English
新闻公告
More
化学进展 2020, Vol. 32 Issue (9): 1294-1306 DOI: 10.7536/PC200121 前一篇   后一篇

• 综述 •

HMF催化合成生物基聚酯单体FDCA

刘雪晨1,2, 邢娟娟1, 王海鹏2, 周沅逸2, 张玲2,**(), 王文中2,**()   

  1. 1. 上海大学材料科学与工程学院 上海 200072
    2. 中国科学院上海硅酸盐研究所 上海 200050
  • 收稿日期:2020-01-08 修回日期:2020-05-15 出版日期:2020-09-24 发布日期:2020-06-30
  • 通讯作者: 张玲, 王文中
  • 作者简介:
    ** Corresponding author e-mail: (Ling Zhang); (Wenzhong Wang)
  • 基金资助:
    *国家自然科学基金面上项目(51972327, 51772312)

Selective HMF Oxidation into Bio-Based Polyester Monomer FDCA

Xuechen Liu1,2, Juanjuan Xing1, Haipeng Wang2, Yuanyi Zhou2, Ling Zhang2,**(), Wenzhong Wang2,**()   

  1. 1. School of Material Science & Engineering, Shanghai University, Shanghai 200072, China
    2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2020-01-08 Revised:2020-05-15 Online:2020-09-24 Published:2020-06-30
  • Contact: Ling Zhang, Wenzhong Wang
  • Supported by:
    the General Program of National Natural Science Foundation of China(51972327, 51772312)

在石油资源日渐紧缺的背景下,充分利用自然界中可再生的生物质资源无疑是缓解当前和未来资源危机的有效手段,基于生物质平台分子的绿色化工正在逐渐替代传统石化产品的生产模式。来源于生物质的5-羟甲基糠醛(HMF)经过催化氧化可合成高附加值化学品2,5-呋喃二甲酸(FDCA)。FDCA是生产绿色聚合物聚2,5-呋喃二甲酸乙二酯(PEF)的重要单体。综合近年来利用热、电、光与生物催化模式进行的HMF氧化研究成果,热催化在产率与产品纯度方面显示出明显优势,但其对高能耗与高氧压的依赖限制了在工业中的应用。以电催化和光催化为基础的催化模式能够高效利用电能和太阳能,氧化活性物种丰富可调,有广阔应用前景。此外,生物催化模式虽目前产率较低,但具有反应条件温和、选择性高的突出特点,是未来有效利用生物质资源的重要发展方向。本文对氧化途径与相应反应机理进行讨论,并全面地总结了目前由HMF催化氧化生产FDCA的研究现状,包括已取得的进展与将面临的挑战,最后对未来发展方向与前景进行了展望。

Under the background of limited petroleum reserves, the conversion of renewable biomass to valuable chemicals is undoubtedly an effective strategy to alleviate the current and future resource crisis. The green chemical industry based on biomass platform molecules is gradually replacing traditional petroleum chemistry. The value-added 2,5-furandicarboxylic acid(FDCA) fabricated from the selective oxidation of the bio-based 5-hydroxymethylfurfural(HMF) is considered as an important monomer in green polymer production, such as polyethylene 2,5-furandicarboxylate(PEF). The production of FDCA from HMF generally involves thermal-, electro-, photo-, and bio-catalytic methods. Thermocatalysis is prized for the high yield and purity of FDCA but suffers from the harsh conditions, limiting its application in industry. Electrocatalysis and photocatalysis become promising for HMF conversion to FDCA due to the effective utilization of electric and solar energy to generate abundant reactive species for oxidation. In addition, the biocatalytic processes produce FDCA under mild conditions with high selectivity, which is an important development direction utilizing the biomass resources effectively in the future, although the productivity is unsatisfied at this stage. In this review, we discuss various oxidation routes and the corresponding chemical mechanisms and comprehensively review the current progress on the production of FDCA from HMF, focusing on its development and challenges. Finally, we envisage the future of selective catalytic oxidation of HMF, which might be helpful for the researchers.

Contents

1 Introduction

2 The mechanism of FDCA fabrication by selective HMF oxidation

3 Influence factors of FDCA fabrication by selective HMF oxidation

3.1 The choice of oxidant

3.2 The choice of reaction medium

3.3 Substrate adsorption over the catalysts

4 Thermocatalytic oxidation

4.1 Noble metal catalysts

4.2 Transition metal catalysts

4.3 Metal-free catalysts

4.4 The mechanism of base addition

5 Electrocatalytic oxidation

6 Photocatalytic oxidation

7 Biocatalytic oxidation

8 Conclusion and outlook

()
表1 HMF与FDCA的基本物理性质
Table 1 Basic physical properties of HMF and FDCA
图1 HMF在氧化为FDCA过程中可能经历的反应路线
Fig.1 Possible pathways of HMF oxidation into FDCA
图2 在HMF氧化FDCA的反应中加入18O标记试剂 (18O:蓝色),所观察到的产物由椭圆虚线圈出[1]
Fig.2 Incorporation of 18O in the reaction steps:18O(blue) and observed units in dashed ellipses[1]
图3 (a) HMF在Au/CNT催化剂上转化的过程;(b) HMF在Au-Pd/CNT催化剂上转化的过程;(反应条件:HMF为0.50 mmol;HMF/Au(摩尔比)200/1;H2O 20 mL; O2 0.5 MPa; 温度373 K)[33]
Fig.3 (a) Time course for the conversion of HMF over the Au/CNT catalyst;(b) Time course for the conversion of HMF over the Au-Pd/CNT(Au/Pd=1/1) catalyst(Reaction conditions: HMF, 0.50 mmol; HMF/Au(molar ratio), 200/1; H2O, 20 mL; O2, 0.5 MPa; temperature, 373 K)[33]
图4 在过量碱(OH-)和Pt或Au的存在下,HMF在水溶液中氧化可能的反应机理示意图[26]
Fig.4 Overall reaction scheme and proposed mechanism for the oxidation of HMF in aqueous solution in the presence of excess base(OH-) and Pt or Au[26]
图5 在1.6 V(vs RHE)下使用MnO x 阳极(a)与在2.0 V(vs RHE)使用Pt阳极(b)的HMF随时间变化的转化率与各产物选择性(反应在含20 mM HMF的pH=1的H2SO4溶液进行)[56]
Fig.5 Conversion of HMF(%) and yield(%) of oxidation products obtained by using MnO x anodes at 1.6 V(vs RHE)(a) and Pt anodes at 2.0 V(vs RHE)(b) during the course of electrochemical oxidation of HMF in a pH=1 H2SO4 solution containing 20 mM HMF at various amounts of charge passed[56]
图6 在泡沫镍基底上不同比例Ni x Co3-xO4催化剂的3D模拟与SEM图像: (a) NiO,(b) Ni2CoO4,(c) Ni1.5Co1.5O4,(d) NiCo2O4和(e) Co3O4 [62]
Fig.6 SEM images of nanostructured Ni x Co3- x O4 catalysts on 3D NF: (a) NiO,(b) Ni2CoO4,(c) Ni1.5Co1.5O4,(d) NiCo2O4, and(e) Co3O4 [62]
图7 CoPz/g-C3N4光催化氧化HMF制备FDCA的可能机理[82]
Fig.7 Possible mechanism of the photocatalytic oxidation of HMF into FDCA with the CoPz/g-C3N4 catalyst[82]
图8 串联氧化酶法合成FDCA的两步反应过程[86]
Fig.8 Enzymatic synthesis of FDCA via tandem oxidations[86]
[1]
Sajid M , Zhao X , Liu D. , Green Chem. 2018, 20: 5427.
[2]
Bender T A , Dabrowski J A , Gagné M R. Nat. Rev. Chem., 2018, 2: 35.
[3]
Galkin K I , Krivodaeva E A , Romashov L V , Zalesskiy S S , Kachala V V , Burykina J V , Ananikov V P. Angew. Chem. Int. Ed. Engl., 2016, 55: 8338.
[4]
Sun Z , Wang S , Wang X , Jiang Z. Fuel, 2016, 164: 262.
[5]
Lv G , Wang H , Yang Y , Deng T , Chen C , Zhu Y , Hou X. , ACS Catal. 2015, 5: 5636.
[6]
Liu X , Xiao J , Ding H , Zhong W , Xu Q , Su S , Yin D. Chem. Eng. J., 2016, 283: 1315.
[7]
Chidambaram M , Bell A T. Green Chem., 2010, 12: 1253.
[8]
Song D , An S , Lu B , Guo Y , Leng J. Appl.Catal. B-Environ., 2015, 179: 445.
[9]
Yin S , Sun J , Liu B , Zhang Z. J Mater. Chem. A, 2015, 3: 4992.
[10]
Xia Q N , Cuan Q , Liu X H , Gong X Q , Lu G Z , Wang Y Q. Angew. Chem. Int. Ed. Engl., 2014, 53: 9755.
[11]
Auvergne R , Caillol S , David G , Boutevin B , Pascault J P. Chem. Rev., 2014, 114: 1082.
[12]
Swan S H. Environ. Res., 2008, 108: 177.
[13]
Eerhart A J J E, Faaij A P C , Patel M K . Energy Environ. Sci., 2012, 5: 6407.
[14]
Sousa A F , Vilela C , Fonseca A C , Matos M , Freire C S R, Gruter G-J M, Coelho J F J, Silvestre A J D. Polym. Chem., 2015, 6: 5961.
[15]
Mishra D K , Lee H J , Kim J , Lee H S , Cho J K , Suh Y W , Yi Y , Kim Y J. Green Chem., 2017, 19: 1619.
[16]
Nguyen C V , Liao Y T , Kang T C , Chen J E , Yoshikawa T , Nakasaka Y , Masuda T , Wu K C W. Green Chem., 2016, 18: 5957.
[17]
Zhu M M , Du X L , Zhao Y , Mei B B , Zhang Q , Sun F F , Jiang Z , Liu Y M , He H Y , Cao Y. ACS Catal., 2019, 9: 6212.
[18]
Ait Rass H , Essayem N , Besson M. , Green Chem. 2013, 15.
[19]
Chen C T , Nguyen C V , Wang Z Y , Bando Y , Yamauchi Y , Bazziz M T S, Fatehmulla A, Farooq W A, Yoshikawa T, Masuda T, Wu K C W. ChemCatChem, 2018, 10: 361.
[20]
Hansen T S , Sádaba I , García-Suárez E J, Riisager A. Appl. Catal. A-Gen., 2013, 456: 44.
[21]
Miura T , Kakinuma H , Kono T , Matsuhisa H. JP5012348- B2, 2008.
[22]
Araji N , Madjinza D D , Chatel G , Moores A , Jérôme F , De Oliveira Vigier K. Green Chem., 2017, 19: 98.
[23]
Gawade A B , Nakhate A V , Yadav G D. Catal. Today, 2018, 309: 119.
[24]
Tong X , Sun Y , Bai X , Li Y. , RSC Adv.2014, 4: 44307.
[25]
Choudhary H , Nishimura S , Ebitani K. Appl. Catal. A-Gen., 2013, 458: 55.
[26]
Davis S E , Zope B N , Davis R J. Green Chem., 2012, 14: 143.
[27]
Siankevich S , Savoglidis G , Fei Z , Laurenczy G , Alexander D T L, Yan N, Dyson P J. J. Catal., 2014, 315: 67.
[28]
Shuai L , Luterbacher J. ChemSusChem, 2016, 9: 133.
[29]
Ghezali W , De Oliveira Vigier K, Kessas R, Jérôme F. Green Chem., 2015, 17: 4459.
[30]
Liu H , Cao X , Wang T , Wei J , Tang X , Zeng X , Sun Y , Lei T , Liu S , Lin L. J. Ind. Eng. Chem., 2019, 77: 209.
[31]
Tsilomelekis G , Josephson T R , Nikolakis V , Caratzoulas S. ChemSusChem, 2014, 7: 117.
[32]
Sang B , Li J , Tian X , Yuan F , Zhu Y. Mol. Catal., 2019, 470: 67.
[33]
Wan X , Zhou C , Chen J , Deng W , Zhang Q , Yang Y , Wang Y. , ACS Catal. 2014, 4: 2175.
[34]
Nishimura Y , Suda M , Kuroha M , Kobayashi H , Nakajima K , Fukuoka A. , Carbohydr. Res. 2019, 486: 107826.
[35]
Hu L , Lin L , Wu Z , Zhou S , Liu S. Renew. Sust. Energ. Rev., 2017, 74: 230.
[36]
Lu Z , Chen G , Siahrostami S , Chen Z , Liu K , Xie J , Liao L , Wu T , Lin D , Liu Y , Jaramillo T F , Nørskov J K , Cui Y. , Nat. Catal. 2018, 1: 156.
[37]
Zhou C , Deng W , Wan X , Zhang Q , Yang Y , Wang Y. ChemCatChem, 2015, 7: 2853.http://doi.wiley.com/10.1002/cctc.v7.18

doi: 10.1002/cctc.v7.18     URL    
[38]
Wang Y , Zhou W , Gao J , Ding Y , Kou K. J. Electroanal. Chem., 2019, 833: 258.
[39]
Yan Y , Miao J , Yang Z , Xiao F X , Yang H B , Liu B , Yang Y. Chem. Soc. Rev., 2015, 44: 3295.
[40]
Liu Z Q , Ma J , Cui Y H , Zhao L , Zhang B P. Appl. Catal.B-Environ., 2010, 101: 74.
[41]
Zhou J , An X , Lan H , Liu H , Qu J. Appl. Surf. Sci., 2020, 509.
[42]
Megías-Sayago C , Chakarova K , Penkova A , Lolli A , Ivanova S , Albonetti S , Cavani F , Odriozola J A. ACS Catal., 2018, 8: 11154.
[43]
Yi G , Teong S P , Zhang Y. , Green Chem. 2016, 18: 979.
[44]
Villa A , Schiavoni M , Campisi S , Veith G M , Prati L. ChemSusChem, 2013, 6: 609.
[45]
Antonyraj C A , Huynh N T T, Park S K, Shin S, Kim Y J, Kim S, Lee K Y, Cho J K. Appl. Catal. A-Gen., 2017, 547: 230.
[46]
Siyo B , Schneider M , Pohl M M , Langer P , Steinfeldt N. , Catal. Lett. 2014, 144: 498.
[47]
Hayashi E , Yamaguchi Y , Kamata K , Tsunoda N , Kumagai Y , Oba F , Hara M. J. Am. Chem. Soc., 2019, 141: 890.
[48]
Han X , Li C , Liu X , Xia Q , Wang Y. , Green Chem. 2017, 19: 996.
[49]
Ventura M , Nocito F, de Giglio E, Cometa S, Altomare A, Dibenedetto A. Green Chem., 2018, 20: 3921.
[50]
Verma S , Nadagouda M N , Varma R S. Sci. Rep., 2017, 7: 13596.
[51]
Sahu R , Dhepe P L. React. Kinet. Mech.Cat., 2014, 112: 173.
[52]
Ventura M , Aresta M , Dibenedetto A. ChemSusChem, 2016, 9: 1096.
[53]
Liu W J , Dang L , Xu Z , Yu H Q , Jin S , Huber G W. ACS Catal., 2018, 8: 5533.
[54]
Chadderdon D J , Xin L , Qi J , Qiu Y , Krishna P , More K L , Li W. , Green Chem. 2014, 16: 3778.
[55]
Vuyyuru K R , Strasser P. Catal. Today, 2012, 195: 144.
[56]
Kubota S R , Choi K S. ChemSusChem, 2018, 11: 2138.
[57]
Cao T , Wu M , Ordomsky V V , Xin X , Wang H , Metivier P , Pera-Titus M. ChemSusChem, 2017, 10: 4851.
[58]
Li K , Sun Y. Chem. Eur. J., 2018, 24: 18258.
[59]
Chernysheva D V , Klushin V A , Zubenko A F , Pudova L S , Kravchenko O A , Chernyshev V M , Smirnova N V. Mendeleev Commun., 2018, 28: 431.
[60]
Grzegorz Grabowski J L a R S. Electrochim. Acta, 1991, 36: 1995.
[61]
Kang M J , Park H , Jegal J , Hwang S Y , Kang Y S , Cha H G. Appl. Catal.B -Environ., 2019, 242: 85.
[62]
Gao L , Bao Y , Gan S , Sun Z , Song Z , Han D , Li F , Niu L. ChemSusChem, 2018, 11: 2547.
[63]
Weidner J , Barwe S , Sliozberg K , Piontek S , Masa J , Apfel U P , Schuhmann W. Beilstein J. Org. Chem., 2018, 14: 1436.
[64]
Nam D H , Taitt B J , Choi K S. ACS Catal., 2018, 8: 1197.
[65]
Taitt B J , Nam D H , Choi K S. ACS Catal., 2018, 9: 660.
[66]
Gao L , Liu Z , Ma J , Zhong L , Song Z , Xu J , Gan S , Han D , Niu L. Appl. Catal.B-Environ., 2020, 261.
[67]
Li W , Jiang N , Hu B , Liu X , Song F , Han G , Jordan T J , Hanson T B , Liu T L , Sun Y. Chem, 2018, 4: 637.
[68]
Chen C W , Ho C T. Agric. Food Chem., 1996, 44: 2078.
[69]
Nosaka Y , Nosaka A Y. Chem. Rev., 2017, 117: 11302.
[70]
Heugebaert T S , Stevens C V , Kappe C O. ChemSusChem, 2015, 8: 1648.
[71]
Zhang H , Feng Z , Zhu Y , Wu Y , Wu T. J. Photochem. Photobiol. A: Chem., 2019, 371: 1.
[72]
Lolli A , Maslova V , Bonincontro D , Basile F , Ortelli S , Albonetti S. Molecules, 2018, 23.
[73]
Yurdakal S , Tek B S , Alagöz O , Augugliaro V , Loddo V , Palmisano G , Palmisano L. ACS Sustain. Chem. Eng., 2013, 1: 456.
[74]
Marcì G , García-López E I, Palmisano L. Catal. Today, 2018, 315: 126.
[75]
Wang H , Zhang X , Xie Y. ACS Nano, 2018, 12: 9648.
[76]
Planas O , Macia N , Agut M , Nonell S , Heyne B. J. Am. Chem. Soc., 2016, 138: 2762.
[77]
Macia N , Bresoli-Obach R , Nonell S , Heyne B. J. Am. Chem. Soc., 2019, 141: 684.
[78]
Iqbal N , Choi S , You Y , Cho E J. Tetrahedron Lett., 2013, 54: 6222.
[79]
Wang H , Jiang S , Chen S , Li D , Zhang X , Shao W , Sun X , Xie J , Zhao Z , Zhang Q , Tian Y , Xie Y. , Adv. Mater. 2016, 28: 6940.
[80]
Wang H , Jiang S , Chen S , Zhang X , Shao W , Sun X , Zhao Z , Zhang Q , Luo Y , Xie Y. Chem. Sci., 2017, 8: 4087.
[81]
Xiao C , Zhang L , Hao H , Wang W. ACS Sustain. Chem. Eng., 2019, 7: 7268.
[82]
Xu S , Zhou P , Zhang Z , Yang C , Zhang B , Deng K , Bottle S , Zhu H. J. Am. Chem. Soc., 2017, 139: 14775.
[83]
Ilkaeva M , Krivtsov I , García-López E I, Marcì G, Khainakova O, García J R, Palmisano L, Díaz E, Ordóñez S. J. Catal., 2018, 359: 212.
[84]
van Deurzen M P J, van Rantwijk F , Sheldon R A . Tetrahedron, 1997, 53: 13183.
[85]
Zhang C , Chang X , Zhu L , Xing Q , You S , Qi W , Su R , He Z. Int. J. Biol. Macromol., 2019, 128: 132.
[86]
Qin Y Z , Li Y M , Zong M H , Wu H , Li N. Green Chem., 2015, 17: 3718.
[87]
Dijkman W P , Fraaije M W. Appl. Environ. Microbiol., 2014, 80: 1082.
[88]
Martin C , Ovalle Maqueo A , Wijma H J , Fraaije M W. Biotechnol Biofuels, 2018, 11: 56.
[89]
Dijkman W P , Binda C , Fraaije M W , Mattevi A. , ACS Catal. 2015, 5: 1833.
[90]
McKenna S M , Mines P , Law P , Kovacs-Schreiner K , Birmingham W R , Turner N J , Leimkühler S , Carnell A J . Green Chem., 2017, 19: 4660.
[91]
Dijkman W P , Groothuis D E , Fraaije M W. Angew. Chem. Int. Ed. Engl., 2014, 53: 6515.
[92]
Krystof M , Perez-Sanchez M , Dominguez de Maria P. ChemSusChem, 2013, 6: 826.
[93]
Yang Z Y , Wen M , Zong M H , Li N. , Catal. Commun. 2020, 139.
[94]
Koopman F , Wierckx N, de Winde J H, Ruijssenaars H J. Bioresour. Technol., 2010, 101: 6291.
[95]
Hossain G S , Yuan H , Li J , Shin H D , Wang M , Du G , Chen J , Liu L. Appl. Environ. Microbiol., 2017, 83.
[96]
Yuan H , Li J , Shin H D , Du G , Chen J , Shi Z , Liu L. , Bioresour. Technol. 2018, 247: 1184.
[97]
Jia H Y , Zong M H , Zheng G W , Li N. ChemSusChem, 2019, 12: 4764.
[98]
Guajardo N , Domínguez de María P. ChemCatChem, 2019, 11: 3128.
[1] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[2] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[3] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[4] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[5] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[6] 宋欢, 邹琦, 陆克定. HO2非均相摄取系数的测量与参数化[J]. 化学进展, 2021, 33(7): 1175-1187.
[7] 刘晓璐, 耿钰晓, 郝然, 刘玉萍, 袁忠勇, 李伟. 环境条件下电催化氮还原的现状、挑战与展望[J]. 化学进展, 2021, 33(7): 1074-1091.
[8] 郭林莉, 张新, 肖敏, 王拴紧, 韩东梅, 孟跃中. 二维材料修饰隔膜抑制锂硫电池穿梭效应策略[J]. 化学进展, 2021, 33(7): 1212-1220.
[9] 符志成, 许家喜. 氧杂环丁烷的合成[J]. 化学进展, 2021, 33(6): 895-906.
[10] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[11] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[12] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[13] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[14] 田景晨, 吴功德, 刘雁军, 万杰, 王晓丽, 邓琳. 负载型廉价金属催化剂在低温催化氧化甲醛中的应用[J]. 化学进展, 2021, 33(11): 2069-2084.
[15] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
阅读次数
全文


摘要