English
新闻公告
More
化学进展 2021, Vol. 33 Issue (3): 442-461 DOI: 10.7536/PC200572 前一篇   后一篇

• 综述 •

锂硫电池中的催化作用

潘福生1, 姚远1, 孙洁1,*()   

  1. 1 天津大学化工学院绿色化学化工教育部重点实验室 天津 300072
  • 收稿日期:2020-05-28 修回日期:2020-07-22 出版日期:2021-03-20 发布日期:2020-12-28
  • 通讯作者: 孙洁
  • 作者简介:
    * Corresponding author e-mail:
  • 基金资助:
    石油化工催化材料与反应工程国家重点实验室开放基金课题(中国石油化工股份有限公司石油化工科学研究院); 国家自然科学基金项目(21878216); 国家自然科学基金项目(22005215); 天津科技计划(19YFSLQY0070); 国家重点研发计划(2019YFE0118800); 河北省创新能力提升计划项目(20312201D)

Catalysis in Lithium-Sulfur Batteries

Fusheng Pan1, Yuan Yao1, Jie Sun1,*()   

  1. 1 Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University,Tianjin 300072, China
  • Received:2020-05-28 Revised:2020-07-22 Online:2021-03-20 Published:2020-12-28
  • Contact: Jie Sun
  • Supported by:
    State Key Laboratory of Catalytic Materials and Reaction Engineering, State Key Laboratory of Catalytic Materials and Reaction Engineering(中国石油化工股份有限公司石油化工科学研究院); the National Natural Science Foundation of China(21878216); the National Natural Science Foundation of China(22005215); Tianjin Science and Technology Project(19YFSLQY0070); the National Key Research and Development Program of China(2019YFE0118800); and Hebei Province Innovation Ability Promotion Project(20312201D)

锂硫电池理论能量密度高达2600 Wh·kg-1,单质硫的理论容量可达1675 mAh·g-1,远高于商业化的锂离子电池正极材料,但多硫化锂的“穿梭效应”等问题对其性能影响严重。目前研究主要采用基于“阻挡”的物理限制和化学吸附策略将多硫化锂限制在正极侧。而基于“疏导”的催化转化策略则通过加快氧化还原反应动力学,在抑制“穿梭效应”的同时实现降低过电位、诱导Li2S均匀沉积等功能。本文综述了锂硫电池中的催化作用,基于是否产生氧化还原中间体将其分为吸附-转化机制和氧化还原介导机制两类;并介绍了相关的材料及常用的表征技术和研究方法。

Lithium-sulfur batteries have a theoretical energy density of up to 2600 Wh·kg-1, and the theoretical capacity of sulfur can reach 1675 mAh·g-1, which is much higher than that of commercial cathode materials of lithium-ion batteries. However, problems such as the "shuttle-effect" of polysulfides have a serious impact on the performance. Current researches mainly use physical limitation and chemisorption to limit polysulfides to the cathode region based on the "blocking" strategies. Inspired by the concept of “dredging”, the catalytic-conversion strategy can realize functions such as reducing overpotential and inducing uniform deposition of Li 2S while suppressing the "shuttle-effect" by speeding up the oxidation-reduction reaction kinetics. Herein, we review the progress of catalysis in lithium-sulfur batteries and divide them into adsorption-conversion mechanisms and redox-mediated mechanisms based on whether redox intermediates are produced. Related materials and characterization techniques and research methods commonly used are also introduced.

()
图1 锂硫电池的结构示意图[6]
Fig.1 Schematic illustration of lithium-sulfur batteries[6]
图2 锂硫电池的典型充放电曲线[5]
Fig.2 Typical charge-discharge profile of lithium-sulfur batteries[5]
图3 基于(a)物理限制、(b)化学吸附、(c)催化转化的阴极改性策略[9]
Fig.3 Cathode modification strategy based on(a) physical limitation,(b) chemisorption,(c) catalysis[9]
图4 (a)负载电催化剂的石墨烯材料制备及催化作用示意图[30];(b)CNF/LiPSs/Mo/CNT阴极的电化学行为[35]
Fig.4 (a) Schematic illustration of preparation and catalytic effect of graphene materials loaded with electrocatalyst[30];(b) Electrochemical behavior of CNF/LiPSs/Mo/CNT cathode[35]
图5 (a)Ti4O7表面介导LiPS还原反应[17];(b)富缺陷的异质结电催化剂的催化机理、与Li2S6的相互作用示意图及Ti和C的局域态密度分析[39]
Fig.5 (a) Surface-mediated reduction of Li2S from LiPSs on Ti4O7[17];(b) Schematic illustration of catalytic mechanism of defect-rich heterojunction electrocatalyst and its interaction with Li2S6, as well as the partial density of states analysis of Ti and C[39]
图6 (a)碳材料及CoS2表面还原过程示意图[29];(b)通过LixMo6S8中间体的快速转化促进氧化还原动力学[54]
Fig.6 (a) Schematic illustration of the reduction process on the surface of carbon and CoS2[29];(b) Promoting redox kinetics through rapid conversion of LixMo6S8 mediator[54]
图7 (a)不同钛基材料表面S8分子的吸附能[55];(b)硫钝化的TiN表面结构示意图[55];(c)未还原和还原的CoP表面上LiPSs吸附和转化过程示意图[60]
Fig.7 (a) Adsorption energy of S8 on different titanium-based materials[55];(b) Sulfur-passivated TiN surface[55];(c) LiPSs adsorption and conversion process on the surface of unreduced and reduced CoP[60]
图8 含有或不含氮掺杂的super P的首周充放电曲线(插图为氮掺杂的super P对多硫化物氧化还原途径的影响示意图)[68]
Fig.8 The first charge/discharge profiles of super P with or without nitrogen doping(Inset: the effect of nitrogen-doped super P on the polysulfide redox pathway)[68]
图9 (a)POF的合成及其表面LiPSs催化示意图[75];(b)可溶性LiPSs之间转化的CV曲线(2 < y < x ≤ 8) [75];(c)Li2S6中硫的3p轨道和POF中碳和氮的2p轨道的态密度分析[75];(d)LiPSs在p-C3N4和石墨烯表面的分子构型[78]
Fig.9 (a) Schematic illustration of POF synthesis and polysulfides catalysis on it[75];(b) CV curve of conversion between soluble LiPSs(2 < y < x ≤ 8) [75];(c) Density of states analysis of sulfur 3p orbitals in Li2S6 and carbon and nitrogen 2p orbitals in POF[75];(d) Molecular configuration of LiPSs on the surface of p-C3N4 and graphene[78]
图10 (a)TiN、TiO2、TiO2-TiN异质结表面的LiPSs转化过程示意图[79];(b)C@SnS2/S、C@SnO2/S、C@SNS2/SnO2/S的电化学阻抗谱[81];(c)LiPSs在TiO2-Ti3C2Tx异质结表面吸附-转化过程示意图[85]
Fig.10 (a) Schematic illustrations of LiPSs conversion process on the surface of TiN, TiO2 and TiO2-TiN heterojunction[79];(b) Electrochemical impedance spectroscopy of C@SnS2/S, C@SnO2/S and C@SNS2/SnO2/S[81];(c) Schematic illustration of LiPSs adsorption-conversion process on the TiO2-Ti3C2Tx heterostructures[85]
图11 (a)Li2S初始活化模型及对应电压曲线[18];(b)空间异质性对液-固相转移的影响示意图[96]
Fig.11 (a) Li2S initial activation model and corresponding voltage curve[18];(b) The effect of spatial heterogeneity on liquid-solid phase transfer[96]
图12 (a)不同金属氧化物与LiPSs的反应活性(图中电位相对于Li/Li+,红色曲线为Li-S循环伏安曲线)[98];(b)VO2和V2O5的Li2S6吸附性能测试[99]
Fig.12 (a) Reactivity of different metal oxides with LiPSs(the potential in the figure is relative to Li/Li+, the red curve is the Li-S cyclic voltammetry curve)[98];(b) Li2S6 adsorption test of VO2 and V2O5[99]
图13 (a)锂-硫电池的自由基反应机理[109];(b)Li2S在非溶剂化和溶剂化状态下的电化学氧化过程[110]
Fig.13 (a) Free radical mechanism of lithium-sulfur battery[109];(b) Electrochemical oxidation of Li2S in unsolvated and solvated states[110]
图14 (a)含WO3-x和WO3的阴极放电至2.35 V并保持不同时间的紫外可见光谱[115];(b)CNTs-S/TS-1阴极自由基介导的LiPSs转化过程[116]
Fig.14 (a) UV-vis spectra of sulfur cathodes with WO3-x and WO3 nanoplates discharged to 2.35 V and held for different times[115];(b) Schematic illustration of the radicals-mediated LiPSs conversion process in CNTs-S/TS-1 cathode[116]
图15 (a)锂硫电池中直接氧化(上图)和RM介导氧化(下图)示意图[117];(b)锂硫电池中直接还原(蓝色箭头)和RM介导还原(红色箭头)示意图[118]
Fig.15 (a) Schematic illustration of direct oxidation(above) and RM-mediated oxidation(below) in lithium-sulfur batteries[117];(b) Schematic illustration of direct reduction(blue arrow) and RM-mediated reduction(red arrow) in lithium-sulfur batteries[118]
图16 (a)在含有不同RM的电解液中恒电流充电的Li2S阴极电压曲线,及截止电压处的阴极XRD表征[117];(b)含有RM和不含RM的锂硫电池首周放电曲线[118]
Fig.16 (a) Voltage profiles of Li2S cathode charged with constant current in electrolytes with different RMs, and XRD characterization of the cathode at the cut-off voltage[117];(b) The first discharge profile of lithium-sulfur battery with or without RM[118]
图17 (a)醌类亚胺质子化和去质子化状态的可逆转变,以及LiPSs的解吸和吸附示意图[124];(b)酰亚胺介导的LiPSs氧化还原反应机理[125]
Fig.17 (a) Schematic illustration of the reversible transition between protonated and deprotonated states of quinonoid imines with LiPSs desorption and adsorption[124];(b) Imide-mediated redox mechanism of LiPSs[125]
图18 (a)M1/NG(M=Fe、Co、Ni)修饰隔膜示意图(插图为修饰前后隔膜的数码照片)[130];(b)在DOL/DME中NG和M1/NG表面Li2S6吸附的电化学滴定实验(插图为滴定溶液静置12 h后的数码照片)[130];(c)LiPSs在NG和Ni@NG表面的自由能示意图[131];(d)LiPS在Ni@NG表面的催化机理[131]
Fig.18 (a) Schematic illustration of the preparation of the M1/NG-modified separator(Inset: digital photo of separators before and after modification)[130];(b) Electrochemical titrations of the Li2S6 adsorption on NG and M1/NG in DOL/DME(Inset: digital photo of the titrated solutions after 12 hours)[130];(c) The free-energy diagrams of LiPSs on NG or Ni@NG[131];(d) The catalytic mechanism of the LiPSs on the surface of Ni@NG[131]
图19 (a)LiPSs在N/G和Co-N/G表面还原过程的吉布斯自由能[134];(b)Li2S在N/G和Co-N/G表面的分解能谱[134]
Fig.19 (a) Gibbs free-energy profiles for the reduction of LiPSs on N/G and Co-N/G substrates[134];(b) Energy profiles of the decomposition of Li2S on N/G and Co-N/G[134]
图20 (a)具有常规电解液和含50 vol% DMDS电解液的烧瓶锂硫电池首周放电曲线[135];(b)三甲基二硫化物(DMTS)的氧化还原反应机理示意图[136];(c)带有Gra/DTT中间层的Li-S电池结构及功能示意图[137]
Fig.20 (a) Initial discharge profiles of the flask cells with conventional and 50 vol% DMDS-containing electrolyte[135];(b) The redox mechanism of trimethyl disulfide(DMTS)[136];(c) Schematic illustration of structure and function of the LSB with Gra/DTT interlayer[137]
图21 (a)CuO-Li2S4悬浊液中回收固体的XPS谱图[98];(b)NiOOH-Li2S4悬浊液中回收固体的XPS谱图[98];(c)Li2S6在不同溶剂中的UV-vis光谱[109];(d)Li2S6溶液在不同溶剂中的拉曼光谱[109]
Fig.21 (a) XPS spectra of solids recovered from CuO-Li2S4 suspension[98];(b) XPS spectra of solids recovered from NiOOH-Li2S4 suspension[98];(c) UV-vis spectra of Li2S6 in different solvents[109];(d) Raman spectra of Li2S6 in different solvents[109]
图22 (a)TiS2的晶体结构和理论能带结构[14];(b)Li2S6在TiS2表面的吸附模拟[14];(c)Li+在TiS2表面的扩散路径示意图[14];(d)Li2S在TiS2表面的分解途径示意图[14]
Fig.22 (a) Crystal structure and theoretical band structure of TiS2[14];(b) Simulation of Li2S6 adsorption on the surface of 2[14];(c) Schematic illustration of the diffusion path of Li+ on the surface of 2[14];(d) Schematic illustration of Li2S decomposition on the surface of 2[14]
[1]
Lu Y X, Rong X H, Hu Y S, Chen L Q, Li H. Energy Storage Mater., 2019, 23:144.
[2]
Bresser D, Hosoi K, Howell D, Li H, Zeisel H, Amine K, Passerini S. J. Power Sources, 2018, 382:176.
[3]
Yang K, Zhang S N, Han D M, Xiao M, Wang S J, Meng Y Z. Progress in Chemistry, 2018, 30(12):1942.
( 杨凯, 章胜男, 韩东梅, 肖敏, 王拴紧, 孟跃中. 化学进展, 2018,30(12):1942.).
[4]
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2012, 11(1):19.
[5]
Seh Z W, Sun Y M, Zhang Q F, Cui Y. Chem. Soc. Rev., 2016, 45(20):5605.
[6]
Li B, Xu H F, Ma Y, Yang S B. Nanoscale Horiz., 2019, 4(1):77.
[7]
Liang J, Li F, Cheng H M. Energy Storage Mater., 2016, 2:A1.
[8]
Rehman S, Khan K, Zhao Y F, Hou Y L. J. Mater. Chem. A, 2017, 5(7):3014.
[9]
Yang Y X, Wang Z H, Jiang T Z, Dong C, Mao Z, Lu C Y, Sun W, Sun K N. J. Mater. Chem. A, 2018, 6(28):13593.
[10]
Manthiram A, Fu Y Z, Chung S H, Zu C X, Su Y S. Chem. Rev., 2014, 114(23):11751.
[11]
Yin Y X, Xin S, Guo Y G, Wan L J. Angew. Chem. Int. Ed., 2013, 52(50):13186.
[12]
Wang T Y, Kretschmer K, Choi S, Pang H, Xue H G, Wang G X. Small Methods, 2017, 1(8):1700089.
[13]
Wu F, Zhao S Y, Yu Y, Li J, Su Y F, Chen L. Progress in Chemisty, 2017, 29(6):593.
吴锋, 赵双义, 卢赟, 李健, 苏岳锋, 陈来. 化学进展, 2017, 29(6):593.
[14]
Zhou G M, Tian H Z, Jin Y, Tao X Y, Liu B F, Zhang R F, Seh Z W, Zhuo D, Liu Y Y, Sun J, Zhao J, Zu C X, Wu D S, Zhang Q F, Cui Y. PNAS, 2017, 114(5):840.
[15]
Zhao M, Li B Q, Chen X, Xie J, Yuan H, Huang J Q. Chem, 2020, 6(12):3297.
[16]
Zhao M, Chen X, Li X Y, Li B Q, Huang J Q. Adv. Mater., 2021,doi:10.1002/adma.202007298.
[17]
Pang Q, Kundu D P, Cuisinier M, Nazar L F. Nat. Commun., 2014, 5:4759.
[18]
Yang Y, Zheng G Y, Misra S, Nelson J, Toney M F, Cui Y. J. Am. Chem. Soc., 2012, 134(37):15387.
[19]
Liu D H, Zhang C, Zhou G M, Lv W, Ling G W, Zhi L J, Yang Q H. Adv. Sci., 2018, 5(1):1700270.
[20]
Lim W G, Kim S, Jo C, Lee J. Angew. Chem., 2019, 131(52):18920.
[21]
He J R, Manthiram A. Energy Storage Mater., 2019, 20:55.
[22]
Song Y Z, Cai W L, Kong L, Cai J S, Zhang Q, Sun J Y. Adv. Energy Mater., 2020, 10(11):1901075.
[23]
Zhang Z W, Peng H J, Zhao M, Huang J Q. Adv. Funct. Mater., 2018, 28(38):1707536.
[24]
Zhang M, Chen W, Xue L X, Jiao Y, Lei T, Chu J W, Huang J W, Gong C H, Yan C Y, Yan Y C, Hu Y, Wang X F, Xiong J. Adv. Energy Mater., 2020, 10(2):1903008.
[25]
Zhang Q F, Wang Y P, Seh Z W, Fu Z H, Zhang R F, Cui Y. Nano Lett., 2015, 15(6):3780.
[26]
Tao X Y, Wang J G, Liu C, Wang H T, Yao H B, Zheng G Y, Seh Z W, Cai Q X, Li W Y, Zhou G M, Zu C X, Cui Y. Nat. Commun., 2016, 7:11203.
[27]
Li L, Chen L, Mukherjee S, Gao J, Sun H, Liu Z B, Ma X L, Gupta T, Singh C V, Ren W C, Cheng H M, Koratkar N. Adv. Mater., 2017, 29(2):1602734.
[28]
Xu Z L, Lin S H, Onofrio N, Zhou L M, Shi F Y, Lu W, Kang K, Zhang Q, Lau S P. Nat. Commun., 2018, 9:4164.
[29]
Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Nano Lett., 2016, 16(1):519.
[30]
Al Salem H, Babu G, Rao C V, Arava L M R. J. Am. Chem. Soc., 2015, 137(36):11542.
[31]
Fan C Y, Xiao P, Li H H, Wang H F, Zhang L L, Sun H Z, Wu X L, Xie H M, Zhang J P. ACS Appl. Mater. Interfaces, 2015, 7(50):27959.
[32]
Babu G, Ababtain K, Ng K Y S, Arava L M R. Sci. Rep., 2015, 5:8763.
[33]
Liu L J, Chen Y, Zhang Z F, You X L, Walle M D, Li Y J, Liu Y N. J. Power Sources, 2016, 325:301.
[34]
Zhang Z, Kong L L, Liu S, Li G R, Gao X P. Adv. Energy Mater., 2017, 7(11):1602543.
[35]
Li Y J, Wang C, Wang W, Eng A Y S, Wan M T, Fu L, Mao E Y, Li G C, Tang J, Seh Z W, Sun Y M. ACS Nano, 2020, 14(1):1148.
[36]
Song M S, Han S C, Kim H S, Kim J H, Kim K T, Kang Y M, Ahn H J, Dou S X, Lee J Y. J. Electrochem. Soc., 2004, 151(6):A791.
[37]
Choi Y J, Jung B S, Lee D J, Jeong J H, Kim K W, Ahn H J, Cho K K, Gu H B. Phys. Scr., 2007, T129:62.
[38]
Sun F G, Wang J T, Long D H, Qiao W M, Ling L C, Lv C, Cai R. J. Mater. Chem. A, 2013, 1(42):13283.
[39]
Wang Y K, Zhang R F, Chen J, Wu H, Lu S Y, Wang K, Li H L, Harris C J, Xi K, Kumar R V, Ding S J. Adv. Energy Mater., 2019, 9(24):1900953.
[40]
Zheng C, Niu S Z, Lv W, Zhou G M, Li J, Fan S X, Deng Y Q, Pan Z Z, Li B H, Kang F Y, Yang Q H. Nano Energy, 2017, 33:306.
[41]
Li S, Cen Y, Xiang Q, Aslam M K, Hu B B, Li W, Tang Y, Yu Q, Liu Y P, Chen C G. J. Mater. Chem. A, 2019, 7(4):1658.
[42]
Zhu M Q, Li S M, Liu J H, Li B. Appl. Surf. Sci., 2019, 473:1002.
[43]
Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar L F. Nat. Commun., 2015, 6:5682.
[44]
Peng H J, Zhang Z W, Huang J Q, Zhang G, Xie J, Xu W T, Shi J L, Chen X, Cheng X B, Zhang Q. Adv. Mater., 2016, 28(43):9551.
[45]
Zhang S S, Tran D T. J. Mater. Chem. A, 2016, 4(12):4371.
[46]
Pang Q, Kundu D P, Nazar L F. Mater. Horiz., 2016, 3(2):130.
[47]
Fan C J, Yan Y L, Chen L P, Chen S Y, Lin J M, Yang R. Prog. Chem., 2019, 31(8):1166.
樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 化学进展, 2019, 31(8):1166.
[48]
Yan G, Xu C, Meng Z H, Hou M Z, Yan W, Lin N B, Lai L F, Zhan D. Nanoscale, 2020, 12(48):24368.
[49]
Wang H T, Zhang Q F, Yao H B, Liang Z, Lee H W, Hsu P C, Zheng G Y, Cui Y. Nano Lett., 2014, 14(12):7138.
[50]
Babu G, Masurkar N, Al Salem H, Arava L M R. J Am. Chei. Society, 2016,139∶171.
[51]
Park J, Yu B C, Park J S, Choi J W, Kim C, Sung Y E, Goodenough J B. Adv. Energy Mater., 2017, 7(11):1602567.
[52]
Xu J, Zhang W X, Fan H B, Cheng F L, Su D W, Wang G X. Nano Energy, 2018, 51:73.
[53]
Pu J, Shen Z H, Zheng J X, Wu W L, Zhu C, Zhou Q W, Zhang H G, Pan F. Nano Energy, 2017, 37:7.
[54]
Lu K, Liu Y Z, Chen J Z, Zhang Z C, Cheng Y W. ACS Nano, 2019, 13(12):14540.
[55]
Jeong T G, Choi D S, Song H, Choi J, Park S A, Oh S H, Kim H, Jung Y, Kim Y T. ACS Energy Lett., 2017, 2(2):327.
[56]
Sun Z H, Zhang J Q, Yin L C, Hu G J, Fang R P, Cheng H M, Li F. Nat. Commun., 2017, 8:14627.
[57]
Mosavati N, Chitturi V R, Salley S O, Ng K Y S. J. Power Sources, 2016, 321:87.
[58]
Mosavati N, Salley S O, Ng K Y S. J. Power Sources, 2017, 340:210.
[59]
Mi Y Y, Liu W, Li X L, Zhuang J L, Zhou H H, Wang H L. Nano Res., 2017, 10(11):3698.
[60]
Zhong Y R, Yin L C, He P, Liu W, Wu Z S, Wang H L. J. Am. Chem. Soc., 2018, 140(4):1455.
[61]
Zhou J B, Liu X J, Zhu L Q, Zhou J, Guan Y, Chen L, Niu S W, Cai J Y, Sun D, Zhu Y C, Du J, Wang G M, Qian Y T. Joule, 2018, 2(12):2681.
[62]
Cai W L, Li G R, Zhang K L, Xiao G N, Wang C, Ye K F, Chen Z W, Zhu Y C, Qian Y T. Adv. Funct. Mater., 2018, 28(2):1704865.
[63]
Peng H J, Zhang G, Chen X, Zhang Z W, Xu W T, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2016, 55(42):12990.
[64]
Yang C P, Yin Y X, Ye H, Jiang K C, Zhang J, Guo Y G. ACS Appl. Mater. Interfaces, 2014, 6(11):8789.
[65]
Song J X, Xu T, Gordin M L, Zhu P Y, Lv D, Jiang Y B, Chen Y S, Duan Y H, Wang D H. Adv. Funct. Mater., 2014, 24(9):1243.
[66]
Qiu Y C, Li W F, Zhao W, Li G Z, Hou Y, Liu M N, Zhou L S, Ye F M, Li H F, Wei Z H, Yang S H, Duan W H, Ye Y F, Guo J H, Zhang Y G. Nano Lett., 2014, 14(8):4821.
[67]
Song J X, Gordin M L, Xu T, Chen S R, Yu Z X, Sohn H, Lu J, Ren Y, Duan Y H, Wang D H. Angew. Chem. Int. Ed., 2015, 54(14):4325.
[68]
Chen J J, Yuan R M, Feng J M, Zhang Q, Huang J X, Fu G, Zheng M S, Ren B, Dong Q F. Chem. Mater., 2015, 27(6):2048.
[69]
Yuan H D, Zhang W K, Wang J G, Zhou G M, Zhuang Z Z, Luo J M, Huang H, Gan Y P, Liang C, Xia Y, Zhang J, Tao X Y. Energy Storage Mater., 2018, 10:1.
[70]
Guo D, Wei H, Chen X, Liu M, Ding F, Yang Z, Yang Y, Wang S, Yang K, Huang S. J. Mater. Chem. A, 2017, 5(34):18193.
[71]
Du L Y, Wu Q, Yang L J, Wang X, Che R C, Lyu Z Y, Chen W, Wang X Z, Hu Z. Nano Energy, 2019, 57:34.
[72]
Wu H L, Xia L, Ren J, Zheng Q J, Xu C G, Lin D M. J. Mater. Chem. A, 2017, 5(38):20458.
[73]
Jin C B, Zhang W K, Zhuang Z Z, Wang J G, Huang H, Gan Y P, Xia Y, Liang C, Zhang J, Tao X Y. J. Mater. Chem. A, 2017, 5(2):632.
[74]
Zhou G M, Paek E, Hwang G S, Manthiram A. Nat. Commun., 2015, 6:7760.
[75]
Li B Q, Peng H J, Chen X, Zhang S Y, Xie J, Zhao C X, Zhang Q. CCS Chem., 2019:128.
[76]
Liu J H, Li W F, Duan L M, Li X, Ji L, Geng Z B, Huang K K, Lu L H, Zhou L S, Liu Z R, Chen W, Liu L W, Feng S H, Zhang Y G. Nano Lett., 2015, 15(8):5137.
[77]
Pang Q, Nazar L F. ACS Nano, 2016, 10(4):4111.
[78]
Liang J, Yin L C, Tang X N, Yang H C, Yan W S, Song L, Cheng H M, Li F. ACS Appl. Mater. Interfaces, 2016, 8(38):25193.
[79]
Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu B L, Li B H, Kang F Y, Yang Q H. Energy Environ. Sci., 2017, 10(7):1694.
[80]
Wang N, Chen B, Qin K Q, Liu E Z, Shi C S, He C N, Zhao N Q. Nano Energy, 2019, 60:332.
[81]
Wang M X, Fan L S, Wu X, Qiu Y, Wang Y, Zhang N Q, Sun K N. Chem. Eur. J., 2019, 25(21):5416.
[82]
Zhou T H, Zhao Y, Zhou G M, Lv W, Sun P J, Kang F Y, Li B H, Yang Q H. Nano Energy, 2017, 39:291.
[83]
Wang M L, Song Y Z, Sun Z T, Shao Y L, Wei C H, Xia Z, Tian Z N, Liu Z F, Sun J Y. ACS Nano, 2019, 13(11):13235.
[84]
Gu S N, Bai Z W, Majumder S, Huang B L, Chen G H. Nanoscale, 2019, 11(43):20579.
[85]
Jiao L, Zhang C, Geng C N, Wu S C, Li H, Lv W, Tao Y, Chen Z J, Zhou G M, Li J, Ling G W, Wan Y, Yang Q H. Adv. Energy Mater., 2019, 9(19):1900219.
[86]
Zhang Y J, Qu J, Ji Q Y, Zhang T T, Chang W, Hao S M, Yu Z Z. Carbon, 2019, 155:353.
[87]
He J R, Chen Y F, Lv W, Wen K C, Xu C, Zhang W L, Li Y R, Qin W, He W D. ACS Nano, 2016, 10(12):10981.
[88]
Li Y J, Fan J M, Zhang J H, Yang J F, Yuan R M, Chang J, Zheng M S, Dong Q F. ACS Nano, 2017, 11(11):11417.
[89]
Chen S X, Han X X, Luo J H, Liao J, Wang J, Deng Q, Zeng Z L, Deng S G. Chem. Eng. J., 2020, 385:123457.
[90]
Fang R P, Zhao S Y, Pei S F, Cheng Y X, Hou P X, Liu M, Cheng H M, Liu C, Li F. Carbon, 2016, 109:719.
[91]
Li Y J, Fan J M, Zheng M S, Dong Q F. Energy Environ. Sci., 2016, 9(6):1998.
[92]
Zhang M D, Yu C, Zhao C T, Song X D, Han X T, Liu S H, Hao C, Qiu J S. Energy Storage Mater., 2016, 5:223.
[93]
Barchasz C, Molton F, Duboc C, Leprêtre J C, Patoux S, Alloin F. Anal. Chem., 2012, 84(9):3973.
[94]
Cuisinier M, Cabelguen P E, Evers S, He G, Kolbeck M, Garsuch A, Bolin T, Balasubramanian M, Nazar L F. J. Phys. Chem. Lett., 2013, 4(19):3227.
[95]
Chen S R, Dai F, Gordin M L, Wang D H. RSC Adv., 2013, 3(11):3540.
[96]
Peng H J, Huang J Q, Liu X Y, Cheng X B, Xu W T, Zhao C Z, Wei F, Zhang Q. J. Am. Chem. Soc., 2017, 139(25):8458.
[97]
Lin Z, Liu Z C, Fu W J, Dudney N J, Liang C D. Angew. Chem. Int. Ed., 2013, 52(29):7460.
[98]
Liang X, Kwok C Y, Lodi-Marzano F, Pang Q, Cuisinier M, Huang H, Hart C J, Houtarde D, Kaup K, Sommer H, Brezesinski T, Janek J, Nazar L F. Adv. Energy Mater., 2016, 6(6):1501636.
[99]
Song Y Z, Zhao W, Zhu X Y, Zhang L, Li Q C, Ding F, Liu Z F, Sun J Y. ACS Appl. Mater. Interfaces, 2018, 10(18):15733.
[100]
Wang S Z, Liao J X, Yang X F, Liang J N, Sun Q, Liang J W, Zhao F P, Koo A, Kong F P, Yao Y, Gao X J, Wu M Q, Yang S Z, Li R Y, Sun X L. Nano Energy, 2019, 57:230.
[101]
Wu J W, Ma Q Y, Lian C, Yuan Y, Long D H. Chem. Eng. J., 2019, 370:556.
[102]
Kong W B, Wang D T, Yan L J, Luo Y F, Jiang K L, Li Q Q, Zhang L, Lu S G, Fan S S, Li J, Wang J P. Carbon, 2018, 139:896.
[103]
Wang R X, Wang K L, Gao S, Jiang M, Han J, Zhou M, Cheng S J, Jiang K. Nanoscale, 2018, 10(35):16730.
[104]
Lu Q, Sun Y, Liao K M, Zou X H, Hamada I, Zhou W, Ni M, Shao Z P. Electrochimica Acta, 2019, 298:421.
[105]
Yang T, Liu K L, Ren R Z, Zhang J Z, Zheng X W, Wang C Y, Chen M M. Chem. Eng. J., 2020, 381:122685.
[106]
Wang J, Jia L J, Zhong J, Xiao Q B, Wang C, Zang K T, Liu H T, Zheng H C, Luo J, Yang J, Fan H Y, Duan W H, Wu Y, Lin H Z, Zhang Y G. Energy Storage Mater., 2019, 18:246.
[107]
Wang Q, Zheng J M, Walter E, Pan H L, Lv D, Zuo P J, Chen H H, Deng Z D, Liaw B Y, Yu X Q, Yang X Q, Zhang J G, Liu J, Xiao J. J. Electrochem. Soc., 2015, 162(3):A474.
[108]
Zou Q L, Lu Y C. J. Phys. Chem. Lett., 2016, 7(8):1518.
[109]
Zhang G, Peng H J, Zhao C Z, Chen X, Zhao L D, Li P, Huang J Q, Zhang Q. Angew. Chem. Int. Ed., 2018, 57(51):16732.
[110]
Cuisinier M, Hart C, Balasubramanian M, Garsuch A, Nazar L F. Adv. Energy Mater., 2015, 5(16):1401801.
[111]
Lin H B, Zhang S L, Zhang T R, Cao S, Ye H L, Yao Q F, Zheng G W, Lee J Y. ACS Nano, 2019, 13(6):7073.
[112]
Liu M M, Zhang C C, Su J M, Chen X, Ma T Y, Huang T, Yu A S. ACS Appl. Mater. Interfaces, 2019, 11(23):20788.
[113]
Yi Y K, Li H P, Chang H H, Yang P, Tian X L, Liu P, Qu L, Li M T, Yang B L, Li H M, Zhu W S, Dai S. Chem. Eur. J., 2019, 25(34):8112.
[114]
Lee G H, Lee S, Kim J C, Kim D W, Kang Y K, Kim D W. Adv. Energy Mater., 2017, 7(6):1601741.
[115]
Lin H B, Zhang S L, Zhang T R, Ye H L, Yao Q F, Zheng G W, Lee J Y. Adv. Energy Mater., 2018, 8(30):1801868.
[116]
Chan D, Xiao Z B, Guo Z Q, Lai Y C, Zhang Y G, Zhou S Y, Ding X W, Nie H G, Yang Z. Nanoscale, 2019, 11(36):16968.
[117]
Meini S, Elazari R, Rosenman A, Garsuch A, Aurbach D. J. Phys. Chem. Lett., 2014, 5(5):915.
[118]
Zhao M, Peng H J, Wei J Y, Huang J Q, Li B Q, Yuan H, Zhang Q. Small Methods, 2020, 4(6):1900344.
[119]
Yeom J, Kabir M H, Lim B, Ahn H S, Kim S Y, Lee C. Sci. Rep., 2016, 6:35305.
[120]
Gerber L C H, Frischmann P D, Fan F Y, Doris S E, Qu X H, Scheuermann A M, Persson K, Chiang Y M, Helms B A. Nano Lett., 2016, 16(1):549.
[121]
Kim S, Cho M, Chanthad C, Lee Y. J. Energy Chem., 2020, 44:154.
[122]
Hernández G, Lago N, Shanmukaraj D, Armand M, Mecerreyes D. Mater. Today Energy, 2017, 6:264.
[123]
Tsao Y, Lee M, Miller E C, Gao G P, Park J, Chen S C, Katsumata T, Tran H, Wang L W, Toney M F, Cui Y, Bao Z N. Joule, 2019, 3(3):872.
[124]
Chen C Y, Peng H J, Hou T Z, Zhai P Y, Li B Q, Tang C, Zhu W C, Huang J Q, Zhang Q. Adv. Mater., 2017, 29(23):1606802.
[125]
Wu X, Liu N N, Guan B, Qiu Y, Wang M X, Cheng J H, Tian D, Fan L S, Zhang N Q, Sun K N. Adv. Sci., 2019, 6(21):1900958.
[126]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8):634.
[127]
Pei G X, Liu X Y, Wang A Q, Lee A F, Isaacs M A, Li L, Pan X L, Yang X F, Wang X D, Tai Z J, Wilson K, Zhang T. ACS Catal., 2015, 5(6):3717.
[128]
Lin J, Wang A Q, Qiao B T, Liu X Y, Yang X F, Wang X D, Liang J X, Li J, Liu J Y, Zhang T. J. Am. Chem. Soc., 2013, 135(41):15314.
[129]
Pan Y, Liu S J, Sun K A, Chen X, Wang B, Wu K L, Cao X, Cheong W C, Shen R, Han A J, Chen Z, Zheng L R, Luo J, Lin Y, Liu Y Q, Wang D S, Peng Q, Zhang Q, Chen C, Li Y D. Angew. Chem. Int. Ed., 2018, 57(28):8614.
[130]
Zhang K, Chen Z X, Ning R Q, Xi S B, Tang W, Du Y H, Liu C B, Ren Z Y, Chi X, Bai M H, Shen C, Li X, Wang X W, Zhao X X, Leng K, Pennycook S J, Li H P, Xu H, Loh K P, Xie K Y. ACS Appl. Mater. Interfaces, 2019, 11(28):25147.
[131]
Zhang L L, Liu D B, Muhammad Z, Wan F, Xie W, Wang Y J, Song L, Niu Z Q, Chen J. Adv. Mater., 2019, 31(40):1903955.
[132]
Liu Z Z, Zhou L, Ge Q, Chen R J, Ni M, Utetiwabo W, Zhang X L, Yang W. ACS Appl. Mater. Interfaces, 2018, 10(23):19311.
[133]
Wang C G, Song H W, Yu C C, Ullah Z, Guan Z X, Chu R R, Zhang Y F, Zhao L Y, Li Q, Liu L W. J. Mater. Chem. A, 2020, 8(6):3421.
[134]
Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. J. Am. Chem. Soc., 2019, 141(9):3977.
[135]
Chen S R, Dai F, Gordin M L, Yu Z X, Gao Y, Song J X, Wang D H. Angew. Chem. Int. Ed., 2016, 55(13):4231.
[136]
Wu M, Cui Y, Bhargav A, Losovyj Y, Siegel A, Agarwal M, Ma Y, Fu Y Z. Angew. Chem. Int. Ed., 2016, 55(34):10027.
[137]
Hua W X, Yang Z, Nie H G, Li Z Y, Yang J Z, Guo Z Q, Ruan C P, Chen X, Huang S M. ACS Nano, 2017, 11(2):2209.
[138]
Cañas N A, Fronczek D N, Wagner N, Latz A, Friedrich K A. J. Phys. Chem. C, 2014, 118(23):12106.
[139]
Lowe M A, Gao J, Abruña H D. RSC Adv., 2014, 4(35):18347.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[12] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[13] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[14] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
阅读次数
全文


摘要

锂硫电池中的催化作用