English
新闻公告
More
化学进展 2020, Vol. 32 Issue (9): 1412-1426 DOI: 10.7536/PC191225 前一篇   后一篇

• 综述 •

污泥碳基催化材料的合成及在水环境中的应用

谷麟1,**(), 章凯1, 俞海祥1, 董光霞1, 乔兴博1, 闻海峰1   

  1. 1. 上海理工大学 上海 200093
  • 收稿日期:2019-12-27 修回日期:2020-05-01 出版日期:2020-09-24 发布日期:2020-06-30
  • 通讯作者: 谷麟
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    *国家自然科学基金项目(51408358)

Synthesis of Sludge Carbon-Based Catalytic Materials and Their Application in Water Environment

Lin Gu1,**(), Kai Zhang1, Haixiang Yu1, Guangxia Dong1, Xingbo Qiao1, Haifeng Wen1   

  1. 1. University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2019-12-27 Revised:2020-05-01 Online:2020-09-24 Published:2020-06-30
  • Contact: Lin Gu
  • Supported by:
    the National Natural Science Foundation of China(51408358)

污泥是城市污水处理厂的副产物,是一种典型的固体废弃物,具有污染与资源的双重属性。以污泥作为原材料制备碳基催化材料并用于水环境催化是一种新型的污泥减量化和资源化利用方式。由于污泥是生物质有机质和多种无机氧化物、金属离子的混合物,因此以其制备的碳基催化剂或载体材料具有原料易得、活性位点分散、表面化学官能团易于调控、比表面积高等特点,并被广泛地用于多相Fenton催化、电催化、光催化、湿式氧化和臭氧氧化等水环境催化领域。本文将阐述污泥碳基催化剂材料的制备和改性方法,通过材料物理、化学性质与催化作用的构效关系并结合其在水环境催化领域的应用特点,说明碳基催化剂参与水中污染物吸附、电子转移和有机物降解的作用机制,同时对提高污泥基材料的稳定性、可重复利用性和催化活性提出新的展望。

With dual attributes of pollutant and resources, sewage sludge(SS) is the byproduct from wastewater treatment plant, which belongs to typical urban solid waste. The use of SS as raw materials for the synthesis of carbon-based catalysts and their application in water environment catalysis is an implement of sludge reduction and resource reutilization. As SS is a mixture of organic matter from biomass and various inorganic oxides and metal ions, the carbon-based catalyst or carrier prepared from SS has the properties of easy availability of raw materials, strong dispersibility of active components on the carrier, easy adjustment of surface chemical functional groups, and high specific surface area. It is widely used in the field of multiphase Fenton reaction, electrochemical catalytic oxidation, complex photocatalytic reaction, catalytic wet oxidation and catalytic ozonation. This paper will describe the preparation and modification methods of sludge carbon-based catalyst materials. In addition, the mechanism, which carbon-based catalysts participate in pollutant adsorption, electron transfer, and organic degradation in water, is explained by the structure-activity relationship between physico-chemical properties of materials and catalytic action, combined with its application characteristics in the field of water environment catalysis. At the same time, a new prospect is put forward to improve the stability, reusability and catalytic activity of sludge-based materials.

Contents

1 Introduction

2 Physical and chemical properties of sludge carbon-based precursors

2.1 Chemical composition

2.2 Physical structure

2.3 Surface chemical properties

3 Sludge carbon-based catalyst material preparation method

3.1 Direct pyrolysis

3.2 Load method

3.3 Blending method

3.4 Hydrothermal carbonization

4 Surface modification of sludge carbon-based catalyst materials

5 Application of sludge carbon-based catalyst in the field of water environment catalysis

5.1 Catalytic H2O2 heterogeneous Fenton reaction

5.2 Catalytic degradation based on persulfate(PS) and peroxymonosulfate(PMS)

5.3 Composite photocatalytic reaction

5.4 Heterogeneous catalytic ozonation

5.5 Heterogeneous catalytic wet oxidation

5.6 Electrochemical catalytic oxidation

6 Stability of sludge carbon-based catalyst

7 Conclusion and outlook

()
图1 硅氧化物催化H2O2的机理示意图[19]
Fig.1 Schematic diagram of the mechanism of catalysis of H2O2 with silicon oxide[19]
表1 各种污泥碳基催化剂材料制备方法及其物理化学性质
Table 1 A summary of the sewage sludge based carbon catalysts and their physiochemical properties
Catalyst Preparation procedure Method BET surface area(m2/g) Catalytic components ref
FeSC Dried sludge impregnated into 0.5 M FeSO4 solution and subsequently carbonized at 800 ℃ in the presence of N2 Wetness impregnation 14.3 Magnetite, Quartz, Al2O3 19
SC Dried sludge carbonized at 800 ℃ in the presence of N2 Direct pyrolysis 57.6 Carbon, ash 14, 22
SBC Dried sludge impregnated into 3 M ZnCl2 solution and carbonized at 700 ℃ in the presence of N2 wash: 3 M HCl Wetness chemical activation 363 Carbon 23
FMSAC Carbonized sludge(by ZnCl2 pre-activation) was co-precipitated with Fe2+ and Fe3+ with NaOH addition Chemical activation plus co-precipitation 880~940 Fe3O4, CaO, Quiz 24
R1 Solid mixing of dried sludge with FeCl3(w/w=1∶1) and subsequently carbonized at 700 ℃ wash: 3 M HCl Solid chemical activation 517~836 Fe species 25
szSAC Dried sludge impregnated into the mixture of 3 M H2SO4 and ZnCl2 and then carbonized at 550 ℃ wash: 10% HCl Wetness chemical activation 179.9 Surface-OH 18
szSAC/Mn szSAC impregnated into KMnO4 solution and carbonized at 550 ℃ in the presence of N2 Wetness impregnation 3.7~11.7 Mn(Ⅱ), Mn(Ⅲ), Mn(Ⅳ), surface-OH 18
DR-SA-A Dried sludge was firstly carbonized with N2 and then activated with steam at 838 ℃, acid washed. Steam activation 497.4 Dissolved organic matters and iron 26
nO x /SBAC FeO x /SBAC Dried sludge was firstly activated with ZnCl2 and carbonized at 700 ℃ and had acid washed, then the carbonized products was impregnated into Mn/Fe solutions and re-carbonized at 600 ℃ Chemical activation and wetness impregnation 327~339 Mn3O4, Fe3O4 15
CFA/SC Combined ZnCl2 activation and carbonization at 800 ℃ for the mixture of sewage sludge and fly ash(3 M HCl wash) Chemical activation 415 Fe2O3, SiO2, Al2O3 27
SS-Ti-700 Combined hydrothermal reaction with TiOSO4 and carbonization at 700 ℃ Hydrothermal reaction 35.46 TiO2, α-Fe2O3 28
FAS-1-350 Dried sludge impregnated into(NH4)2Fe(SO4)2 solutions, separated and calcined at 350 ℃ in the air Wetness impregnation 15.17 α-Fe2O3, SiO2 crystallites 29
MC600 Combined microwave digestion and KOH activation, then carbonized in the N2 Chemical activation 378 O-containing groups, Fe3O4, α-Fe 30
SC-F-0.2 Combined Fenton’s activation and carbonization at 600 ℃ Radical activation 46.3 Fe3O4, α-Fe 31
图2 表面酸性官能团吸附底物分子示意图[52]
Fig.2 Schematic diagram of adsorption of surface acidic functional group by substrate molecule[52]
图3 铁负载污泥基活性炭的基本结构示意图及其催化过氧化氢示意图[8]
Fig.3 Basic structure of sewage sludge based catalyst and their catalytic process[8]
图4 磁性污泥基催化剂对过硫酸盐和二萘酚的化学吸附[30]
Fig.4 Chemical adsorption of persulfate and 2-naphthol by magnetic sludge carbon-based catalyst[30]
图5 模板法制备污泥TiO2光催化剂示意图[51]
Fig.5 Schematic diagram of preparation of sludge TiO2 photocatalyst by template method[51]
图6 富铁污泥碳化产物参与光Fenton反应示意图[28]
Fig.6 Schematic diagram of photo-Fenton reaction involving sludge iron carbide supported by iron salt[28]
图7 影响污泥碳基催化剂稳定性的三种因素示意图
Fig.7 Schematic diagram of three factors affecting the stability of sludge carbon-based catalyst
表2 几种污泥碳基材料在不同催化体系中的稳定性和可重复利用性比较
Table 2 Comparison of stability and recyclability of several sludge carbonized materials in different catalytic systems
Leaching Species Leaching Concentration Reaction Recyclability ref
Fe 0.6 g/L(2.5%of the total Fe load) CWPO 14.2% of the Fe load 25
Fe not detectable CWPO 96% degradation efficiency obtained in third cycles of reaction 92
Fe 0.037 mg/L(0.14% of total Fe loaded) Ca: 0.813 Cu: 0.029 Mg: 0.271 Zn: 0.027 CWPO 97% removal of AOII until at least 600 min 19
Fe 1.9 mg/L for HNO3 treated SW 2.1 mg/L for H2SO4 treated SW 1.2mg/L for HCl treated SW 0.7 mg/L for SW CWPO 26.3% conversion of cresol for HCl-SW at 432 h 100% conversion of cresol for H2SO4-SW at 432 h 85.1% conversion of cresol for HNO3-SW at 432 h 40% to lower than 10% conversion rate for SW 52
Fe 10.8 mg/L for HNO3 treated SW 11.7 mg/L for H2SO4 treated SW 0.8 mg/L for HCl treated SW 1.2 mg/L for SW CWAO Not mentioned 7
Fe Fe: 18 mg/L Ni: 12 mg/L Zn: 4 mg/L Mn: 3 mg/L Cr: 3mg/L Mg: 2 mg/L CWAO For the fourth experiment, the differences after 4 h of reaction only amounted to 2.2% for phenol conversion and 9% for TOC conversion. 26
Fe 27 mg/L(7% of the total Fe load) CWAO After 4 runs, the 2-CP conversion and the TOC removal were still very high. 14
Fe 4.32 mg/L for SS-Fe-105 after 60 min 0.66 mg/L for SS-Fe-350 after 30min Photo-Fenton No obvious deactivation of the SS-Fe-350 catalyst in the six repetitive experiments was observed when compared with the first cycle. 28
Zn, Cu 0.014 mg/L PMS The distributions of these heavy metals were unchanged though the MnO x /HCAS catalyst was reused up to 5 cycles. 93
Fe pH 2.03:4.69 mg/L(2.14% of total iron) pH 3.01:3.06 mg/L PS three times for the oxidative degradation of AO7 65
Fe total Fe: 3.01 mg/L; Fe3+: 2.12mg/L CWPO It was observed that the mineralization rate decreased from 60.6 to 46.5% when the degradation rate of NOR decreased from 98.8 to 76.4%. 94
[1]
何强( He Q ), 吉芳英(Ji F Y), 李家杰(Li J J). 给水排水(Water & Wastewater Engineering), 2016, 52(2): 1.
[2]
Cieślik B M , Namieśnik J , Konieczka P . J. Clean Prod., 2015, 90: 1.
[3]
Yang G , Zhang G , Wang H. Water Res., 2015, 78: 60.
[4]
Li L , Ai J , Zhang W , Peng S , Dong T , Deng Y , Cui Y , Wang D. Chemosphere, 2020, 243: 125333.
[5]
Zhang W , Yang P , Yang X , Chen Z , Wang D. Bioresour. Technol., 2015, 181: 247.
[6]
Cao B , Zhang W , Wang Q , Huang Y , Meng C , Wang D. Water Res., 2016, 105: 615.
[7]
Yu Y , Wei H , Yu L , Gu B , Li X , Rong X , Zhao Y , Chen L , Sun C. Catal. Sci. Technol., 2016, 6(4): 1085.
[8]
Gu L , Zhu N , Guo H , Huang S , Lou Z , Yuan H. J. Hazard. Mater., 2013, 246: 145.
[9]
Ros A , Lillo-Rodenas M A, Canals-Batlle C, Fuente E, Montes-Moran M A, Martin M J, Linares-Solano A. Environ. Sci. Technol., 2007, 41(12): 4375.
[10]
Ros A , Lillo-Ródenas M A, Fuente E, Montes-Morán M A, Martín M J, Linares-Solano A. Chemosphere, 2006, 65(1): 132.
[11]
Jin S C , Jong C C , Jeong H K , Young K P , Sung H P , Kwang E J , Seung S K , Jong K J. Chem. Eng. J., 2010, 156(2): 321.
[12]
Wei J , Liu Y , Zhu Y , Li J. Chemosphere, 2020: 125854.
[13]
Yu H Q , Huang B C , Jiang J , Huang G X. J. Mater. Chem. A, 2018, 6: 8978.
[14]
Tu Y , Xiong Y , Tian S , Kong L , Descorme C. J. Hazard. Mater., 2014, 276(9): 88.
[15]
Zhuang H , Han H , Hou B , Jia S , Zhao Q. Bioresour. Technol., 2014, 166: 178.
[16]
Stüber F , Smith K , Mendoza M B , Marques R , Fabregat A , Bengoa C , Font J , Fortuny A , Pullket S , Fowler G. Appl. Catal. B-Environ., 2011, 110: 81.
[17]
Hou B , Han H , Zhuang H , Xu P , Jia S , Li K. Bioresour. Technol., 2015, 196: 721.
[18]
Huang Y , Sun Y , Xu Z , Luo M , Zhu C , Li L. Sci. Total. Environ., 2017, 575: 50.
[19]
Tu Y , Tian S , Kong L , Xiong Y. Chem. Eng. J., 2012, 185/186: 44.
[20]
Gu L , Huang S , Zhu N , Zhang D , Yuan H , Lou Z. J. Hazard. Mater., 2013, 263: 450.
[21]
Ros A , Montes-Moran M A, Fuente E, Nevskaia D M, Martin M J. Environ. Sci. Technol., 2006, 40(1): 302.
[22]
Sun H , Chen T , Kong L , Cai Q , Xiong Y , Tian S. Ind. Eng. Chem. Res., 2015, 54(20): 5468.
[23]
Wen G , Pan Z H , Ma J , Liu Z Q , Zhao L , Li J J. J. Hazard. Mater., 2012, 239/240: 381.
[24]
Lu S , Liu Y , Feng L , Sun Z , Zhang L. Environ. Sci. Pollut. R, 2018, 25(6): 5086.
[25]
Bedia J , Monsalvo V M , Rodriguez J J , Mohedano A F. Chem. Eng. J., 2017, 318: 224.
[26]
Marques R R N , Stüber F , Smith K M , Fabregat A , Bengoa C , Font J , Fortuny A , Pullket S , Fowler G D , Graham N J D . Appl. Catal. B-Environ., 2011, 101(3/4): 306.
[27]
Zhuang H , Han H , Shan S. Fuel, 2016, 178: 155.
[28]
Yuan S J , Dai X H. Appl. Catal. B-Environ., 2014, 154/155: 252.
[29]
Yuan S , Liao N , Dong B , Dai X. Chin. J. Catal., 2016, 37(5): 735.
[30]
Wang X , Gu L , Zhou P , Zhu N , Li C , Tao H , Wen H , Zhang D. Chem. Eng. J., 2017, 324: 203.
[31]
Wen H , Gu L , Yu H , Qiao X , Zhang D , Ye J. Chem. Eng. J., 2018, 352: 837.
[32]
Syed-Hassan S S A , Wang Y , Hu S , Su S , Xiang J . Renew. Sust. Energ. Rev., 2017, 80: 888.
[33]
王亚琛( Wang Y C ), 谷麟(Gu L), 王妙琳(Wang M L), 楼紫阳(Lou Z Y), 朱南文(Zhu N W), 袁海平(Yuan H P). 环境污染与防治(Environmental Pollution & Control), 2014, 36(08): 43.
[34]
Fan Q , Sun J , Chu L , Cui L , Quan G , Yan J , Hussain Q , Iqbal M. Chemosphere, 2018, 207: 33.
[35]
Cho H H , Smith B A , Wnuk J D , Fairbrother D H , Ball W P. Environ. Sci. Technol., 2008, 42(8): 2899.
[36]
Wang J , Chen B , Xing B. Environ. Sci. Technol., 2016, 50(7): 3798.
[37]
Yang B , Liu Y , Liang Q , Chen M , Ma L , Li L , Liu Q , Tu W , Lan D , Chen Y. Ecotox. Environ. Safe., 2019, 170: 722.
[38]
Xiong T , Yuan X , Chen X , Wu Z , Wang H , Leng L , Wang H , Jiang L , Zeng G. Appl. Surf. Sci., 2018, 427: 1107.
[39]
Yuan S J , Dai X H. Environ.-Sci. Nano, 2017, 4(1): 17.
[40]
Seredych M , Bandosz T J. J. Colloid Interf. Sci, 2006, 302(2): 379.
[41]
Zhu S , Wang W , Xu Y , Zhu Z , Liu Z , Cui F. Chem. Eng. J., 2019, 365: 99.
[42]
Zhang G , Yan J , Wang J , Jia D , Zheng H , Li Z. Appl. Surf. Sci., 2018, 455: 696.
[43]
Gu L , Li C , Wen H , Zhou P , Zhang D , Zhu N , Tao H. Bioresour. Technol., 2017, 241: 391.
[44]
孙中恩( Sun Z E ), 卢思颖(Lu S Y), 封莉(Fen L), 张立秋(Zhang L Q). 环境科学与技术(Environmental Science & Technology), 2017, 40(05): 102.
[45]
Mohedano A , Monsalvo V , Bedia J , Lopez J , Rodriguez J. J. Environ. Chem. Eng., 2014, 2(4): 2359.
[46]
Jain A , Balasubramanian R , Srinivasan M. Chem. Eng. J., 2016, 283: 789.
[47]
Xu S , Liu C , Ye F , Guo Y , Wiezorek J. Colloid Surf. A-Physicochem. Eng. Asp., 2017, 515: 1.
[48]
Hou F , Liu J , Zhang Y , Zhao C , Xiao X , Zou J , Li Q , Hu S , Wang H , Jiang B. J. Hazard. Mater., 2019: 121754.
[49]
Zhang H , Xue G , Chen H , Li X. Chemosphere, 2018, 191: 64.
[50]
Qu X F , Zhou G T , Yao Q Z , Fu S Q. J. Phys. Chem. C, 2010, 114(1): 284.
[51]
Yuan S J , Li X W , Dai X H. RSC Adv., 2014, 4(105): 61036.
[52]
Yu Y , Wei H , Yu L , Zhang T , Wang S , Li X , Wang J , Sun C. RSC Adv., 2015, 5(52): 41867.
[53]
Yu Y , Huang F , He Y , Liu X , Song C , Xu Y , Zhang Y. Sci. Total. Environ., 2019, 654: 942.
[54]
Wang Y , Wei H , Zhao Y , Sun W , Sun C. J. Hazard. Mater., 2017, 326: 36.
[55]
Abdulrasheed A A , Jalil A A , Triwahyono S , Zaini M A A, Gambo Y, Ibrahim M. Renew. Sust. Energ. Rev, 2018, 94: 1067.
[56]
Wang N , Zheng T , Zhang G , Wang P. J. Environ. Chem. Eng., 2016, 4(1): 762.
[57]
Garrido-Ramírez E G , Theng B K G , Mora M L . Appl. Clay. Sci., 2010, 47(3): 182.
[58]
Babuponnusami A , Muthukumar K. J. Environ. Chem. Eng., 2014, 2(1): 557.
[59]
Ai J , Zhang W , Liao G , Chen F , Wang D. Water Res., 2019, 150: 473.
[60]
Edwards J O , Pater R H , Curclf R , Furia F D. Photochem. Photobiol., 1979, 30(1): 63.
[61]
Wang S , Wang J. Chemosphere, 2018, 191: 97.
[62]
Babu S G , Aparna P , Satishkumar G , Ashokkumar M , Neppolian B. Ultrason. Sonochem., 2017, 34: 924.
[63]
Davididou K , Monteagudo J M , Chatzisymeon E , Durán A , Expósito A J. Sep. Purif. Technol., 2017, 172: 227.
[64]
Bai S , Li R , Su G , Duan X , Wang S , Ren N Q , Ho S H. Environ. Int., 2019, 126: 302.
[65]
Wang J , Liao Z , Ifthikar J , Shi L , Chen Z , Chen Z. RSC Adv., 2017, 7(30): 18696.
[66]
Deng J , Shao Y , Gao N , Deng Y , Zhou S , Hu X. Chem. Eng. J., 2013, 228: 765.
[67]
Li Y , Yang Z , Zhang H , Tong X , Feng J . Colloid Surf. A-Physicochem. Eng. Asp., 2017, 529: 856.
[68]
Inoue T , Fujishima A , Konishi S , Honda K. Nature, 1979, 277(5698): 637.
[69]
Puma G L , Bono A , Krishnaiah D , Collin J G. J. Hazard. Mater., 2008, 157(2/3): 209.
[70]
Zheng Y , Liu J , Liang J , Jaroniec M , Qiao S Z. Energy Environ. Sci., 2012, 5(5): 6717.
[71]
Hu W , Xie Y , Lu S , Li P , Xie T , Zhang Y , Wang Y. Sci. Total. Environ., 2019, 680: 51.https://linkinghub.elsevier.com/retrieve/pii/S0048969719321163

doi: 10.1016/j.scitotenv.2019.05.098     URL    
[72]
Subramanian V , Wolf E E , Kamat P V. Langmuir., 2003, 19(2): 469.https://pubs.acs.org/doi/10.1021/la026478t

doi: 10.1021/la026478t     URL    
[73]
张松( Zhang S ), 李琪(Li Q), 乔庆东(Qiao Q D). 化学通报(Chemistry), 2004, 67(4): 295.
[74]
Zhu Y , Zeng C , Zhu R , Xu Y , Wang X , Zhou H , Zhu J , He H. J. Envuron. Sci-China, 2019, 80: 208.
[75]
Sun H , Dong B , Song L , Du J , Gao R , Su G , Cao L. J. Photochem. Photobiol. A-Chem., 2017, 334: 20.https://linkinghub.elsevier.com/retrieve/pii/S101060301630675X

doi: 10.1016/j.jphotochem.2016.10.033     URL    
[76]
Matos J , Rosales M , García A , Nieto-Delgado C , Rangel-Mendez J R. Green Chem., 2011, 13(12): 3431.http://xlink.rsc.org/?DOI=c1gc15644f

doi: 10.1039/c1gc15644f     URL    
[77]
Wang X , Huang S , Zhu N , Lou Z , Yuan H. Appl. Surf. Sci., 2015, 359: 917.https://linkinghub.elsevier.com/retrieve/pii/S0169433215025921

doi: 10.1016/j.apsusc.2015.10.173     URL    
[78]
Zhang Y , Klamerth N , Chelme-Ayala P , Gamal El-Din M. Chemosphere, 2017, 175: 178.https://linkinghub.elsevier.com/retrieve/pii/S0045653517302369

doi: 10.1016/j.chemosphere.2017.02.058     URL    
[79]
Tu Y , Xiong Y , Descorme C , Kong L , Tian S. J Chem. Technol. Biot., 2014, 89(4): 544.d314c55c-a428-472f-9684-39ffb196c38ahttp://dx.doi.org/10.1002/jctb.4151

doi: 10.1002/jctb.4151     URL    
[80]
Ghuge S P , Saroha A K. J. Environ. Manage., 2018, 211: 83.https://linkinghub.elsevier.com/retrieve/pii/S0301479718300598

doi: 10.1016/j.jenvman.2018.01.052     URL    
[81]
Zhang J , Huang G Q , Liu C , Zhang R N , Chen X X , Zhang L. Sep. Purif. Technol., 2018, 201: 10.https://linkinghub.elsevier.com/retrieve/pii/S1383586617325753

doi: 10.1016/j.seppur.2018.02.003     URL    
[82]
Aghbolaghy M , Soltan J , Sutarto R. Chem. Eng. Res. Des., 2017, 128: 73.https://linkinghub.elsevier.com/retrieve/pii/S0263876217305567

doi: 10.1016/j.cherd.2017.10.002     URL    
[83]
Huang Y , Cui C , Zhang D , Li L , Pan D. Chemosphere, 2015, 119: 295.https://linkinghub.elsevier.com/retrieve/pii/S0045653514008078

doi: 10.1016/j.chemosphere.2014.06.060     URL    
[84]
Ma L , Jin C , An L , Huang L , Li L , Jin H , Liang B , Wei H , Sun C. Catal. Commun., 2019, 120: 59.https://linkinghub.elsevier.com/retrieve/pii/S1566736718305752

doi: 10.1016/j.catcom.2018.11.012     URL    
[85]
Kumari M , Saroha A K. J. Environ. Manage., 2018, 228: 169.https://linkinghub.elsevier.com/retrieve/pii/S0301479718309940

doi: 10.1016/j.jenvman.2018.09.003     URL    
[86]
Pan G , Jing X , Ding X , Shen Y , Xu S , Miao W. J. Alloy. Compd., 2019, 809: 151749.https://linkinghub.elsevier.com/retrieve/pii/S0925838819329822

doi: 10.1016/j.jallcom.2019.151749     URL    
[87]
Muthurasu A , Kim H Y. Electrochim. Acta, 2018, 283: 1425.https://linkinghub.elsevier.com/retrieve/pii/S0013468618315937

doi: 10.1016/j.electacta.2018.07.092     URL    
[88]
Zheng T , Wang Q , Shi Z , Fang Y , Shi S , Wang J , Wu C. J. Environ. Sci., 2016, 50: 21.https://linkinghub.elsevier.com/retrieve/pii/S1001074216300936

doi: 10.1016/j.jes.2016.03.020     URL    
[89]
Hou B , Han H , Jia S , Zhuang H , Xu P , Li K. J. Taiwan Inst. Chem. Eng., 2016, 60: 352.https://linkinghub.elsevier.com/retrieve/pii/S1876107015004733

doi: 10.1016/j.jtice.2015.10.032     URL    
[90]
Zhao Q , Mao Q , Zhou Y , Wei J , Liu X , Yang J , Luo L , Zhang J , Chen H , Chen H. Chemosphere, 2017, 189: 224.https://linkinghub.elsevier.com/retrieve/pii/S004565351731456X

doi: 10.1016/j.chemosphere.2017.09.042     URL    
[91]
金俊伟( Jin J W ). 浙江农林大学硕士论文(Master Degree Dissertation of Zhejiang A&F University), 2017
[92]
Kong L , Zhu Y , Liu M , Chang X , Xiong Y , Chen D. , Environ. Pollut. 2016, 216: 568.https://linkinghub.elsevier.com/retrieve/pii/S0269749116305000

doi: 10.1016/j.envpol.2016.06.012     URL    
[93]
Xu L , Liu W , Li X , Rashid S , Shen C , Wen Y. RSC Adv., 2015, 5(16): 12248.http://xlink.rsc.org/?DOI=C4RA13329C

doi: 10.1039/C4RA13329C     URL    
[94]
Liu J J , Diao Z H , Liu C M , Jiang D , Kong L J , Xu X R. J. Clean Prod., 2018, 182: 794.https://linkinghub.elsevier.com/retrieve/pii/S0959652618303512

doi: 10.1016/j.jclepro.2018.02.045     URL    
[95]
Van Wesenbeeck S , Prins W , Ronsse F , Antal M J. Energ. Fuel., 2014, 28(8): 5318.5825765e-0440-425d-a32d-5026b8e39409http://dx.doi.org/10.1021/ef500875c

doi: 10.1021/ef500875c     URL    
[96]
Yuan H , Lu T , Huang H , Zhao D , Kobayashi N , Chen Y. J. Anal. Appl. Pyrol., 2015, 112: 284.https://linkinghub.elsevier.com/retrieve/pii/S0165237015000224

doi: 10.1016/j.jaap.2015.01.010     URL    
[97]
Zazo J A , Bedia J , Fierro C M , Pliego G , Casas J A , Rodriguez J J. Catal. Today, 2012, 187(1): 115.https://linkinghub.elsevier.com/retrieve/pii/S0920586111007292

doi: 10.1016/j.cattod.2011.10.003     URL    
[98]
Rey A , Faraldos M , Casas J , Zazo J , Bahamonde A , Rodríguez J. Appl. Catal. B-Environ., 2009, 86(1/2): 69.https://linkinghub.elsevier.com/retrieve/pii/S0926337308002798

doi: 10.1016/j.apcatb.2008.07.023     URL    
[99]
Posada D , Betancourt P , Fuentes K , Marrero S , Liendo F , Brito J L. React. Kinet. Mech. Catal., 2014, 112(2): 347.http://link.springer.com/10.1007/s11144-014-0711-5

doi: 10.1007/s11144-014-0711-5     URL    
[100]
Fan H , He K , Wang J. Fuel, 2016, 185: 281.https://linkinghub.elsevier.com/retrieve/pii/S0016236116307219

doi: 10.1016/j.fuel.2016.07.118     URL    
[101]
Gu L , Wang Y , Zhu N , Zhang D , Huang S , Yuan H , Lou Z , Wang M. Bioresour. Technol., 2013, 146: 779.https://linkinghub.elsevier.com/retrieve/pii/S0960852413012157

doi: 10.1016/j.biortech.2013.07.147     URL    
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[6] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[7] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[8] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[9] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[12] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[13] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[14] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[15] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.