English
新闻公告
More
化学进展 2020, Vol. 32 Issue (9): 1386-1401 DOI: 10.7536/PC200126 前一篇   后一篇

• 综述 •

镍铁水滑石电催化氧析出研究进展

杜宇3, 刘德培2, 闫世成1,**(), 于涛2, 邹志刚1,2   

  1. 1. 南京大学现代工程与应用科学学院 固体微结构国家重点实验室 人工微结构科学与技术协同创新中心 南京 210093
    2. 南京大学物理学院 南京 210093
    3. 东南大学成贤学院 南京 210088
  • 收稿日期:2020-02-03 修回日期:2020-03-15 出版日期:2020-09-24 发布日期:2020-06-30
  • 通讯作者: 闫世成
  • 作者简介:
    ** Corresponding author e-mail:
    † These authors contributed equally to this work
  • 基金资助:
    * 国家自然科学基金项目(51872135, 51572121, 21603098, 21633004); 江苏省自然科学基金项目(BK20151265, BK20151383, BK20150580); 中央高校基本科研业务费专项(021314380133, 021314380084)

NiFe Layered Double Hydroxides for Oxygen Evolution Reaction

Yu Du3, Depei Liu2, Shicheng Yan1,**(), Tao Yu2, Zhigang Zou1,2   

  1. 1. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
    2. School of Physics, Nanjing University, Nanjing 210093, China
    3. College of Chengxian, Southeast University, Nanjing 210088, China
  • Received:2020-02-03 Revised:2020-03-15 Online:2020-09-24 Published:2020-06-30
  • Contact: Shicheng Yan
  • Supported by:
    the National Natural Science Foundation of China(51872135, 51572121, 21603098, 21633004); the Natural Science Foundation of Jiangsu Province(BK20151265, BK20151383, BK20150580); the Fundamental Research Funds for the Central Universities(021314380133, 021314380084)

氧析出反应(Oxygen evolution reaction, OER)是电解水制氢、二氧化碳还原、二次金属-空气电池等能源储存和转化技术中的关键半反应。镍铁水滑石类材料(NiFe layered double hydroxide, NiFe-LDH)具有独特的层状结构、优异的催化性能和成本低廉等优点,是一类极具潜力的OER催化材料。但电导率低、活性位点暴露不充分等缺点也限制了其催化性能的进一步提高。本文综述了包括引入缺陷、片层剥离、元素掺杂、表面修饰和原位生长等针对NiFe-LDH的改性方法,这些方法能有效提升反应活性位点数量、增强导电性并促进反应动力学过程。最后,讨论了对NiFe-LDH改性中存在的问题以及对后续研究的展望。

Oxygen evolution reaction(OER) is a crucial half-reaction of energy storage and transfer technologies, such as water splitting, CO2 reduction reaction, and rechargeable metal-air batteries. NiFe layered double hydroxide(NiFe-LDH) has been considered as one of the most promising OER catalysts due to its unique layered structure, high performance, and low cost. However, it is limited by the poor conductivity and insufficient exposure to active sites. Therefore, an efficient modification method can greatly improve the electrocatalytic performance of NiFe-LDH. In this review, several typical modification methods are reviewed in detail, including defects introducing, exfoliating, elements doping, surface decorating, and in-situ growing. These methods can develop the intrinsic activity of NiFe-LDH effectively by exposing more reactive sites, increasing the conductivity, and reducing the kinetic energy barrier. Finally, the challenges and opportunities about modifications of NiFe-LDH are discussed.

Contents

1 Introduction

2 OER electrocatalysis

3 The structure of layered double hydroxides

4 Modification methods

4.1 Defect introducing

4.2 Exfoliating

4.3 Element doping

4.4 Surface decorating

4.5 In-situ growing

4.6 Other methods

5 Conclusion and prospect

()
图1 过渡金属催化材料OER催化反应机理[1]
Fig.1 Catalysis mechanism of transition metal catalyst for OER[1]
图2 OER中的电子转移步骤[15]
Fig.2 The electron transfer steps during OER[15]
图3 水滑石结构的示意图[7]
Fig.3 Schematic diagram of the structure of LDHs[7]
表1 改性NiFe-LDH的OER电催化性能
Table 1 Recent reports on the OER performances of modified NiFe-LDH electrocatalysts
图4 (a) 还原性火焰焙烧法制备富氧空位的NiFe-LDH材料示意图,(b) LSV曲线,(c) 计时电流曲线,稳定性(d)测试前和(e)测试后的SEM[33]
Fig.4 (a) Schematic illustration of defective NiFe-LDH with oxygen vacancies prepared by fast reducing flame treatment,(b) LSV curves,(c) chronoamperometry curves, SEM of flame-engraved NiFe-LDH(d) before and(e) after stability test[33]
图5 Schematic diagram of the synthesis of the NiFe-LDH with Fe or Ni vacancies[36]
Fig.5
图6 富金属空位和氧空位的v-NiFe LDH合成示意图[37]
Fig.6 Schematic diagram of the synthesis of v-NiFe LDH with metal ions and oxygen vacancies[37]
图7 NiFe-LDH的(a)剥离方法示意图,(b)过电势为300 mV下的计时电流测试,(c)LSV曲线[11]
Fig.7 (a) Schematic representation of exfoliation of NiFe-LDH,(b) Chronoamperometric measurement with Overpotential at 300 mV,(c) LSV curves[11]
图8 (a)多孔的[50]和(b)边缘尺寸极小的[51]单层NiFe-LDH形貌表征
Fig.8 The morphology of (a) porous monolayered NiFe-LDH[50] and (b) sub-3 nm ultrafine monolayered NiFe-LDH[51]
图9 NiCoFe-LDH的电化学测试,(a)不同Ni/Co比的线性伏安曲线,(b) 不同Ni/Co比的电化学阻抗谱[39]
Fig.9 (a) LSV curves and(b) EIS curves with different Ni/Co ratios[39]
图10 (a) NiCoFe-LDH的合成示意图,(b) NiCoFe-LDH的TEM图,(c) O-NiCoFe-LDH的TEM图[71]
Fig.10 (a) Schematic illustration of fabrication process and crystal structure of preoxidized trinary LDH,(b, c) TEM images of NiCoFe-LDH and O-NiCoFe-LDH nanoplate.[71]
图11 NiO/NiFe-LDH的电化学测试:(a)LSV曲线,(b)Tafel曲线,(c)目前报道的不同非贵金属催化剂10 mA·cm-2下过电势和塔菲尔斜率比较,(d) NiO/NiFe-LDH的计时电位曲线[43]
Fig.11 OER performance of NiO/NiFe-LDH,(a)LSV curves,(b)Tafel curves,(c) Comparison on the overpotentials at 10 mA·cm-2 and Tafel slopes of recently reported earth-abundant OER catalysts,(d) the chronopotentiometric curve of NiO/NiFe-LDH[43]
图12 sAu/NiFe-LDH的(a)TEM图,(b)HAADF-STEM图和(c)EDS图,(d)Au的L3-边XANES谱和理论计算结果,(e)当O结合在Fe位点时Au对NiFe-LDH电荷密度的影响,等值面为0.004 e?-3,黄色和蓝色等值面分别表示电子聚集和耗尽[46]
Fig.12 (a) TEM,(b) HAADF-STEM and(c) EDS mapping images of sAu/NiFe LDH.(d) Au L3-edge XANES spectra of the experimental and simulated results for sAu/NiFe LDH, and the Au foil.(e) Differential charge densities of NiFe LDH with and without Au atom when one O atom is adsorbed on the Fe site. The iso-surface value is 0.004 e?-3. Yellow and blue contours represent electron accumulation and depletion, respectively[46]
图13 NiFe-LDH@NiCoP/NF的合成示意图[47]
Fig.13 Schematic representation of the synthesis of 3D hierarchical NiFe-LDH@NiCoP/NF electrodes[47]
图14 空心微球结构的NiFe-LDH的TEM图和示意图[104]
Fig.14 TEM image and schematic diagram of NiFe-LDH HMS[104]
表2 各种改性策略的优缺点
Table 2 Pros and cons of various modification methods
图15 NiFe-LDH/GO复合材料结构的示意图以及OER性能测试图[53]
Fig.15 Schematic representation of NiFe-LDH/GO’s structure and its OER activity[53]
[1]
Yao Y F , Xu Z , Cheng F , Li W C , Cui P X , Xu G Z , Xu S , Wang P , Sheng G D , Yan Y D , Yu Z T , Yan S C , Chen Z X , Zou Z G. Energy Environ. Sci., 2018, 11(2): 407.
[2]
Yang Y , Dang L N , Shearer M J , Sheng H Y , Li W J , Chen J , Xiao P , Zhang Y H , Hamers R J , Jin S. Adv. Energy Mater., 2018, 8(15): 1703189.
[3]
Betley T A , Wu Q , Van Voorhis T , Nocera D G. Inorg. Chem., 2008, 47(6): 1849.
[4]
Subbaraman R , Tripkovic D , Chang K C , Strmcnik D , Paulikas A P , Hirunsit P , Chan M , Greeley J , Stamenkovic V , Markovic N M. Nat. Mater., 2012, 11(6): 550.
[5]
Hong W T , Risch M , Stoerzinger K A , Grimaud A , Suntivich J , Shao-Horn Y. Energy Environ. Sci., 2015, 8(5): 1404.
[6]
Suntivich J , May K J , Gasteiger H A , Goodenough J B , Shao-Horn Y. Science, 2011, 334(6061): 1383.
[7]
Cai Z Y , Bu X M , Wang P , Ho J C , Yang J H , Wang X Y. J. Mater. Chem. A, 2019, 7(10): 5069.
[8]
周伶俐( Zhou L L ), 谢瑞刚(Xie R G), 王林江(Wang L J). 化学进展(Prog. Chem.), 2019, 31(2/3): 275.
[9]
Jamil S , Alvi A R , Khan S R , Janjua M R S A. 化学进展(Prog. Chem.), 2019, 31(2/3): 394.
[10]
Gong M , Dai H J. Nano Res., 2015, 8(1): 23.
[11]
Song F , Hu X. Nat. Commun., 2014, 5(1): 4477.
[12]
Li Z H , Shao M F , An H L , Wang Z X , Xu S M , Wei M , Evans D G , Duan X. , Chem. Sci. 2015, 6(11): 6624.
[13]
Lyons M E , Floquet S. Phys. Chem. Chem. Phys., 2011, 13(12): 5314.
[14]
陈金男( Chen J N ), 何小波(He X B), 银凤翔(Yin F X). 化工进展(Chem. Ind. Eng. Prog.), 2016, 35(09): 2775.
[15]
Tao H B , Xu Y H , Huang X , Chen J Z , Pei L J , Zhang J M , Chen J G , Liu B. Joule, 2019, 3(6): 1498.
[16]
Louie M W , Bell A T. J. Am. Chem. Soc., 2013, 135(33): 12329.
[17]
Klaus S , Cai Y , Louie M W , Trotochaud L , Bell A T. J. Phys. Chem. C, 2015, 119(13): 7243.
[18]
Friebel D , Louie M W , Bajdich M , Sanwald K E , Cai Y , Wise A M , Cheng M J , Sokaras D , Weng T C , Alonso-Mori R. J. Am. Chem. Soc., 2015, 137(3): 1305.
[19]
Lee S , Bai L C , Hu X L. Angew. Chem. Int. Ed., 2020, 59: 1.
[20]
Li N , Bediako D K , Hadt R G , Hayes D , Kempa T J , Von Cube F , Bell D C , Chen L X , Nocera D G. Proc. Natl. Acad. Sci., 2017, 114(7): 1486.
[21]
Chen J Y , Dang L N , Liang H F , Bi W L , Gerken J B , Jin S , Alp E E , Stahl S S. J. Am. Chem. Soc., 2015, 137(48): 15090.
[22]
Sayler R I , Hunter B M , Fu W , Gray H B , Britt R D. J. Am. Chem. Soc., 2020, 142(4): 1838.
[23]
陈春霞( Chen C X ), 徐成华(Xu C H), 冯良荣(Feng L R), 索继栓(Suo J S), 邱发礼(Qiu F L). 化学通报(Chem. Bull.), 2005, (02): 123.
[24]
Zhou D J , Cai Z , Bi Y M , Tian W L , Luo M , Zhang Q , Xie Q X , Wang J D , Li Y P , Kuang Y. Nano Res., 2018, 11(3): 1358.
[25]
Carrasco J A , Sanchis-Gual R , Silva A S D, AbellÁn G, Coronado E. Chem. Mater., 2019, 31(17): 6798.
[26]
Li X M , Hao X G , Wang Z D , Abudula A , Guan G Q. J. Power Sources, 2017, 347: 193.
[27]
Wang Q , O’Hare D. Chem. Rev., 2012, 112(7): 4124.
[28]
王雅( Wang Y ), 方志强(Fang Z Q), 史晓雨(Shi X Y), 楚意月(Chu Y Y), 郝召民(Hao Z M). 华南师范大学学报(自然科学版)(J. South China Norm. Univ.(Nat. Sci. Ed.)), 2018, 29(06): 638.
[29]
徐梦莹( Xu M Y ), 孟玲袆(Meng L Y), 王雅静(Wang Y J), 刘洪涛(Liu H T). 龙岩学院学报(J. Longyan Univ.), 2016, 34(05): 24.
[30]
Liu R , Wang Y Y , Liu D D , Zou Y Q , Wang S Y. Adv. Mater., 2017, 29(30): 1701546.
[31]
Yang M Q , Wang J , Wu H , Ho G W. Small, 2018, 14(15): e1703323.
[32]
Xiong X Y , Cai Z , Zhou D J , Zhang G X , Zhang Q , Jia Y , Duan X X , Xie Q X , Lai S B , Xie T H. Sci. China Mater., 2018, 61(7): 939.
[33]
Zhou D J , Xiong X Y , Cai Z , Han N N , Jia Y , Xie Q X , Duan X X , Xie T H , Zheng X L , Sun X M. Small Methods, 2018, 2(7): 1800083.
[34]
Cai Z , Bi Y M , Hu E Y , Liu W , Dwarica N , Tian Y , Li X L , Kuang Y , Li Y P , Yang X Q. Adv. Energy Mater., 2018, 8(3): 1701694.
[35]
Cai L L , McClellan C J, Koh A L, Li H, Yalon E, Pop E, Zheng X L. Nano Lett., 2017, 17(6): 3854.
[36]
Wang Y Y , Qiao M , Li Y F , Wang S Y. Small, 2018, 14(17): 1800136.
[37]
Yuan Z J , Bak S M , Li P S , Jia Y , Zheng L R , Zhou Y , Bai L , Hu E Y , Yang X Q , Cai Z. ACS Energy Lett., 2019, 4(6): 1412.
[38]
Asnavandi M , Yin Y C , Li Y B , Sun C H , Zhao C. ACS Energy Lett., 2018, 3(7): 1515.
[39]
Long X , Xiao S , Wang Z , Zheng X L , Yang S. Chem. Commun., 2015, 51(6): 1120.
[40]
Zhou D J , Cai Z , Lei X D , Tian W L , Bi Y M , Jia Y , Han N N , Gao T F , Zhang Q , Kuang Y , Pan J Q , Sun X M , Duan X. Adv. Energy Mater., 2018, 8(9): 1701905.
[41]
Dinh K N , Zheng P L , Dai Z F , Zhang Y , Dangol R , Zheng Y , Li B , Zong Y , Yan Q Y. Small, 2018, 14(8): 1703257.
[42]
Xu H , Wang B , Shan C , Xi P , Liu W , Tang Y . ACS Appl. Mater. Interfaces, 2018, 10(7): 6336.
[43]
Gao Z W , Liu J Y , Chen X M , Zheng X L , Mao J , Liu H , Ma T , Li L , Wang W C , Du X W. Adv. Mater., 2019, 31(11): e1804769.
[44]
Wang X X , Yang Y , Diao L C , Tang Y , He F , Liu E Z , He C N , Shi C S , Li J J , Sha J W. ACS Appl. Mater. Interfaces, 2018, 10(41): 35145.
[45]
Chen J D , Zheng F , Zhang S J , Fisher A , Zhou Y , Wang Z Y , Li Y Y , Xu B B , Li J T , Sun S G. ACS Catal., 2018, 8(12): 11342.
[46]
Zhang J , Liu J , Xi L , Yu Y , Chen N , Sun S , Wang W , Lange K M , Zhang B. J. Am. Chem. Soc., 2018, 140(11): 3876.
[47]
Zhang H J , Li X P , Hähnel A , Naumann V , Lin C , Azimi S , Schweizer S L , Maijenburg A W , Wehrspohn R B. Adv. Funct. Mater., 2018, 28(14): 1706847.
[48]
Wang Z Q , Zeng S , Liu W H , Wang X W , Li Q W , Zhao Z G , Geng F X. ACS Appl. Mater. Interfaces, 2017, 9(2): 1488.
[49]
Li X , Wu H J , Wu Y , Kou Z K , Pennycook S J , Wang J. ACS Appl. Nano Mater., 2018, 2(1): 325.
[50]
Zhang X , Zhao Y , Zhao Y , Shi R , Waterhouse G I N, Zhang T. Adv. Energy Mater., 2019, 9(24): 1900881.
[51]
Zhao Y F , Zhang X , Jia X D , Waterhouse G I N, Shi R, Zhang X R, Zhan F, Tao Y, Wu L Z, Tung C H, O’Hare D, Zhang T R. Adv. Energy Mater., 2018, 8(18): 1703585.
[52]
Jia Y , Zhang L Z , Gao G P , Chen H , Wang B , Zhou J Z , Soo M T , Hong M , Yan X C , Qian G R. Adv. Mater., 2017, 29(17): 1700017.
[53]
Shen J , Zhang P , Xie R S , Chen L , Li M T , Li J P , Ji B Q , Hu Z Y , Li J J , Song L X. ACS Appl. Mater. Interfaces, 2019, 11(14): 13545.
[54]
Kong X K , Zhang C L , Hwang S Y , Chen Q W , Peng Z M. Small, 2017, 13(26): 1700334.
[55]
Kang Q , Vernisse L , Remsing R C , Thenuwara A C , Shumlas S L , McKendry I G, Klein M L, Borguet E, Zdilla M J, Strongin D R. J. Am. Chem. Soc., 2017, 139(5): 1863.
[56]
Chen R , Hung S F , Zhou D , Gao J , Yang C , Tao H , Yang H B , Zhang L , Zhang L , Xiong Q , Chen H M , Liu B. Adv. Mater., 2019, 31(41): e1903909.
[57]
Lv L , Yang Z X , Chen K , Wang C D , Xiong Y J. Adv. Energy Mater., 2019, 9(17): 1803358.
[58]
Yu J F , Martin B R , Clearfield A , Luo Z P , Sun L Y. Nanoscale, 2015, 7(21): 9448.
[59]
Zhang C , Antonietti M , Fellinger T P. Adv. Funct. Mater., 2014, 24(48): 7655.
[60]
Kim J H , Shin K , Kawashima K , Youn D H , Lin J , Hong T E , Liu Y , Wygant B R , Wang J , Henkelman G , Mullins C B. ACS Catal., 2018, 8(5): 4257.
[61]
Smith R D , Prevot M S , Fagan R D , Trudel S , Berlinguette C P. J. Am. Chem. Soc., 2013, 135(31): 11580.
[62]
Ge X M , Liu Y Y , Goh F W T, Hor T S A, Zong Y, Xiao P, Zhang Z, Lim S H, Li B, Wang X, Liu Z L. ACS Appl. Mater. Interfaces, 2014, 6(15): 12684.
[63]
Mao S , Wen Z H , Huang T Z , Hou Y , Chen J H. Energy Environ. Sci., 2014, 7(2): 609.
[64]
Jia X D , Zhang X , Zhao J Q , Zhao Y F , Zhao Y X , Waterhouse G I N, Shi R, Wu L Z, Tung C H, Zhang T R. J. Energy Chem., 2019, 34: 57.
[65]
Malik B , Anantharaj S , Karthick K , Pattanayak D K , Kundu S. Catal. Sci. Technol., 2017, 7(12): 2486.
[66]
Xu H , Cao J , Shan C , Wang B , Xi P , Liu W , Tang Y. Angew. Chem. Int. Ed., 2018, 57(28): 8654.
[67]
Zheng Y R , Gao M R , Gao Q , Li H H , Xu J , Wu Z Y , Yu S H. Small, 2015, 11(2): 182.
[68]
Li H , Chen S , Zhang Y , Zhang Q , Jia X , Zhang Q , Gu L , Sun X , Song L , Wang X. Nat. Commun., 2018, 9(1): 2452.
[69]
Wang H , Yang J L , Yang L Y , Zhang G X , Liu C K , Tang H T , Zhao Q H , Pan F. Funct. Mater. Lett., 2015, 11(03): 1850058.
[70]
Yang Q , Li T , Lu Z Y , Sun X M , Liu J F. Nanoscale, 2014, 6(20): 11789.
[71]
Qian L , Lu Z Y , Xu T H , Wu X C , Tian Y , Li Y P , Huo Z Y , Sun X M , Duan X. Adv. Energy Mater., 2015, 5(13): 1500245.
[72]
Bi Y M , Cai Z , Zhou D J , Tian Y , Kuang Y , Li Y P , Sun X M , Duan X. J. Catal., 2018, 358: 100.
[73]
Liao P , Keith J A , Carter E A. J. Am. Chem. Soc., 2012, 134(32): 13296.
[74]
Gao W , Wen D , Ho J C , Qu Y. Mater. Today Chem., 2019, 12: 266.
[75]
Wang J D , Xiao X , Liu Y , Pan K M , Pang H , Wei S Z. J. Mater. Chem. A, 2019, 7(30): 17675.
[76]
Liu G , Wang M H , Wu Y , Li N , Zhao F , Zhao Q , Li J P. Appl. Catal. B, 2020, 260: 118199.
[77]
Cai Z , Zhou D J , Wang M Y , Bak S M , Wu Y S , Wu Z S , Tian Y , Xiong X Y , Li Y P , Liu W. Angew.Chem., 2018, 130(30): 9536.
[78]
Liu H X , Wang Y R , Lu X Y , Hu Y , Zhu G Y , Chen R P , Ma L B , Zhu H F , Tie Z X , Liu J , Jin Z. Nano Energy, 2017, 35: 350.
[79]
Gerken J B , Shaner S E , Massé R C , Porubsky N J , Stahl S S. Energy Environ. Sci., 2014, 7(7): 2376.
[80]
Chen G B , Wang T , Zhang J , Liu P , Sun H J , Zhuang X D , Chen M W , Feng X L. Adv. Mater., 2018, 30(10): 1706279.
[81]
Chen Q Q , Hou C C , Wang C J , Yang X , Shi R , Chen Y. Chem.Commun., 2018, 54(49): 6400.
[82]
Yao L , Gu J , Wang W , Li T , Ma D , Liu Q , Zhang W , Abbas W , Bahadoran A , Zhang D. Nanoscale, 2019, 11(5): 2138.
[83]
Qiu B C , Wang C , Zhang N , Cai L J , Xiong Y J , Chai Y. ACS Catal., 2019, 9(7): 6484.
[84]
Wu X , Yang Y , Zhang T , Wang B , Xu H , Yan X , Tang Y. ACS Appl. Mater. Interfaces, 2019, 11(43): 39841.
[85]
Gao W , Wang C , Ma F Y , Wen D. Electrochim. Acta, 2019, 320: 134608.
[86]
Guo S , Sun W , Yang W , Xu Z , Li Q , Shang J K. ACS Appl.Mater. Interfaces, 2015, 7(47): 26291.
[87]
Chi J , Yu H M , Qin B W , Fu L , Jia J , Yi B L , Shao Z G. ACS Appl. Mater. Interfaces, 2016, 9(1): 464.
[88]
Li P S , Wang M Y , Duan X X , Zheng L R , Cheng X P , Zhang Y F , Kuang Y , Li Y P , Ma Q , Feng Z X , Liu W , Sun X M. Nat. Commun., 2019, 10(1): 1.
[89]
Anantharaj S , Karthick K , Venkatesh M , Simha T V S V, Salunke A S, Ma L, Liang H, Kundu S. Nano Energy, 2017, 39: 30.
[90]
Zhang B , Zhu C , Wu Z , Stavitski E , Lui Y H , Kim T H , Liu H , Huang L , Luan X , Zhou L , Jiang K , Huang W , Hu S , Wang H , Francisco J S. Nano Lett., 2019, 20(1): 136.
[91]
Ning Y Y , Ma D D , Shen Y , Wang F M , Zhang X B. Electrochim. Acta, 2018, 265: 19.
[92]
Wang J , Zhong H X , Qin Y L , Zhang X B. Angew. Chem. Int. Ed., 2013, 52(20): 5248.
[93]
Kibsgaard J , Gorlin Y , Chen Z , Jaramillo T F. J. Am. Chem. Soc., 2012, 134(18): 7758.
[94]
Wang Q , Shang L , Shi R , Zhang X , Zhao Y F , Waterhouse G I , Wu L Z , Tung C H , Zhang T R. Adv. Energy Mater., 2017, 7(21): 1700467.
[95]
Tang C , Wang H S , Wang H F , Zhang Q , Tian G L , Nie J Q , Wei F. Adv. Mater., 2015, 27(30): 4516.
[96]
Yuan H , Kong L , Li T , Zhang Q. Chin. Chem. Lett., 2017, 28(12): 2180.
[97]
Wang W , Liu Y C , Li J , Luo J , Fu L , Chen S L. J. Mater. Chem. A, 2018, 6(29): 14299.
[98]
杜世超( Du S C ), 任志宇(Ren Z Y), 吴君(Wu J), 付宏刚(Fu H G). 高等学校化学学报(Chem. J. Chin. Univ.), 2016, 37(08): 1415
[99]
Wang Z , Jia W , Jiang M L , Chen C , Li Y D. Sci. China Mater., 2015, 58(12): 944.
[100]
Gong M , Li Y G , Wang H L , Liang Y Y , Wu J Z , Zhou J G , Wang J , Regier T , Wei F , Dai H J. J. Am. Chem. Soc., 2013, 135(23): 8452.
[101]
Long X , Li J K , Xiao S , Yan K Y , Wang Z L , Chen H N , Yang S H. Angew. Chem. Int. Ed., 2014, 53(29): 7584.
[102]
Xiang Q , Li F , Chen W L , Ma Y L , Wu Y , Gu X , Qin Y , Tao P , Song C Y , Shang W. ACS Energy Lett., 2018, 3(10): 2357.
[103]
Yu L , Yang J F , Guan B Y , Lu Y , Lou X W. Angew. Chem. Int. Ed., 2018, 57(1): 172.
[104]
Zhang C , Shao M F , Zhou L , Li Z H , Xiao K M , Wei M. ACS Appl. Mater. Interfaces, 2016, 8(49): 33697.
[105]
Hou Y , Lohe M R , Zhang J , Liu S , Zhuang X , Feng X. Energy Environ. Sci., 2016, 9(2): 478.
[106]
Wang J , Zhong H X , Wang Z L , Meng F L , Zhang X B. ACS Nano, 2016, 10(2): 2342.
[107]
Ganesan P , Prabu M , Sanetuntikul J , Shanmugam S. ACS Catal., 2015, 5(6): 3625.
[108]
Liu Q , Jin J , Zhang J Y. ACS Appl. Mater. Interfaces, 2013, 5(11): 5002.
[109]
Shi J L , Hu J M , Luo Y G , Sun X P , Asiri A M. Catal. Sci. Technol., 2015, 5(11): 4954.
[110]
Yang L B , Qi H L , Zhang C X , Sun X P. , Nanotechnology 2016, 27(23): 23LT01.
[111]
Liu M J , Li J H. ACS Appl. Mater. Interfaces, 2016, 8(3): 2158.
[112]
Zhao X , Zhang H T , Yan Y , Cao J H , Li X Q , Zhou S M , Peng Z M , Zeng J. Angew. Chem. Int. Ed., 2017, 56(1): 328.
[113]
张璋( Zhang Z ), 胡先标(Hu X B). 华南师范大学学报(自然科学版)(J. South China Norm. Univ.(Nat. Sci. Ed.)), 2019, 51(05): 18.
[114]
Zhang F S , Wang J W , Luo J , Liu R R , Zhang Z M , He C T , Lu T B. Chem. Sci., 2018, 9(5): 1375.
[115]
Zhou J Q , Yu L , Zhu Q C , Huang C Q , Yu Y. J. Mater. Chem. A, 2019, 7(30): 18118.
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[3] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[4] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[5] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[6] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[7] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[8] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[9] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[10] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[11] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[12] 刘晓璐, 耿钰晓, 郝然, 刘玉萍, 袁忠勇, 李伟. 环境条件下电催化氮还原的现状、挑战与展望[J]. 化学进展, 2021, 33(7): 1074-1091.
[13] 韩嘉琦, 李志达, 纪德强, 苑丹丹, 吴红军. 单原子改性二硫化钼电催化析氢[J]. 化学进展, 2021, 33(12): 2392-2403.
[14] 刘雪晨, 邢娟娟, 王海鹏, 周沅逸, 张玲, 王文中. HMF催化合成生物基聚酯单体FDCA[J]. 化学进展, 2020, 32(9): 1294-1306.
[15] 张冀宁, 曹爽, 胡文平, 朴玲钰. 光电催化海水分解制氢[J]. 化学进展, 2020, 32(9): 1376-1385.