English
新闻公告
More
化学进展 2020, Vol. 32 Issue (6): 792-802 DOI: 10.7536/PC191122 前一篇   后一篇

• 综述与评论 •

基于无机电致变色材料的变色储能器件

吴战1, 李笑涵1, 钱奥炜1, 杨家喻1, 张文魁1, 张俊1,**()   

  1. 1. 浙江工业大学材料科学与工程学院 杭州 310014
  • 收稿日期:2019-11-28 修回日期:2020-04-09 出版日期:2020-06-05 发布日期:2020-04-13
  • 通讯作者: 张俊
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(51777194); 浙江省杰出青年科学基金项目(LR20E020002); 浙江省新苗人才计划项目(2018R403001)

Electrochromic Energy-Storage Devices Based on Inorganic Materials

Zhan Wu1, Xiaohan Li1, Aowei Qian1, Jiayu Yang1, Wenkui Zhang1, Jun Zhang1,**()   

  1. 1. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
  • Received:2019-11-28 Revised:2020-04-09 Online:2020-06-05 Published:2020-04-13
  • Contact: Jun Zhang
  • Supported by:
    the National Natural Science Foundation of China(51777194); the Zhejiang Provincial Natural Science Foundation(LR20E020002); the Zhejiang Provincial Xinmiao Talent Project(2018R403001)

电致变色和电化学储能的原理均是基于电荷在电极中的嵌入或脱出而发生的氧化还原反应,具有相同的电化学本质。将电致变色和电化学储能功能集成在一起的电化学器件即电致变色储能器件。以锂离子电池为代表的电化学储能器件已广泛商业化,单一功能的电致变色器件也已被广泛报道并有商业化应用,但有关电致变色储能器件的研究仍然停留在实验阶段。该类器件在电化学储能的同时,可以改变其在可见光甚至红外波段的透射率,并可用颜色指示器件的荷电状态,为电化学器件提供新的应用前景。电致变色储能器件主要包括电致变色超级电容器、电致变色电池和光驱动电致变色智能窗等。电致变色超级电容器和电致变色电池以同时具有电致变色效应和电荷存储性质的材料为正负电极,光驱动电致变色智能窗则还包括将光能转化为电能的光电转换部分。这些器件可用于建筑节能智能窗、静态显示、智能传感等。此外,在柔性基底上制备的可穿戴电致变色储能器件在智能服装、植入显示器和电子皮肤等方面具有应用潜力。本文从基本原理、研究进展和应用领域等方面对无机电致变色储能材料与器件进行综述,并提出未来的研究展望。

Electrochromism and electrochemical energy-storage share the same electrochemical principles of redox reaction that occurs when the charge is inserted or removed in the electrode. An electrochemical device that integrates electrochromic and electrochemical energy storage functions is defined as an electrochromic energy-storage device. Although single-function electrochromic devices and electrochemical energy-storage devices have been widely reported and commercialized, the research on electrochromic energy storage devices is still in the experimental stage. Such devices can change their transmittance in the visible or even infrared range while electrochemically storing energy, and can indicate the state of charge of the device with color change, providing a new application prospect for electrochemical devices. Electrochromic energy-storage devices mainly include electrochromic supercapacitors, electrochromic batteries, and photo-driven electrochromic smart windows. Electrochromic supercapacitors and electrochromic batteries are composed of positive and negative electrodes with materials having both electrochromic effects and charge storage properties, and photo-driven electrochromic smart windows include an additional photoelectric conversion component. These devices can be used in building energy-saving smart windows, static displays, smart sensors, etc. In addition, when fabricated on flexible substrates, these wearable electrochromic energy-storage devices have potential applications in smart apparel, implanted displays and electronic skins. In this review, we discuss the electrochromic energy-storage devices from the basic principles, research progress, application fields, and future research prospects.

Contents

1 Introduction
2 Electrochromic batteries
3 Electrochromic supercapacitors
4 Photo-driven electrochromic devices
5 Flexible electrochromic energy-storage devices
6 Conclusion and outlook
()
图1 电致变色器件的结构和工作原理示意图[4]
Fig. 1 Structure and mechanism of the EC devices[4]
图2 典型的变色储能器件结构和工作原理示意图
Fig. 2 Representative structure and working mechanism of electrochromic energy-storage devices
图3 (a) 铝/氧化钨电致变色电池的工作原理示意图;(b) 电致变色电池的颜色与荷电状态相关;(c) 电池的循环伏安曲线;(d) 不同条件充电(空气、加微量双氧水、外电路)后电池的放电曲线[6]
Fig. 3 (a) The working mechanism of the Al-tungsten oxide electrochromic battery;(b) the state of charge of the Al-tungsten oxide electrochromic battery is associated with its transparency;(c) cyclic voltammetry(CV) curve of the two electrode Al-tungsten oxide battery in AlCl3(1 M aqueous) between 0~1.2 V;(d) the first discharge capacity and the specific accumulative discharge capacity of the recovered Al-tungsten oxide electrochromic battery recharged by oxygen and $H_{2}O_{2}$[6]
图4 (a~c) ZIEB变色电池的结构示意图和工作机制;(d) ZIEB变色电池在放电前后的可见光-近红外光透过率;(e) ZIEB变色电池的透过率及容量随放电时间的变化曲线;(f) WO3正极在两种电解液中的恒电流充放电曲线;(g) 电池在0.1和1.2 V电压下的可见光-近红外光谱[16, 17]
Fig. 4 (a~c) Structure and working mechanism for the ZIEB electrochromic battery;(d) visible-near infrared transmittance spectrum of the battery measured before and after discharging;(e) in situ self-coloring process of the ZIEB;(f) galvanostatic charge and discharge curves of the WO3 anode at 0.5 mA·cm-2 between 0.1 and 1.2 V;(g) visible near-infrared transmittance spectra of WO3 cathode measured at 0.1 and 1.2 V in 1 M $ZnSO_{4}-AlC_{3}$[16, 17]
图5 (a) Li4Ti5O12和(c) LiMn2O4的循环伏安曲线;(b) Li4Ti5O12和(d) LiMn2O4在嵌锂和脱锂态的紫外可见近红外光谱;(e, f) Li4Ti5O12的褪色态和着色态照片;(g, h) LiMn2O4的褪色态和着色态照片[24]
Fig. 5 CVs of Li4Ti5O12(a) and LiMn2O4(c) samples at various scan rates.(b) Transmittance spectra of a charged(blue) and discharged(black) Li4Ti5O12 transparent thin film electrode compared to the pure FTO-glass substrate(grey).(d) Transmittance spectra of a charged(orange) and uncharged(green) LiMn2O4 electrode. Optical photographs of a Li4Ti5O12 thin film electrode in its colorless discharged(e) and dark-blue colored charged state(f). The LiMn2O4 electrode showed a green color in the uncharged state(g) changing to orange when being charged(h)[24]
图6 (a) PB/Al变色电池短接时呈透明态;(b) 断开时自充电并着色;(c) 透明态时无法点亮LED灯;(d) 着色态(充电态)可点亮LED灯;(e) 器件随自充电时间延长的紫外可见光谱;(f) 电池在2000 mA·g-1电流密度下的充放电曲线[26]
Fig. 6 (a) Optical photo of the bleached EC device, and(b) the EC device recovered for 1 h;(c) in bleached state with connected circuit showing no light from the LED;(d) in colored state with connected circuit powering a LED;(e) Transmittance spectra of the original self-powered PB/Al EC device(original curve) and the bleached device at various recovery times from 0, 5 min to 4 h;(f) galvanostatic discharge and charge curves of the PB/Al cell at a current density of 2000 mA·g-1 [26]
图7 (a) FTO玻璃上介孔V2O5薄膜的SEM照片;(b) V2O5电致变色超级电容器的结构示意图;(c) 实物照片;(d) 能量密度-功率密度对数关系图;(e) 电致变色光谱调制性能[34]
Fig. 7 (a) Cross-sectional electronic micrograph of a mesoporous V2O5 thin film on a FTO substrate;(b) structure,(c) photograph,(d) Ragone plot and (e) optical transmittance spectra of the electrochromic supercapacitor[34]
图8 (a) 在FTO玻璃上制备的W18O49和聚苯胺图案化复合电极示意图;(b1~5) 图案化复合电极在不同电压下的照片;(c) 图案化复合电极以及PANI和W18O49电极的循环伏安曲线;(d) 三种电极的面积比电容[35];(e) WO3/PANI电致变色超级电容器的结构;(f) WO3/PANI电致变色超级电容器颜色与电压关系[36]
Fig. 8 (a) Schematic of a patterned supercapacitor electrode composed of W18O49 and PANI;(b1~5) Images of the supercapacitor electrode at several typical states;(c) CV curves of the PANI film, W18O49 nanowire film, and hybrid smart supercapacitor electrode;(d) areal capacitance values for the three electrodes[35];(e) the structure of the WO3/PANI electrochromic supercapacitors; and(f) the relation between time and color of the device under different potential(-1 ~ 1 V)[36]
图9 (a) W18O49的结构和XRD;(b) W18O49纳米线的形貌;W18O49纳米线薄膜在1.0 M Al(ClO4)3、LiClO4、NaClO4的碳酸丙烯酯溶液中的性能; (c) 循环伏安曲线;(d) 在波长为660 nm的可见光处的透过率变化;(e) 电致变色效率[13]
Fig. 9 (a) XRD and structure of W18O49 NW;(b) SEM and TEM(inset) images of W18O49 NW;(c) CV curves at a scan rate of 10 mV·s-1,(d) in situ transmittance variation curve between colored and bleached state, and(e) coloration efficiency of the W18O49 nanowires film in 1.0 M PC-Al(ClO4)3, PC-LiClO4, PC-NaClO4 [13]
图10 (a) 光驱动电致变色器件原理示意图[44];(b) DSSC系统和电致变色器件的两种集成方式(Ⅰ型和Ⅱ型)[46];(c) 光驱动电致变色器件照片;(d) 光驱动电致变色器件变色效果[47]
Fig. 10 (a)Schematic diagram of photochromic device driven by light[44];(b) two integration modes of DSSC system and electrochromic device(type Ⅰ and Ⅱ)[46];(c) photo of photochromic device driven by light;(d) photographs of photochromic device driven by light at different states[47]
图11 (a) 光电致变色器件和锂离子电池集成器件的结构示意图;(b) 光电致变色器件和锂离子电池集成器件的电致变色效果[53];(c) 介孔结构WO3和PANI为电极组成的电致变色器件[55]
Fig. 11 (a) Structure diagram of integrated photochromic and lithium-ion storage device;(b) electrochromic effect of photochromic device and lithium-ion battery integrated device[53];(c) mesoporous structured WO3 and PANI as electrodes for electrochromic devices[55]
图12 (a) W18O49 NW/SCNTs复合电极在不同弯曲程度下的CV曲线;(b) CV和GS结合的方法制备纳米结构PANI示意图;(c) CV和GS结合法制备出柔韧性和电致变色效果较好的PANI薄膜[40];(d) 柔性透明超级电容器的制备流程示意图[62]
Fig. 12 (a) CV curves of W18O49 NW/SCNTs composite electrodes under different bending degrees;(b) schematic diagram of nanostructured PANI prepared by combining CV and GS;(c) PANI film with good flexibility and electrochromic effect prepared by combining CV and GS[40];(d) schematic diagram of preparation process of flexible transparent supercapacitors[62]
[1]
Sadineni S B , Madala S , Boehm R F. Renew. Sustain.Energy Rev., 2011,15: 3617.
[2]
Deb S K. Appl. Opt., 1969,8: 192. https://www.ncbi.nlm.nih.gov/pubmed/20076124

URL     pmid: 20076124
[3]
Granqvist C G . Handbook of Inorganic Electrochromic Materials. Amsterdam: Elsevier Science, 1995. 79.
[4]
Granqvist C G . Nanotechnology in Eco-efficient Construction. 2nd Ed. Woodhead Publishing, 2019. 467.
[5]
Yang P , Sun P , Mai W J . Mater Today, 2016,19: 394.
[6]
Zhao J , Tian Y , Wang Z , Cong S , Zhou D , Zhang Q , Yang M , Zhang W , Geng F , Zhao Z. Angew. Chem. Int. Ed., 2016,55: 7161.
[7]
Liu X Y , Gao Y Q , Yang G W . Nanoscale, 2016,8: 4227. https://www.ncbi.nlm.nih.gov/pubmed/26838964

doi: 10.1039/c5nr09145d     URL     pmid: 26838964
[8]
Tong Z Q , Tian Y L , Zhang H M , Li X G , Ji J Y , Qu H Y , Li N , Zhao J P , Li Y. Sci. Chin. Chem., 2017,60: 13.
[9]
Yoon J , Baca A J , Park S I , Elvikis P , Geddes J B , Li L , Kim R H , Xiao J , Wang S , Kim T H , Motala M J , Ahn B Y , Duoss E B , Lewis J A , Nuzzo R G , Ferreira P M , Huang Y , Rockett A , Rogers J A. Nat. Mater., 2008,7: 907. https://www.ncbi.nlm.nih.gov/pubmed/18836435

doi: 10.1038/nmat2287     URL     pmid: 18836435
[10]
Li W , Sasaki A , Oozu H , Aoki K , Kakushima K , Kataoka Y , Nishiyama A , Sugii N , Wakabayashi H , Tsutsui K , Natori K , Iwai H . Microelectron.Reliab., 2015,55: 402.
[11]
Duan X C , Xiao S H , Wang L L , Huang H , Liu Y , Li Q H , Wang T H . Nanoscale, 2015,7: 2230. https://www.ncbi.nlm.nih.gov/pubmed/25563400

URL     pmid: 25563400
[12]
Li P , Li X , Zhao Z Y , Wang M S , Fox T , Zhang Q , Zhou Y . Electrochim. Acta, 2016,192: 148.
[13]
Tian Y Y , Zhang W K , Cong S , Zheng Y C , Geng F X , Zhao Z G. Adv. Funct. Mater., 2015,25: 5833. http://doi.wiley.com/10.1002/adfm.201502638

doi: 10.1002/adfm.201502638     URL    
[14]
Zheng M B , Tang H , Hu Q , Zheng S S , Li L L , Xu J , Pang H. Adv. Funct. Mater., 2018,28: 1707500.
[15]
Chang X , Hu R , Sun S , Liu J , Lei Y , Liu T , Dong L , Yin Y. Appl. Surf. Sci., 2018,441: 105.
[16]
Li H , McRae L, Firby C J, Elezzabi A Y. Adv. Mater., 2019,31: 1807065.
[17]
Li H Z , Firby C J , Elezzabi A Y . Joule, 2019,3: 2268.
[18]
Giannuzzi R , Manca M , De Marco L , Belviso M R , Cannavale A , Sibillano T , Giannini C , Cozzoli P D , Gigli G . ACS Appl. Mater. Interfaces, 2014,6: 1933. https://pubs.acs.org/doi/10.1021/am4049833

doi: 10.1021/am4049833     URL    
[19]
Furutsuki S , Chung S C , Nishimura S , Kudo Y , Yamashita K , Yamada A . J. Phys. Chem. C, 2012,116: 15259.
[20]
Béléké A B , Faure C , Röder M , Hovington P , Posset U , Guerfi A , Zaghib K. Mater. Sci. Eng. B, 2016,214: 81.
[21]
Roscher V , Rittweger F , Riemschneider K R. ACS Appl. Mater. Interfaces, 2019,11: 6900. https://www.ncbi.nlm.nih.gov/pubmed/30557001

doi: 10.1021/acsami.8b16439     URL     pmid: 30557001
[22]
Li S , Meng X , Yi Q , Alonso J A , Fernández-Díaz M T, Sun C, Wang Z L. Nano Energy, 2018,52: 510.
[23]
Nagai H , Hara H , Enomoto M , Mochizuki C , Honda T , Takano I , Sato M. Funct. Mater. Lett., 2013,06: 1341001.
[24]
Roeder M , Beleke A B , Guntow U , Buensow J , Guerfi A , Posset U , Lorrmann H , Zaghib K , Sextl G . [J]. Power Sources, 2016,301: 35.
[25]
Mandal J , Du S C , Dontigny M , Zaghib K , Yu N F , Yang Y. Adv. Funct. Mater., 2018,28: 1802180. http://doi.wiley.com/10.1002/adfm.v28.36

doi: 10.1002/adfm.v28.36     URL    
[26]
Wang J , Zhang L , Yu L , Jiao Z , Xie H , Lou X W , Sun X W. Nat. Commun., 2014,5: 4921. https://www.ncbi.nlm.nih.gov/pubmed/25247385

doi: 10.1038/ncomms5921     URL     pmid: 25247385
[27]
Pan J , Zheng R , Wang Y , Ye X , Wan Z , Jia C , Weng X , Xie J , Deng L. Sol. Energy Mater. Sol. Cells, 2020,207: 110337.
[28]
陈旭丽 ( Chen X L ). 复旦大学博士学位论文( Doctoral Dissertation of Fudan University), 2014.
[29]
Gogotsi Y , Penner R M . ACS Nano, 2018,12: 2081. https://www.ncbi.nlm.nih.gov/pubmed/29580061

doi: 10.1021/acsnano.8b01914     URL     pmid: 29580061
[30]
Shen L X , Du L H , Tan S Z , Zang Z G , Zhao C X , Mai W J. Chem. Commun., 2016,52: 6296.
[31]
Cai G , Wang X , Cui M , Darmawan P , Wang J , Eh A L S, Lee P S. Nano Energy, 2015,12: 258.
[32]
Guo Q F , Li J J , Zhang B , Nie G M , Wang D B. ACS Appl. Mater. Interfaces, 2019,11: 6491. https://www.ncbi.nlm.nih.gov/pubmed/30665294

URL     pmid: 30665294
[33]
陈永博 ( Chen Y B ). 中国科学院大学博士学位论文( Doctoral Dissertation of University of Chinese Academy of Sciences), 2019.
[34]
Wei D , Scherer M R , Bower C , Andrew P , Ryhanen T , Steiner U . Nano Lett., 2012,12: 1857. https://www.ncbi.nlm.nih.gov/pubmed/22390702

URL     pmid: 22390702
[35]
Tian Y , Cong S , Su W , Chen H , Li Q , Geng F , Zhao Z G. Nano Lett., 2014,14: 2150. https://www.ncbi.nlm.nih.gov/pubmed/24593047

doi: 10.1021/nl5004448     URL     pmid: 24593047
[36]
Wu X , Wang Q , Zhang W , Wang Y , Chen W . Synth. Metals, 2016,220: 494.
[37]
Chen J , Wang Z , Chen Z , Cong S , Zhao Z . Nano Lett., 2020,20: 1915. https://www.ncbi.nlm.nih.gov/pubmed/32091911

URL     pmid: 32091911
[38]
Lin M C , Gong M , Lu B , Wu Y , Wang D Y , Guan M , Angell M , Chen C , Yang J , Hwang B J , Dai H . Nature, 2015,520: 325. https://www.ncbi.nlm.nih.gov/pubmed/25849777

URL     pmid: 25849777
[39]
Li Z , Xiang K , Xing W , Carter W C , Chiang Y M. Adv. Energy Mater., 2015,5: 1401410.
[40]
Li K , Shao Y , Liu S , Zhang Q , Wang H , Li Y , Kaner R B . Small, 2017,13: 1700380.
[41]
Zhang S , Cao S , Zhang T , Yao Q , Lin H , Fisher A , Lee J Y . Small Methods, 2020,4: 1900545.
[42]
Granqvist C G . Thin Solid Films, 2014,564: 1.
[43]
Cho J , Yun T Y , Noh H Y , Baek S H , Nam M , Kim B , Moon H C , Ko D H. Adv. Funct. Mater., 2020,30: 1909601.
[44]
Leftheriotis G , Syrrokostas G , Yianoulis P. Sol. Energy Mater.Sol. Cells, 2010,94: 2304.
[45]
Barachevsky V A , Butenko V G. Russ. J. Gen. Chem., 2018,88: 2747.
[46]
Xie Z , Jin X , Chen G , Xu J , Chen D , Shen G . Chem. Commun., 2014,50: 608.
[47]
Leftheriotis G , Syrrokostas G , Yianoulis P. Sol. Energy Mater. Sol. Cells, 2012,96: 86. https://linkinghub.elsevier.com/retrieve/pii/S0927024811005009

doi: 10.1016/j.solmat.2011.09.014     URL    
[48]
Bechinger C , Ferrer S , Zaban A , Sprague J , Gregg B A . Nature, 1996,383: 608.
[49]
Syrrokostas G , Leftheriotis G , Yianoulis P . Solid State Ionics, 2015,277: 11.
[50]
Dokouzis A , Theodosiou K , Leftheriotis G. Sol. Energy Mater. Sol. Cells, 2018,182: 281. https://linkinghub.elsevier.com/retrieve/pii/S092702481830151X

doi: 10.1016/j.solmat.2018.03.039     URL    
[51]
Liu Y , Shen H , Chen W , Wang H , Deng Y J , Wang D H. Chin. Sci. Bull., 2008,53: 3173.
[52]
Xu Z J , Li W F , Huang J N , Guo X , Liu Q , Yu R , Miao W N , Zhou B Y , Guo W X , Liu X Y . Nano Energy, 2019,63: 103830.
[53]
Wang Z , Chiu H C , Paolella A , Zaghib K , Demopoulos G P . ChemSusChem, 2019,12: 2220. https://www.ncbi.nlm.nih.gov/pubmed/30770645

URL     pmid: 30770645
[54]
谢思杰 ( Xie S J ). 中国科学院大学硕士学位论文( Master Dissertation of University of Chinese Academy of Sciences), 2019.
[55]
Wang W Q , Wang X L , Xia X H , Yao Z J , Zhong Y , Tu J P . Nanoscale, 2018,10: 8162. https://www.ncbi.nlm.nih.gov/pubmed/29676415

doi: 10.1039/c8nr00790j     URL     pmid: 29676415
[56]
王伟齐 ( Wang W Q ). 浙江大学硕士学位论文( Master Dissertation of Zhejiang University), 2019.
[57]
Zhang J , Tu J P , Xia X H , Wang X L , Gu C D . [J]. Mater. Chem., 2011,21: 5492. http://xlink.rsc.org/?DOI=c0jm04361c

doi: 10.1039/c0jm04361c     URL    
[58]
Zhang J , Wang X L , Xia X H , Gu C D , Tu J P. Sol. Energy Mater. Sol. Cells, 2011,95: 2107.
[59]
Zhang J , Tu J P , Zhang D , Qiao Y Q , Xia X H , Wang X L , Gu C D . [J]. Mater. Chem., 2011,21: 17316. http://xlink.rsc.org/?DOI=c1jm13069b

doi: 10.1039/c1jm13069b     URL    
[60]
Zhou D , Shi F , Xie D , Wang D H , Xia X H , Wang X L , Gu C D , Tu J P . [J]. Colloid Interface Sci., 2016,465: 112.
[61]
Cai G , Wang J , Lee P S. Acc. Chem. Res., 2016,49: 1469. https://www.ncbi.nlm.nih.gov/pubmed/27404116

doi: 10.1021/acs.accounts.6b00183     URL     pmid: 27404116
[62]
Zhou K , Wang H , Jiu J , Liu J , Yan H , Suganuma K. Chem. Eng. J., 2018,345: 290. https://linkinghub.elsevier.com/retrieve/pii/S1385894718305333

doi: 10.1016/j.cej.2018.03.175     URL    
[63]
Chen T , Xue Y , Roy A K , Dai L . ACS Nano, 2014,8: 1039. https://www.ncbi.nlm.nih.gov/pubmed/24350978

doi: 10.1021/nn405939w     URL     pmid: 24350978
[64]
Kanninen P , Luong N D , Sinh le H, Anoshkin I V, Tsapenko A, Seppala J, Nasibulin A G, Kallio T. Nanotechnology, 2016,27: 235403. https://www.ncbi.nlm.nih.gov/pubmed/27122323

URL     pmid: 27122323
[65]
陈燕丽 ( Chen Y L ). 暨南大学硕士学位论文( Master Dissertation of Jinan University), 2016.
[66]
Wu H , Kong D , Ruan Z , Hsu P C , Wang S , Yu Z , Carney T J , Hu L , Fan S , Cui Y . Nat. Nanotechnol., 2013,8: 421. https://www.ncbi.nlm.nih.gov/pubmed/23685985

doi: 10.1038/nnano.2013.84     URL     pmid: 23685985
[67]
Ginting R T , Ovhal M M , Kang J W . Nano Energy, 2018,53: 650.
[68]
Guo X , Xu Z , Huang J , Zhang Y , Liu X , Guo W . Mater.Lett., 2019,244: 92.
[69]
Zhang D N , Sun B L , Huang H , Gan Y P , Xia Y , Liang C , Zhang W K , Zhang J . Materials, 2020,13: 1206.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[4] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[5] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[6] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[7] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[8] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[9] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[10] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[11] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[12] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[13] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[14] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[15] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.