English
新闻公告
More
化学进展 2020, Vol. 32 Issue (9): 1376-1385 DOI: 10.7536/PC200115 前一篇   后一篇

• 综述 •

光电催化海水分解制氢

张冀宁1, 曹爽2, 胡文平1,**(), 朴玲钰2,**()   

  1. 1. 天津大学理学院化学系 天津 300072
    2. 中国科学院纳米科学卓越创新中心 国家纳米科学中心 中国科学院纳米标准与检测重点实验室 北京 100190
  • 收稿日期:2020-01-04 修回日期:2020-02-11 出版日期:2020-09-24 发布日期:2020-06-30
  • 通讯作者: 胡文平, 朴玲钰
  • 作者简介:
    ** Corresponding author e-mail: (Wenping Hu); (Lingyu Piao).
  • 基金资助:
    *国家自然科学基金项目(21703046, 21972028); the Ministry of Science and Technology of China(2016YFF0203803)

Hydrogen Production by Photoelectrocatalytic Seawater Splitting

Jining Zhang1, Shuang Cao2, Wenping Hu1,**(), Lingyu Piao2,**()   

  1. 1. Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
    2. CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing 100190, China
  • Received:2020-01-04 Revised:2020-02-11 Online:2020-09-24 Published:2020-06-30
  • Contact: Wenping Hu, Lingyu Piao
  • Supported by:
    the National Natural Science Foundation of China(21703046, 21972028); Foundation(2016YFF0203803)

自20世纪70年代以来,利用阳光将水分解,从而将太阳能转换为清洁可再生的氢气燃料成为人们关注的焦点。太阳能是取之不尽用之不竭的能源,而海水是地球上最丰富且易获取的自然资源,利用光电催化海水分解制氢成为目前解决实际能源问题和缓解淡水资源短缺的理想途径之一。本文总结了目前为止探索过光电催化分解海水制取氢气的研究工作,对研究内容和机理进行了梳理分析,并对光电催化海水制氢这一领域进行了展望。

Since the 1970s, the use of sunlight to split water to convert solar energy into clean and renewable hydrogen fuel has become the focus of attention. Solar energy is an inexhaustible energy, and seawater is the most abundant and readily available natural resource on the earth. The use of photoelectrocatalytic seawater splitting to produce hydrogen has become one of the ideal ways to solve the actual energy problem and alleviate the shortage of fresh water resources. This review summarizes the research work that has been explored so far for hydrogen evolution by photoelectrocatalytic seawater splitting, combs the research content and mechanisms, and prospects the field of photoelectrocatalytic seawater splitting.

Contents

1 Introduction

2 Hydrogen production by photoelectrocatalytic seawater splitting

2.1 Principle of photoelectrocatalysis

2.2 TiO2 systems

2.3 Other material systems

2.4 Understanding of photoelectrocatalytic seawater splitting mechanisms

3 Conclusion and outlook

()
图1 光电催化工作原理模型图[13]
Fig.1 Photoelectrocatalytic working principle[13]
表1 TiO2体系光电催化分解海水文献总结[10,11,14~23]
Table 1 Literature summary of photoelectrocatalytic seawater splitting in TiO2 system[10,11,14~23]
图2 薄膜电极光电催化制氢机理[16]
Fig.2 Photoelectrocatalytic hydrogen production mechanism of the thin film electrode band[16]
图3 “三系统”结构图[22]
Fig.3 Illustration of three-compartment-stack[22]
图4 In2S3/ANP/RND结构图[17]
Fig.4 Structure illustration of In2S3/ANP/RND[17]
表2 其他光电催化材料文献总结[6,25~32]
Table 2 Literature summary of photoelectrocatalytic seawater splitting in other materials systems[6,25~32]
图5 α-Fe2O3/WO3纳米棒簇作光阳极催化剂的光电催化电池的工作图[29]
Fig.5 Working diagram of photoelectrocatalytic cell with α-Fe2O3/WO3 nanorod arrays as photoanode catalyst[29]
图6 WO3/g-C3N4纳米片簇作光阳极催化剂的光电催化电池的工作图[28]
Fig.6 Working diagram of photoelectrocatalytic cell with WO3/g-C3N4 nanosheet arrays as photoanode catalyst[28]
图7 Ag8SnS6作光阳极催化剂的光电催化电池的工作图[6]
Fig.7 Working diagram of photoelectrocatalytic cell with Ag8SnS6 as photoanode catalyst[6]
[1]
Ge M , Cai J , Iocozzia J , Cao C , Huang J , Zhang X , Shen J , Wang S , Zhang S , Zhang K , Lai Y , Lin Z. Int. J. Hydrogen Energy, 2017, 42: 8418.
[2]
Grewe T , Meggouh M , Tüysüz H. Chem. Asian J., 2016, 11: 22.
[3]
Yao T , An X , Han H , Chen J Q , Li C. Adv. Energy Mater., 2018, 8: 1800210.
[4]
Ding C , Shi J , Wang Z , Li C. ACS Catal., 2016, 7: 675.
[5]
Bessegato G G , Guaraldo T T, de Brito J F, Brugnera M F, Zanoni M V B. Electrocatalysis, 2015, 6: 415.
[6]
Cheng K , Tsai W , Wu Y. J. Power Sources, 2016, 317: 81.
[7]
Yang J , Wang D , Han H , Li C. Acc. Chem. Res., 2013, 46: 1900.
[8]
Fujishima A , Honda K. Nature, 1972, 238: 37.
[9]
Hsu S , Miao J , Zhang L , Gao J , Wang H , Tao H , Hung S , Vasileff A , Qiao S Z , Liu B. Adv. Mater., 2018, 30: 1707261.
[10]
Li Y , Wang R , Li H , Wei X , Feng J , Liu K , Dang Y , Zhou A. J. Phys. Chem. C, 2015, 119: 20283.
[11]
Ichikawa S. Int.J. Hydrogen Energy, 1997, 22: 675.
[12]
Kumaravel V , Abdel-Wahab A. Energy Fuels, 2018, 32: 6423.
[13]
Horiuchi Y , Toyao T , Takeuchi M , Matsuoka M , Anpo M. Phys. Chem. Chem. Phys., 2013, 15: 13243.
[14]
Kawde A , Annamalai A , Amidani L , Boniolo M , Kwong W L , Sellstedt A , Glatzel P , Wågberg T , Messinger J. Sustainable Energy Fuels, 2018, 2: 2215.
[15]
Nam W , Oh S , Joo H , Yoon J. J. Solid State Chem., 2011, 184: 2920.
[16]
Yuan X , Xu Y , Meng H , Han Y , Wu J , Xu J , Zhang X. Sep. Purif. Technol., 2018, 193: 358.
[17]
Yang J S , Wu J J. ACS Appl.Mater. Interfaces, 2018, 10: 3714.
[18]
Joo H , Bae S , Kim C , Kim S , Yoon J. Sol. Energy Mater. Sol. Cells, 2009, 93: 1555.
[19]
Oh S , Nam W , Joo H , Sarp S , Cho J , Lee C , Yoon J. Sol. Energy, 2011, 85: 2256.
[20]
Barreca D , Carraro G , Gasparotto A , Maccato C , Warwick M E A, Kaunisto K, Sada C, Turner S, Gönüllü Y, Ruoko T, Borgese L, Bontempi E, Van Tendeloo G, Lemmetyinen H, Mathur S. Adv. Mater. Interfaces, 2015, 2: 1500313.
[21]
Raja K S , Mahajan V K , Misra M. J. Power Sources, 2006, 159: 1258.
[22]
Kim S H , Piao G X , Han D S , Shon H K , Park H. J. Power Sources, 2018, 11: 344.
[23]
Nam W , Oh S , Joo H , Sarp S , Cho J , Nam B , Yoon J. Sol. Energy Mater. Sol. Cells, 2010, 94: 1809.
[24]
Lianos P. Appl. Catal. B, 2017, 210: 235.
[25]
Patel M , Park W , Ray A , Kim J , Lee J. Sol. Energy Mater.Sol. Cells, 2017, 171: 267.
[26]
Zhou G , Guo Z J , Shan Y , Wu S Y , Zhang J L , Yan K , Liu L Z , Chu P K , Wu X L. Nano Energy, 2018, 55: 42.
[27]
Kravets V G , Thomas P A , Grigorenko A N. J. Renewable Sustainable Energy, 2017, 9: 21201.
[28]
Li Y , Wei X , Yan X , Cai J , Zhou A , Yang M , Liu K. Phys. Chem. Chem. Phys., 2016, 18: 10255.
[29]
Li Y , Feng J , Li H , Wei X , Wang R , Zhou A. Int. J. Hydrogen Energy, 2016, 41: 4096.
[30]
Lee M , Liao P , Li G , Chang H , Lee C , Sheu J. Sol. Energy Mater. Sol. Cells, 2019, 202: 110153.
[31]
Luo W , Yang Z , Li Z , Zhang J , Liu J , Zhao Z , Wang Z , Yan S , Yu T , Zou Z. Energy Environ. Sci., 2011, 4: 4046.
[32]
Ayyub M M , Chhetri M , Gupta U , Roy A ,Rao C N R. Chem.-Eur. J., 2018, 24: 18455.
[33]
Benck J D , Hellstern T R , Kibigaard J , Chakthranont P , Jaramillo T F. ACS Catal., 2014, 4: 3957.
[1] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[2] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[3] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[4] 张旭强, 吕功煊. 光电催化分解水Ⅲ-Ⅴ族半导体光电极薄膜保护策略[J]. 化学进展, 2020, 32(9): 1368-1375.
[5] 王洪红, 雷文, 李孝建, 黄仲, 贾全利, 张海军. 催化还原降解Cr(Ⅵ)[J]. 化学进展, 2020, 32(12): 1990-2003.
[6] 肖瑶, 胡文娟, 任衍彪, 康旭, 刘健. 仿生光电催化固氮[J]. 化学进展, 2018, 30(4): 325-337.
[7] 杨钰昆, 王小敏, 方国臻, 云雅光, 郭婷, 王硕. 基于分子印迹技术的电化学发光分析[J]. 化学进展, 2016, 28(9): 1351-1362.
[8] 张凌峰, 胡忠攀, 高泽敏, 刘亚录, 袁忠勇. 有序介孔碳基金属复合材料的制备及催化应用[J]. 化学进展, 2015, 27(8): 1042-1056.
[9] 周文理, 谢青季, 廉世勋. 太阳能光解水的光阳极材料[J]. 化学进展, 2013, 25(12): 1989-1998.
[10] 向翠丽, 邹勇进, 邱树君, 褚海亮, 孙立贤*, 徐芬*. 基于碳纳米材料载体的氢气传感器[J]. 化学进展, 2013, 25(0203): 270-275.
[11] 周天辰, 何川, 张亚男, 赵国华*. CO2的光电催化还原[J]. 化学进展, 2012, (10): 1897-1905.
[12] 崔大庆. 综述KBS-3处置库近场还原性环境对处置安全的裨益[J]. 化学进展, 2011, 23(7): 1411-1428.
[13] 李静 吴尔冬 耿长建 杜晓明. 多孔材料的胶囊化储氢*[J]. 化学进展, 2010, 22(11): 2238-2247.
[14] 段东红 孙彦平. 直接硼氢化物燃料电池(DBFC)阳极材料及反应机理*[J]. 化学进展, 2010, 22(09): 1720-1728.
[15] 祝星 王华 魏永刚 李孔斋 晏冬霞. 金属氧化物两步热化学循环分解水制氢*[J]. 化学进展, 2010, 22(05): 1010-1020.
阅读次数
全文


摘要

光电催化海水分解制氢