W, Shan X Y, Pei S F, Li F, Cheng H M. Adv. Mater., 2015, 27: 641.
[45]
Rana M , Li M , He Q , Luo B , Wang L Z , Ian G , Ruth K. J. Energy Chem., 2020, 44: 51.
[46]
Kim M S , Ma L , Choudhury S , Archer L A. Adv. Mater. Interfaces, 2016, 3(22): 1600450.
[47]
Liu F , Xiao Q F , Wu H B , Sun F , Liu X Y , Li F , Le Z Y , Shen L , Wang G , Cai M , Lu Y F. ACS Nano, 2017, 11(3): 2697.
[48]
Yang L Q , Li G C , Jiang X , Zhang T R , Lin H B , Lee J Y. J. Mater. Chem. A, 2017, 5(24): 12506.
[49]
Song X , Chen G P , Wang S Q , Huang Y P , Jiang Z Y , Ding L X , Wang H H. ACS Appl.Mater. Interfaces, 2018, 10(31): 26274.
[50]
Kaisar N , Abbas S A , Ding J , Chen H , Pao C W , Boopathi K M , Mohapatra A , Chen Y T , Wu S H , Fang J , Jou S , Chu C W. Nanoscale, 2019, 11(6): 2892.
[51]
Ghazi Z A , He X , Khattak A M , Khan N A , Liang B , Iqbal A , Wang J X , Sin H , Li L S , Tang Z Y. Adv. Mater., 2017, 29(21): 1606817.
[52]
Pan Y , Li H Q , Chen Y , Zhang J , Tang Q , Qi W Y. Mater. Res. Express, 2019, 6: 045506.
[53]
Zeng P , Huang L W , Zhang X L , Han Y M , Chen Y G. Appl. Surf. Sci., 2018, 427: A242.
[54]
Pan H Y , Tan Z , Zhou H H , Jiang L L , Huang Z Y , Feng Q X , Zhou Q , Ma S , Kuang Y F. J. Energy Chem., 2019, 39: 101.
[55]
Chen X X , Ding X Y , Wang C S , Feng Z Y , Xu L Q , Gao X , Zhai Y J , Wang D B. Nanoscale, 2018, 10: 13694.
[56]
Sun J , Sun Y M , Pasta M , Zhou G M , Li Y Z , Liu W , Xiong F , Cui Y. Adv. Mater., 2016, 28(44): 9797.
[57]
Yin L X , Xu G Y , Nie P , Dou H , Zhang X G. Chem. Eng. J., 2018, 352: 695.
[58]
Li N , Xie Y , Peng S T , Xiong X , Han K , J. Energy Chem., 2020, 42: 116.
[59]
Yuan X Q , Wu L S , He X L , Zeinu K , Huang L , Zhu X L , Hou H J , Liu B C , Hu J P , Yang J K. Chem. Eng. J., 2017, 320: 178.
[60]
Kong L , Peng H J , Huang J Q , Zhu W C , Zhang G , Zhang Z W , Zhai P Y , Sun P P , Xie J , Zhang Q. Energy Storage Mater., 2017, 8: 153.
[61]
Ahn J H , Shin H J , Abbas S , Lee K Y , Ha H Y. J. Mater. Chem. A, 2019, 7(8): 3772.
[62]
Huang J Q , Zhuang T Z , Zhang Q , Peng H J , Chen C M , Wei F. ACS Nano, 2015, 9: 3002.
[63]
Balach J , Jaumann T , Muhlenhoff S , Eckert J , Giebeler L , Chem. Commun., 2016, 52: 8134.
[64]
Qian X , Jin L , Zhao D , Yang X , Wang S , Shen X , Rao D , Yao S , Zhou Y , Xi X. Electrochim. Acta, 2016, 192: 346.
[65]
Tang H , Yao S , Mi J , Wu X , Hou J , Shen X. Mater. Lett., 2017, 186: 127.
[66]
Imtiaz S , Zafar Z A , Razaq R , Sun D , Xin Y , Li Q , Zhang Z L , Zheng L , Huang Y H , Anderson J A. Adv. Mater. Interfaces., 2018, 5: 1800243.
[67]
Lv X X , Lei T Y , Wang B J , Chen W , Jiao Y , Hu Y , Yan Y C , Huang J W , Chu J W , Yan C Y , Wu C Y , Wang J W , Niu X B , Xiong J. Adv. Energy Mater., 2019, 9: 1901800.
[68]
Zhang L L , Chen X , Wan F , Niu Z Q , Wang Y J , Zhang Q , Chen J. ACS Nano, 2018, 12: 9578.
[69]
Zhang K , Chen Z X , Ning R Q , Xi S B , Tang W , Du Y H , Liu C B , Ren Z Y , Chi X , Bai M H , Shen C , Li X , Wang X W , Zhao X X , Leng K , Pennycook S J , Li H P , Xu H , Loh K P , Xie K Y. Mater. Interfaces, 2019, 11: 25147
[70]
Xie J , Li B Q , Peng H J , Huang J Q , Xu W T , Chen X , Zhang Q. Angew. Chem. Int. Ed., 2017, 56: 16223.
[71]
Xie J , Li B Q , Peng H J , Song Y W , Zhao M , Chen X , Zhang Q , Huang J Q. Adv. Mater., 2019, 31: 1903813.
[72]
Cheng Z B , Pan H , Chen J Q , Meng X P , Wang R H. S. Adv. Energy Chem., 2019, 9: 1901609.
[73]
Ma L , Nath P , Tu Z Y , Tikekar M , Archer L A. Chem. Mater., 2016, 28(14): 5147.
[74]
Deng N P , Wang Y , Yan J , Ju J G , Li Z J , Fan L L , Zhao H J , Kang W M , Cheng B W. J. Power Sources, 2017, 362: 243.
[75]
Jiang K , Gao S , Wang R X , Jiang M , Han J , Gu T T , Liu M Y , Cheng S J , Wang K L. ACS Appl. Mater. Interfaces, 2018, 10(21): 18310.
[76]
Jiang C , Tang M , Zhu S L , Zhang J D , Wu Y C , Chen Y , Xia C , Wang C L , Hu W P. Angew. Chem. Int. Ed., 2018. 57(49): 16072.
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[7] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[8] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[9] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[10] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[11] 郭林莉, 张新, 肖敏, 王拴紧, 韩东梅, 孟跃中. 二维材料修饰隔膜抑制锂硫电池穿梭效应策略[J]. 化学进展, 2021, 33(7): 1212-1220.
[12] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[13] 潘福生, 姚远, 孙洁. 锂硫电池中的催化作用[J]. 化学进展, 2021, 33(3): 442-461.
[14] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[15] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
阅读次数
全文


摘要

锂硫电池隔膜功能化设计