English
新闻公告
More
化学进展 2021, Vol. 33 Issue (12): 2392-2403 DOI: 10.7536/PC201109 前一篇   后一篇

• 综述 •

单原子改性二硫化钼电催化析氢

韩嘉琦, 李志达, 纪德强, 苑丹丹, 吴红军*()   

  1. 东北石油大学化学化工学院 大庆 163318
  • 收稿日期:2020-11-05 修回日期:2021-01-11 出版日期:2021-03-05 发布日期:2021-03-05
  • 通讯作者: 吴红军

Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution

Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu()   

  1. College of Chemistry & Chemical Engineering, Northeast Petroleum University,Daqing 163318, China
  • Received:2020-11-05 Revised:2021-01-11 Online:2021-03-05 Published:2021-03-05
  • Contact: Hongjun Wu

氢能是21世纪最理想的清洁能源之一。相比于天然气和煤炭制氢,电解水制氢具有成本低、效率高、无污染、原料丰富的特点,可以有效缓解CO2过量排放导致的温室效应。电催化析氢需要活性高、稳定性好、廉价易得的催化剂克服反应能垒并加速动力学过程,对实现分解水制氢的规模化应用具有重要的推动作用。铂基催化剂被公认为性能最优异的析氢电催化剂之一,但由于丰度低、成本高,不适用于大规模产氢。二硫化钼(MoS2)作为典型的二维材料之一,因其高活性位点暴露和高比表面积在析氢领域展现出一定的应用潜能,并有望取代铂基催化剂。本文基于MoS2电催化剂在析氢领域的研究现状,对单原子掺杂改性MoS2以提高其催化活性的研究进行了综述,以析氢过电位(Overpotential)及塔菲尔(Tafel)曲线斜率为依据,总结了贵金属单原子、非贵金属单原子及非金属单原子改性MoS2催化剂的结构与性能以及它们之间的构效关系,在此基础上,提出MoS2析氢催化剂目前存在的科学问题并指出了未来的努力方向。

The over-reliance on fossil fuels leads to deteriorating ecological environment and motivates us to develop sustainable and clean energy alternatives in order for our long-term survival on the earth. Hydrogen energy is one of the most promising energy carriers in the 21st century since the only by-product is H2O. In comparison to steam reforming of natural gas and coal, hydrogen evolution reaction (HER) via H2O electrolysis is a more attracting pathway for H2 production because of the low cost, high efficiency and abundant raw materials, which would contribute to a lower carbon footprint. HER requires stable and active enough catalyst materials to overcome the reaction barriers. It is well known that Pt group materials are state-of-the-art HER catalysts, but unfortunately, the low abundance and high cost complicate its large-scale applications. The transition metal disulfides (TMDs) possess a two-dimensional layered structure and a larger specific surface area, which is conducive to expose more active sites. In particular, MoS2, a representative of TMDs, has attracted tremendous research interests in HER domain and is supposed to be a cost-affordable alternative to Pt-based catalysts. In this work, the research status of MoS2 modified by single atoms (SA-MoS2) of noble metal, non-noble metal, and nonmetal, to catalyze HER reactions is reviewed. Based on the overpotential and Tafel slope, the structure-function relationship between HER performance and SA-MoS2 structures is summarized. Finally, future research directions are proposed and hopefully, this paper will guide rational design of SA-MoS2 for a more efficient HER electrocatalyst.

Contents

1 Introduction

2 Metal single-atom doped MoS2

2.1 Noble metal elements platinum (Pt), palladium (Pd), ruthenium (Ru), tungsten (W)

2.2 Transition metal elements nickel (Ni), cobalt (Co), copper (Cu)

3 Non-metal single-atom doped MoS2

4 Conclusion and outlook

()
图1 0.5 mol·L-1 H2SO4中MoS2纳米花上的析氢机理[43]
Fig.1 The hydrogen evolution mechanism of MoS2 nanoflowers in 0.5 mol·L-1 H2SO4[43]. Reproduced from Ref. 43 with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry.
图2 MoS2 三种晶体结构图[53]
Fig.2 Phase diagrams of MoS4[53]
表1 贵金属单原子掺杂MoS2析氢反应催化剂
Table 1 MoS2 electrocatalysts modified with noble metal single atoms
图3 Pt-MoS2的TEM和HAADF-STEM图像(a) Pt-MoS2的 TEM 图像;(b) 单个 Pt 原子(用红色圆圈标记)均匀地分散在MoS2上;(c) 蜂窝状排列的MoS2及其放大图片(d)[61]
Fig.3 TEM and HAADF-STEM images of Pt-MoS2(a) TEM image of Pt-MoS2; (b) the single Pt atoms (marked by red circles) uniformly disperse on the 2D MoS2 plane; (c) a honeycomb arrangement of MoS2 and the amplificatory image[61].Reproduced from Ref. 61 with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry
图4 Pt-MoS2的EDX图像(a) Pt-MoS2的 HAADF-STEM 图像;(b)EDX图像显示Mo元素均匀分布在纳米片上;(c) EDX图像显示S元素均匀分布在纳米片上;(d) EDX图像显示P元素均匀分布在纳米片上[61]
Fig.4 EDX mappings of Pt-MoS2 (a) HAADF-STEM image of Pt-MoS2; (b~d) EDX mappings of Mo, S and Pt[61]
图5 Pt-MoS2的析氢催化性能(a) LSV曲线;(b)Tafel斜率图[61]
Fig.5 HER performance of Pt-MoS2 (a) polarization curves; (b) Tafel plots[61]
图6 MoS2/Pd (Ⅱ)的氧化还原反应示意图[62]
Fig.6 Schematic illustration of the spontaneous MoS2/Pd (Ⅱ) redox reaction[62]
图7 MoS2 (a) 和1%Pd-MoS2 (b) 的HAADF-STEM图像[62]
Fig.7 HAADF-STEM images of (a) MoS2, (b) 1%Pd-MoS2[62]
图8 Pd单原子锚定的MoS2析氢催化性能(a) LSV曲线;(b)Tafel斜率[62]
Fig.8 HER performance of Pd-MoS2 electrocatalysts (a) polarization curves, (b) Tafel plots[62]
图9 (a, c) SA-Ru-MoS2的HAADF-STEM图像;(b, d)为(a)和(c)中橙色矩形的放大区域[63]
Fig.9 (a,c) HAADF-STEM images of SA-Ru-MoS2; (b,d) Magnified domains of the orange dashed rectangles shown in (a) and (c)[63]
图10 Ru单原子掺杂导致S空位产生示意图[63]
Fig.10 Schematic diagram of the generation of S vacancies caused by Ru single atom doping[63]
图11 Ru单原子锚定的MoS2析氢催化性能(a) LSV曲线;(b)Tafel斜率图[63]
Fig.11 HER catalytic performance of Ru-MoS2(a) LSV polarization curves; (b) Tafel plots[63]
图12 W单原子锚定的MoS2催化析氢性能(a) LSV曲线;(b)Tafel斜率图[64]
Fig.12 HER activity of Mo1-xWxS2(a) polarization curves, (b) corresponding Tafel plots[64]
图13 Mo0.5W0.5S2的HAADF-STEM图像[64]
Fig.13 HAADF-STEM image of Mo0.5W0.5S2[64]
表2 过渡金属单原子锚定的MoS2析氢催化剂
Table 2 MoS2 electrocatalysts modified with transition metal single atoms
图14 Ni单原子锚定的MoS2催化析氢性能(a)LSV曲线;(b)Tafel斜率[70]
Fig.14 HER activity of NiO@1T-MoS2(a) Polarization curves; (b) Tafel plots[70]
图15 (a,b)Co-MoS2 HAADF-STEM图;(c,d)原子结构示意图(黄色、绿色和红色分别代表S、Mo和Co原子)[66]
Fig.15 (a,b) HAADF-STEM image of Co-MoS2; (c,d) Atomic structure diagram, yellow, green and red balls represent S, Mo and Co[66].Reproduced from Ref. 70 with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry
图16 Co单原子锚定的MoS2催化析氢性能(a)LSV曲线;(b)Tafel斜率[72]
Fig.16 HER activity of SA Co-D 1T MoS2 (a) Polarization curves; (b) Tafel plots[72]
表3 非金属单原子掺杂MoS2析氢反应催化剂
Table 3 MoS2 electrocatalysts modified with non-metal single atoms
图17 N-MoS2的TEM和HRTEM图像[75]
Fig.17 TEM and HRTEM images of N-MoS2-3[75]
图18 N-MoS2-3的EDX图像[75]
Fig.18 EDX mapping of N-MoS2-3[75]
图19 N单原子锚定的MoS2 催化析氢性能 (a)极化曲线;(b) Tafel斜率;(c) N-MoS2-3 在 5000 次 CV 循环前后的极化曲线;(d) 60分钟样品N-MoS2-3 产生的理论和实验氢气量[75]
Fig.19 HER activity of N-MoS2(a) polarization curves ; (b)Tafel plots ; (c) polarization curves for N-MoS2-3 before and after 5000 CV cycles ; (d)The theoretical and experimental amount of hydrogen produced by the sample N-MoS2-3 as a function of time for 60 min[75]
图20 O单原子锚定的MoS2 XPS谱图 A:Mo 3d;B:S 2p;C:O 1s[76]
Fig.20 XPS spectra A: high-resolution Mo 3d; B: high-resolution S 2p ; C: high-resolution O 1s[76]
图21 O单原子锚定的MoS2 催化析氢性能 A:极化曲线;B: Tafel斜率[76]
Fig.21 HER activity of the oxygen-incorporated MoS2 ultrathin nanosheets A: polarization curves ; B: Tafel plots[76]
表4 O原子掺杂的MoS2的Tafel斜率[76]
Table 4 Tafel slopes of MoS2 prepared under different temperatures[76]
图22 P-doped MoS2原子结构图[77]
Fig.22 Atomic structure diagram of P-doped MoS2[77]
图23 (a)P-doped MoS2扫描电镜图像 (b)P-doped MoS2透射电镜图像[77]
Fig.23 (a) SEM image of P-doped MoS2 (b) TEM image of P-doped MoS2[77]
图24 P单原子锚定的MoS2析氢催化性能(a) LSV曲线;(b)Tafel 斜率;(c)电化学阻抗谱;(d) P-MoS2-1、P-MoS2-2、MoS2的电荷传输电阻[78]
Fig.24 HER activity of P-MoS2 (a) Polarization curves ; (b) Tafel plots ; (c) Electrochemical impedance spectra of different electrodes at -0.25 V versus RHE; (d) Plot of charge transport resistance of P-MoS2-1, P-MoS2-2, MoS2[78].Reproduced from Ref. 78 and Ref. 79 with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry
图25 Se-doped MoS2纳米片合成机理示意图[79]
Fig.25 Schematic illustration of preparing Se-doped MoS2 nanosheets[79]
图26 Se-doped MoS2纳米片催化析氢性能(a) LSV曲线;(b)Tafel 斜率[79]
Fig.26 HER activity of Se-doped MoS2 nanosheets (a)Polarization curves; (b)Tafel plots[79]
[1]
Chen X S, Liu G B, Zheng W, Feng W, Cao W W, Hu W P, Hu P G. Adv. Funct. Mater., 2016, 26(46): 8537.
[2]
Wu F, Yang H Y, Bai Y, Wu C. Adv. Mater., 2019, 31(16): 1806510.
[3]
Shen Z B, Zhao H, Liu Y, Kan Z Y, Xing P, Zhong J G, Jiang B. React. Chem. Eng., 2018, 3(1): 34.
[4]
Chao S L, Zou F, Wan F F, Dong X B, Wang Y L, Wang Y X, Guan Q X, Wang G C, Li W. Sci. Rep., 2017, 7(1): 1.
[5]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, N􀱼rskov J K, Jaramillo T F. Science, 2017, 355(6321): eaad4998. DOI: 10.1126/science.aad4998.
[6]
Lewis N S, Nocera D G. PNAS, 2006, 103(43): 15729.
[7]
Yan Y, Xia B Y, Zhao B, Wang X. J. Mater. Chem. A, 2016, 4(45): 17587.
[8]
Liu S, Zhang E, Zhang X, Liu J, Zhang J. Scientia Sinica Chimica, 2020, 50: 1001.
[9]
Shen R C, Zhang L P, Chen X Z, Jaroniec M, Li N, Li X. Appl. Catal. B: Environ., 2020, 266: 118619.
[10]
Ma S, Xie J, Wen J Q, He K L, Li X, Liu W, Zhang X C. Appl. Surf. Sci., 2017, 391: 580.
[11]
Ren D D, Liang Z Z, Ng Y H, Zhang P, Xiang Q J, Li X. Chem. Eng. J., 2020, 390: 124496.
[12]
Liang Z Z, Shen R C, Ng Y H, Zhang P, Xiang Q J, Li X. J. Mater. Sci. Technol., 2020, 56: 89.
[13]
Zhang Z W, Li Q H, Qiao X Q, Hou D F, Li D S. Chinese J. Catal., 2019, 040: 371.
( 张振伟, 李秋昊, 乔秀清, 侯东芳, 李东升. 催化学报, 2019, 040: 371.)
[14]
Shen R C, Xie J, Xiang Q J, Chen X B, Jiang J Z, Li X. Chin. J. Catal., 2019, 40(3): 240.
[15]
Ren D D, Shen R C, Jiang Z M, Lu X Y, Li X. Chin. J. Catal., 2020, 41(1): 31.
[16]
Wei Z D, Xu M Q, Liu J Y, Guo W Q, Jiang Z, Shangguan W F. Chin. J. Catal., 2020, 41(1): 103.
[17]
Zhang S J, Duan S X, Chen G L, Meng S G, Zheng X Z, Fan Y, Fu X L, Chen S F. Chin. J. Catal., 2021, 42(1): 193.
[18]
Shen R C, Ding Y N, Li S B, Zhang P, Xiang Q J, Ng Y H, Li X. Chin. J. Catal., 2021, 42(1): 25.
[19]
Shen R C, Ren D D, Ding Y N, Guan Y T, Ng Y H, Zhang P, Li X. Sci. China Mater., 2020, 63(11): 2153.
[20]
Ren D D, Zhang W N, Ding Y N, Shen R C, Jiang Z M, Lu X Y, Li X. Sol. RRL, 2020, 4(8): 1900423.
[21]
Yan Y, Xia B Y, Xu Z C, Wang X. ACS Catal., 2014, 4(6): 1693.
[22]
Xiao W, Huang X L, Song W D, Yang Y, Herng T S, Xue J M, Feng Y P, Ding J. Nano Energy, 2016, 25: 60.
[23]
Li G B, Li W, Zhang J L. Catal. Sci. Technol., 2016, 6(6): 1821.
[24]
Dresselhaus M S, Thomas I L. Nature, 2001, 414(6861): 332.
[25]
Peng W L, Yuan B. Mater Rep, 2021, 09: 1.
(彭伟良, 袁斌. 材料导报, 2021, 09: 1.).
[26]
Guo Y N, Tang J, Wang Z L, Kang Y M, Bando Y, Yamauchi Y. Nano Energy, 2018, 47: 494.
[27]
Huang X K, Xu X P, Li C, Wu D F, Cheng D J, Cao D P. Adv. Energy Mater., 2019, 9(22): 1803970.
[28]
Zou X X, Zhang Y. Chem. Soc. Rev., 2015, 44(15): 5148.
[29]
Huang Y C, Hu J, Xu H X, Bian W, Ge J X, Zang D J, Cheng D J, Lv Y, Zhang C, Gu J, Wei Y G. Adv. Energy Mater., 2018, 8(24): 1800789.
[30]
Jesse D B, Thomas R H, Jakob K, Pongkarn C, Thomas F J. ACS Catalysis, 2014, 4: 3957.
[31]
Liu L L, Li X Y, Xu L C, Liu R P, Yang Z. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2017, 396: 138.
[32]
Song X L, Chen G F, Guan L X, Zhang H, Tao J G. Appl. Phys. Express, 2016, 9(9): 095801.
[33]
Voiry D, Salehi M, Silva R, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M. Nano Lett., 2013, 13(12): 6222.
[34]
Liu G L, Robertson A W, Li M M J, Kuo W C H, Darby M T, Muhieddine M H, Lin Y C, Suenaga K, Stamatakis M, Warner J H, Tsang S C E. Nat. Chem., 2017, 9(8): 810.
[35]
Wang H, Tsai C, Kong D, Chan K, Cui Y. Nano Research, 2015, 8: 566.
[36]
Voiry D, Goswami A, Kappera R, Silva C D C C E, Kaplan D, Fujita T, Chen M W, Asefa T, Chhowalla M. Nat. Chem., 2015, 7(1): 45.
[37]
Wang H T, Lu Z Y, Kong D S, Sun J, Hymel T M, Cui Y. ACS Nano, 2014, 8(5): 4940.
[38]
Yin Y, Han J C, Zhang Y M, Zhang X H, Xu P, Yuan Q, Samad L, Wang X J, Wang Y, Zhang Z H, Zhang P, Cao X Z, Song B, Jin S. J. Am. Chem. Soc., 2016, 138(25): 7965.
[39]
Voiry D, Yamaguchi H, Li J W, Silva R, Alves D C B, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M. Nat. Mater., 2013, 12(9): 850.
[40]
Li H, Tsai C, Koh A L, Cai L L, Contryman A W, Fragapane A H, Zhao J H, Han H S, Manoharan H C, Abild-Pedersen F, N􀱼rskov J K, Zheng X L. Nat. Mater., 2016, 15(1): 48.
[41]
Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Science, 2007, 317(5834): 100.
[42]
Hao Y, Wang Y T, Xu L C, Yang Z, Liu R P, Li X Y. Appl. Surf. Sci., 2019, 469: 292.
[43]
Wang W P, Yao Q, Ma J J, Xu Y, Jiang J Q, Liu X E, Li Z C. CrystEngComm, 2020, 22(12): 2258.
[44]
Zhu C Z, Fu S F, Shi Q R, Du D, Lin Y H. Angew. Chem. Int. Ed., 2017, 56(45): 13944.
[45]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.
[46]
Jones J, Xiong H, DeLaRiva A T, Peterson E J, Pham H, Challa S R, Qi G, Oh S, Wiebenga M H, Pereira Hernandez X I, Wang Y, Datye A K. Science, 2016, 353(6295): 150.
[47]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Acc. Chem. Res., 2013, 46(8): 1740.
[48]
Lin L, Zhou W, Gao R, Yao S, Ma D. Nature, 2017, 544: 80.
[49]
Li X Y, Cui P, Zhong W H, Li J, Wang X J, Wang Z W, Jiang J. Chem. Commun., 2016, 52(90): 13233.
[50]
Li H S, Wang S S, Sawada H, Han G G D, Samuels T, Allen C S, Kirkland A I, Grossman J C, Warner J H. ACS Nano, 2017, 11(3): 3392.
[51]
Tsai C, Abild-Pedersen F, N􀱼rskov J K. Nano Lett., 2014, 14(3): 1381.
[52]
Paul K K, Sreekanth N, Biroju R K, Pattison A J, Escalera-LÓpez D, Guha A K, Narayanan T N, Rees N V, Theis W, Giri P K. J. Mater. Chem. A, 2018, 6(45): 22681.
[53]
Dubertret B, Heine T, Terrones M. Acc. Chem. Res., 2015, 48(1): 1.
[54]
Liu Q, Li X, He Q, Khalil A, Song L. Small, 2015, 11: 5556.
[55]
Lei Z D, Zhan J, Tang L, Zhang Y, Wang Y. Adv. Energy Mater., 2018, 8(19): 1703482.
[56]
Wu W Z, Niu C Y, Wei C, Jia Y, Li C, Xu Q. Angew. Chem. Int. Ed., 2019, 58(7): 2029.
[57]
Liu Y, Wu J, Hackenberg K P, Zhang J, Wang Y M, Yang Y, Keyshar K, Gu J, Ogitsu T, Vajtai R. Nature Energy, 2017, 2: 17127.
[58]
Yakovkin I N, Petrova N V. Chem. Phys., 2014, 434: 20.
[59]
Liang J X, Yang X F, Xu C Q, Zhang T, Li J. Chinese J. Catal., 2017, 38: 1566.
( 梁锦霞, 杨小峰, 许聪俏, 张涛, 李隽. 催化学报, 2017, 38: 1566.)
[60]
Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N. Science, 2016, 352(6287): 797.
[61]
Deng J, Li H B, Xiao J P, Tu Y C, Deng D H, Yang H X, Tian H F, Li J Q, Ren P J, Bao X H. Energy Environ. Sci., 2015, 8(5): 1594.
[62]
Luo Z Y, Ouyang Y X, Zhang H, Xiao M L, Ge J J, Jiang Z, Wang J L, Tang D M, Cao X Z, Liu C P, Xing W. Nat. Commun., 2018, 9(1): 1.
[63]
Zhang J M, Xu X P, Yang L, Cheng D J, Cao D P. Small Methods, 2019, 3(12): 1900653.
[64]
Wang H, Ouyang L Y, Zou G F, Sun C, Hu J, Xiao X, Gao L J. ACS Catal., 2018, 8(10): 9529.
[65]
Wang Q, Zhao Z L, Dong S, He D S, Lawrence M J, Han S B, Cai C, Xiang S H, Rodriguez P, Xiang B, Wang Z G, Liang Y Y, Gu M. Nano Energy, 2018, 53: 458.
[66]
Lau T H M, Lu X W, Kulhavy J, Wu S, Lu L L, Wu T S, Kato R, Foord J S, Soo Y L, Suenaga K, Tsang S C E. Chem. Sci., 2018, 9(21): 4769.
[67]
Ji L, Yan P F, Zhu C H, Ma C Y, Wu W Z, Wei C, Shen Y L, Chu S Q, Wang J O, Du Y, Chen J, Yang X N, Xu Q. Appl. Catal. B: Environ., 2019, 251: 87.
[68]
Sun M, Nelson A, Adjaye J. J. Catal., 2005, 233(2): 411.
[69]
Krebs E, Silvi B, Raybaud P. Catal. Today, 2008, 130(1): 160.
[70]
Huang Y C, Sun Y H, Zheng X L, Aoki T, Pattengale B, Huang J E, He X, Bian W, Younan S, Williams N, Hu J, Ge J X, Pu N, Yan X X, Pan X Q, Zhang L J, Wei Y G, Gu J. Nat. Commun., 2019, 10(1): 1.
[71]
Pattengale B, Huang Y C, Yan X X, Yang S Z, Younan S, Hu W H, Li Z D, Lee S, Pan X Q, Gu J, Huang J E. Nat. Commun., 2020, 11(1): 1.
[72]
Qi K, Cui X Q, Gu L, Yu S S, Fan X F, Luo M C, Xu S, Li N B, Zheng L R, Zhang Q H, Ma J Y, Gong Y, Lv F, Wang K, Huang H H, Zhang W, Guo S J, Zheng W T, Liu P. Nat. Commun., 2019, 10(1): 1.
[73]
Merki D, Vrubel H, Rovelli L, Fierro S, Hu X L. Chem. Sci., 2012, 3(8): 2515.
[74]
Qi K, Yu S S, Wang Q Y, Zhang W, Fan J C, Zheng W T, Cui X Q. J. Mater. Chem. A, 2016, 4(11): 4025.
[75]
Xiao W, Liu P T, Zhang J Y, Song W D, Feng Y P, Gao D Q, Ding J. Adv. Energy Mater., 2017, 7(7): 1602086.
[76]
Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135(47): 17881.
[77]
Liu P T, Zhu J Y, Zhang J Y, Xi P X, Tao K, Gao D Q, Xue D S. ACS Energy Lett., 2017, 2(4): 745.
[78]
Ren X P, Yang F, Chen R, Ren P Y, Wang Y H. New J. Chem., 2020, 44(4): 1493.
[79]
Ren X P, Ma Q, Fan H B, Pang L Q, Zhang Y X, Yao Y, Ren X D, Liu S F. Chem. Commun., 2015, 51(88): 15997.
[1] 谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 外场强化电解水析氢[J]. 化学进展, 2021, 33(9): 1571-1585.
[2] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[3] 刘晓璐, 耿钰晓, 郝然, 刘玉萍, 袁忠勇, 李伟. 环境条件下电催化氮还原的现状、挑战与展望[J]. 化学进展, 2021, 33(7): 1074-1091.
[4] 韩嘉琦, 李志达, 纪德强, 苑丹丹, 吴红军. 单原子改性二硫化钼电催化析氢[J]. 化学进展, 2021, 33(12): 2392-2403.
[5] 刘雪晨, 邢娟娟, 王海鹏, 周沅逸, 张玲, 王文中. HMF催化合成生物基聚酯单体FDCA[J]. 化学进展, 2020, 32(9): 1294-1306.
[6] 张冀宁, 曹爽, 胡文平, 朴玲钰. 光电催化海水分解制氢[J]. 化学进展, 2020, 32(9): 1376-1385.
[7] 杜宇, 刘德培, 闫世成, 于涛, 邹志刚. 镍铁水滑石电催化氧析出研究进展[J]. 化学进展, 2020, 32(9): 1386-1401.
[8] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[9] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
[10] 康伟, 李璐, 赵卿, 王诚, 王建龙, 滕越. 新型析氢析氧电化学催化剂在固体聚合物水电解体系的应用[J]. 化学进展, 2020, 32(12): 1952-1977.
[11] 王洪红, 雷文, 李孝建, 黄仲, 贾全利, 张海军. 催化还原降解Cr(Ⅵ)[J]. 化学进展, 2020, 32(12): 1990-2003.
[12] 吴文浩, 雷文, 王丽琼, 王森, 张海军. 单原子催化剂合成方法[J]. 化学进展, 2020, 32(1): 23-32.
[13] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[14] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[15] 周伶俐, 谢瑞刚, 王林江. 层状双金属氢氧化物在电催化中的应用[J]. 化学进展, 2019, 31(2/3): 275-282.
阅读次数
全文


摘要