English
新闻公告
More
化学进展 2020, Vol. 32 Issue (5): 548-561 DOI: 10.7536/PC190922 前一篇   后一篇

• 综述 •

固态荧光碳点的制备

李世嘉1,2, 庞尔楠1,2, 郝彩红3, 蔡婷婷1, 胡胜亮3,**()   

  1. 1.中北大学材料科学与工程学院 太原 030051
    2.山西机电职业技术学院 长治 046011
    3.中北大学能源动力工程学院 太原 030051
  • 收稿日期:2019-09-18 修回日期:2019-12-16 出版日期:2020-05-15 发布日期:2020-02-20
  • 通讯作者: 胡胜亮
  • 基金资助:
    山西省三晋学者计划、山西省高等学校中青年拔尖创新人才支持计划、山西省重点研发计划-国际合作项目(201903D421082); 山西省三晋学者计划、山西省高等学校中青年拔尖创新人才支持计划、山西省重点研发计划-国际合作项目(201803D421091); 山西省高校成果转化培育项目()

Preparation of Solid-State Fluorescent Carbon Dots

Shijia Li1,2, Ernan Pang1,2, Caihong Hao3, Tingting Cai1, Shengliang Hu3,**()   

  1. 1.School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
    2.Shanxi Institute of Mechanical & Electrical Engineering, Changzhi 046011, China
    3.School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
  • Received:2019-09-18 Revised:2019-12-16 Online:2020-05-15 Published:2020-02-20
  • Contact: Shengliang Hu
  • About author:
    ** e-mail:
  • Supported by:
    Specialized Research Fund for Sanjin Scholars Program of Shanxi Province, the Program for the Innovative Talents of Higher Education Institutions of Shanxi, the Key Research and Development Plan(International Cooperation) of Shanxi Province(201903D421082); Specialized Research Fund for Sanjin Scholars Program of Shanxi Province, the Program for the Innovative Talents of Higher Education Institutions of Shanxi, the Key Research and Development Plan(201803D421091); Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi (TSTAP), China()

荧光碳点由于其具有无毒、制备成本低以及独特的光致发光性能而引起人们极大的研究兴趣,但是通常碳点的制备和使用均是在溶液中,而且随着碳点浓度的增加其荧光强度可能会降低甚至猝灭,通过简单干燥后得到的固态粉末则常常缺少荧光性质。因此,固态荧光碳点制备及其相关应用的研究相对较少。本文综述了固态荧光碳点的制备方法,包括后处理法(基质分散法、表面工程法)和前驱体直接合成法;对比了各种调控手段处理前后碳点荧光性能的变化情况,总结了各种固态碳点在制备过程中和使用过程中存在的主要问题。最后,针对固态发光碳点的制备方法、性能调控及发展方向进行了展望。开发具有聚集诱导发射增强的碳点是至关重要的,也为固态碳点的发展提供了新思路。

Fluorescent carbon dots have attracted significant interest for their non-toxicity, low cost and unique photoluminescence properties. Generally, the preparation and usage of carbon dots(CDs) are in solution. With the increase of CDs concentration, their fluorescence intensity may be reduced or even quenched. Following, the solid-state fluorescent CDs powder obtained by simple drying often lack of fluorescence properties. Therefore, there are relatively few researches on the preparation and related applications of solid-state fluorescent CDs. The article describes recent preparation methods of solid-state fluorescent CDs, including post-processing methods(matrix dispersion method, surface engineering) and direct synthesis method. The changes of fluorescence properties of CDs before and after treatment are compared, and the main problems in preparation and application of solid CDs are summarized. Meanwhile, the preparation, performance modulation of solid-state fluorescent CDs are prospected. It is very crucial to exploit the CDs with the enhancement of aggregation induced emission, which provides a new strategy for the development of solid-state fluorescence CDs.

Contents

1 Introduction

2 Preparation of solid-state fluorescent carbon dots by post-processing method

2.1 Matrix dispersion method

2.2 Surface engineering method

3 Preparation of solid-state fluorescent carbon dots by direct synthesis method

4 Conclusion

()
图1 荧光猝灭可能机理图
Fig. 1 Possible mechanism of fluorescence quenching
图2 质量比为1∶450、1∶70、1∶20的CDs@淀粉粉末在日光下 (a)和紫外光下(b)图像;质量比为1∶70的CDs@淀粉粉末在紫外(c和c')、蓝光(d和d')、绿光(e和e')激发下的荧光图像[63]
Fig. 2 Photographs of CDs@starch powder with a mass ratio of 1∶450,1∶70,1∶20 under sunlight (a) and ultraviolet (b). Fluorescence photographs of CDs@starch powder with a mass ratio of 1∶70 excited by ultraviolet(c and c'), blue light(d and d'), and green light(e and e') [63]. Copyright 2014, Royal Society of Chemistry
图3 (a) CDs-ZnO@APTES的形成过程示意图;(b) CDs-ZnO@APTES粉末发射激发谱和不同激发波长下的发射光谱[65]
Fig. 3 (a) Schematic of the formation process of the CDs-ZnO@APTES.(b) PLE spectra of the CDs-ZnO@APTES powder and fluorescence spectra with different excitation wavelengths[65]. Copyright 2018,Royal Society of Chemistry
图4 CDs@NaCl复合粉体的(a)光学和(b)荧光图像;(c)和(d)为CDs@NaCl复合粉体的SEM图像[67]
Fig. 4 (a) Optical and(b) fluorescent images of resulting CDs@NaCl powder. (c) and (d) SEM images of CDs@NaCl powders.[67] Copyright 2017, Elsevier
图5 (a)TMA-POSS化学结构;(b)CDs@TMA-POSS粉末在日光(上)和紫外光(下)照片;(c)CDs@TMA-POSS的TEM图[68]
Fig. 5 (a)Chemical structure of TMA-POSS.(b) Photographs of CDs@TMA-POSS powders under daylight(top) and UV light(bottom).(c)TEM image of CDs@TMA-POSS[68]. Copyright 2015,Royal Society of Chemistry
图6 F-CDs@SrCO3 (a)和F-CDs@BaCO3 (d)的SEM;F-CDs@SrCO3(b, c), F-CDs@BaCO3 (e, f),F-CDs@CaSO4 ·2H2O(g, h) 和F-CDs@SrSO4(j, k)的光学显微图像(b, e, g, j)和共聚焦荧光显微镜图像(c, f, h, k);F-CDs@CaSO4 ·2H2O(i) 和 F-CDs@SrSO4 (l)的分布模型;(m) 9种F-CDs/无机纳米复合材料在紫外线激发和去除紫外线激发后的照片;Ca、Sr和Ba的碳酸盐(n)、硫酸盐(o)和草酸盐(p)的 F-CDs/无机物纳米复合材料的稳态光致发光光谱[69]
Fig. 6 SEM of F-CDs @SrCO3(a) and F-CDs@BaCO3(d). Optical microscopy images(b, e, g, j) and confocal fluorescence microscopy images(c, f, h, k) of F-CDs@SrCO3(b, c), F-CDs @BaCO3(e, f),F-CDs@CaSO4 ·2H2O(g, h) and F-CDs@SrSO4(j, k).Distribution models of F-CDs@CaSO4 ·2H2O(i) and F-CDs@SrSO4(l).(m)Photographs of the nine F-CDs/inorganic nanocomposites upon UV excitation and after removal of UV excitation. Steady-state photoluminescence emission spectra of Ca, Sr and Ba carbonates(n), sulphates(o) and oxalates(p) F-CDs/inorganic nanocomposites[69]. Copyright 2019, Nature
图7 CDs乙醇溶液(a,a'),CDs粉(b, b'),CDs@SiO2膜(c,c')和CDs@SiO2粉(d,d')在日光(上)和紫外灯(下)的图片[70]
Fig. 7 The pictures of CDs ethanol solution(a, a'), CDs powder(b, b'), CD@SiO2 film(c, c') and CD@SiO2 powder(d, d') under daylight(up) and ultraviolet(down) lamps[70]. Copyright 2018,Elsevier
图8 (a,b)CDs水溶液和Zr-MOF的激发和发射光谱图;(c) 在365 nm激发下CDs、Zr-MOF、CDs@Zr-MOF荧光发射图;(d)CDs、Zr-MOF和CDs@Zr-MOF荧光衰变图[71]
Fig. 8 (a,b)Excitation and emission spectra of CDs aqueous solution and Zr-MOF.(c) PL emission spectra of CDs, Zr-MOF and CDs@Zr-MOF excited under 365 nm.(d)PL decays of CDs(blue), Zr-MOF(red) and CDs@Zr-MOF(black)[71]. Copyright 2019, Royal Society of Chemistry
表1 各种前驱体和制备方法得到CDs的光学性能及其应用
Table 1 Summary of optical properties and applications of the CDs from various precursors and preparation methods
Precursor Method Synthesized CDs Size/nm Ex/nm Em/nm QY/% Application ref
CA
Urea
starch
water(MW, 750 W,
5 min)
chemical adsorption
g-CDs
CDs@starch
(mass ratio:1:70)
2~20[89]
20~40
(μm)
420
420
540
515
18
50
LEDs,
temperature
sensors
63
CA
Urea
BaCl2,Na2SO4
water(MW, 750 W,
5 min)
electrostatic adsorption
g-CDs
CDs@BaSO4
2~20
60~150
405
405
522
520
17
27
LEDs 64
CA, ethylenediamine
Zn(Ac)·2H2O, KOH
APTES
water(300 ℃, 5 h)
stirring
electrostatic adsorption
CDs
ZnO
CDs-ZnO@APTES
2~10
4~6
2~10
300
370
365
450
540
450~540
49 WLEDs 65
AAPMS, CA
KBr,KCl,NaCl
(240 ℃, 1 h)
physical embedding
CDs
CDs@salt
360
360
440
440
LEDs 58, 66
CA, Urea
NaCl
water(MW, 750 W,
5 min)
physical embedding
g-CDs
CDs@NaCl
2~5
2~5
(μm)
405
405
522
510
14
25
WLEDs 67
CA, L-cysteine
TMA-POSS
water(200 ℃, 3 h)
physical embedding
CDs
CDs@TMA-POSS
(2×105:1)
3.0~6.5 200~400
260~400
420
415
78
60
solid-state lighting
devices
68, 90
sodiumfolate
CaCl2·2H2O,Na2CO3
SrCl2·6H2O,Na2CO3
BaCl2,Na2CO3
CaCl2·2H2O,Na2SO4
SrCl2·6H2O,Na2SO4
BaCl2,Na2SO4
CaCl2·2H2O,Na2C2O4
SrCl2·6H2O,Na2C2O4
BaCl2,Na2C2O4
water(200 ℃, 12 h) F-CNDs
F-CNDs@CaCO3
F-CNDs@SrCO3
F-CNDs@BaCO3
F-CNDs@CaSO4·2H2O
F-CNDs@SrSO4
F-CNDs@BaSO4
F-CNDs@CaC2O4·H2O
F-CNDs@SrC2O4·H2O
F-CNDs@BaC2O4·0.5H2O
3~5 320
320
320
320
320
320
320
320
320
320
398
398
398
398
398
398
398
398
398
398
11
6.8
3.2
0.5
7.2
1.7
0.0
2.7
0.3
0.6
theranostic agents
forbackgroundless bio-imaging
pH-responsive controlled-
release materials
69
Precursor Method Synthesized CDs Size/nm Ex/nm Em/nm QY/% Application ref
PPDA
KH-792
ethanol(180 ℃,6 h)
physical embedding
CDs
CDs@silica powder
4.0~9.0 365~525
385~525
600
597
52.46
41.72
LEDs 70
CA, urea
H4L, benzoic acid
ZrOCl2·8H2O, DMF
AEATMS
ammonia water
(MW,700 W,6 min)
(120 ℃,72 h)
CDs

CDs@Zr-MOF
(dispersed in AEATMS)
4 365

365
450

450
511
550
22

37
WLEDs 71
ethylene glycol
DMF
(200 ℃, 5 h)
ethylenediamine modification
surface functionalization
N-CDs
CDs@DMF
(VN-CDs/VDMF :0.25)
1~5 445
445
new devices
and materials
73, 91
CA
SBA-15
water(200 ℃, 5 h)
ammonia solution
(200 ℃,5 h)
surface functionalization
CDs
CDs@SBA-15
3.0
9.5
400
340
480
410
sensing 74, 92
CA
NH2-POSS
water(200 ℃, 5 h)
surface functionalization
CDs
CDs@NH2-POSS
2~7
2~9
300~380
300~380
445
450
6.4
10.2
composite fillers 75, 93
CA
H2O2
ammonia water
(MW,650 W,5 min)
(70 ℃,2 h)
surface functionalization
CDs
Ox-CDs
Ox-CDs powder
2~4
2~4
2~4
330~370
340~370
270~500
435
435
520
21
17
25
solid-state lightning,
high-speed VLC,
LEDs
76
PVA,EDA

PVA

PVA,DETA

PVA,TEPA
water(220 ℃, 10 h)

water(220 ℃, 10 h)

water(220 ℃, 10 h)

water(220 ℃, 10 h)
CDs220 aqueous solution
CDs220 powder
PVA220 aqueous solution
PVA220 powder
d-CDs220 aqueous solution
d-CDs220 powder
t-CDs220 aqueous solution
t-CDs220 powder
9 340
340

365
350
365
360
365

540

460
450
580
470
550
35

1

20

22
LEDs 78
Tween 80 phosphoric acid,
sulfuric acid(90 ℃, 3 h)
one-step carbonization
CDs(CH2Cl2)

CDs powder
3.5~5.3 363

365
435

455
2.1

2.0
visualizationoffing-erprints,LEDs 79
trisodium

citrate dehydrate
urea
DMF(160 ℃, 4 h)
In-situ embedding
DMAC(160 ℃, 4 h)
In-situ embedding
DEF(160 ℃, 4 h)
In-situ embedding
CDs11 aqueous solution
CDs11powder
CDs12 aqueous solution
CDs12powder
CDs21 aqueous solution
CDs21powder

400

100~500

300~500
422
422
412
412
414
414

537

530

513
20.8
21.6
14.9
18.7
17.5
17.6
WLEDs,
fluorescent plates
80
Al(OiPr)3
H3PO4
HF
Al(OiPr)3
H3PO4
trimethylamine
triethylene glycol
(180 ℃, 3 days)
4,7,10-trioxa-1,
13-tridecanediamine triethylene glycol
(180 ℃, 3 days)
CDs@AlPO-5


CDs@2D-AlPO
3.7 nm


3.5 nm
370


370
430


440
15.53


52.14
smart material in
dual-mode security protection
81
Al(OiPr)3
H3PO4
MgHPO4 ·3H2O,H2O
4,7,10-trioxa-1,
13-tridecanediamine
(180 ℃, 3 days)
In-situ embedding
CDs@MgAPO-5 3.4 nm 370 425 22.77
MA,DTSA acetic acid
(180 ℃,10 h)
H-CDs(acetic acid)
H-CD powder
4~10
4~10
360
559
467
620
5.96 luminescence ink,
encryption tool
82
CA,Urea,CaCl2 vacuum heating v-CDs(ethanol solution) 4.1 380~430 510~514 72 encryption medium 83
CA,L-cysteine
KCl
one-pot microwave
heating(5 min)
CDs solution
(0.2 mg·mL-1)
CDs powder
2.1 340~380

430~500
435

500~620
84

65
WLEDs 84
图9 (a,b)固态组装的SEM图像;(c)网状沉淀的SEM,(d)N-CD溶液、固态组装、网状沉淀和不含N-CDs粉末的荧光谱;(e)席夫碱形成原理图[73]
Fig. 9 (a,b) SEM images of the solid assemblies.(c) SEM image of the ramified precipitates.(d) PL spectra of N-CD’s solution, solid assemblies, ramified precipitates and powders without N-CDs.(e) Schematic diagram of Schiff base formation[73]. Copyright 2015, Royal Society of Chemistry
图10 (a)CDs@SBA-15形成原理图;(b)NCDs和NCDS@SBA-15的荧光激发和发射谱;(c)NCDs@SBA-15在水、浓盐酸和氨水溶液中的荧光谱(λex=340 nm);(d)CDs@SBA-15在紫外灯下照片[74]
Fig. 10 (a) Schematic diagram of CDs@SBA-15, (b) PL excitation and emission spectra of NCDs and NCDs@SBA-15.(c) PL spectra of NCDs@SBA-15 in water, concentrated HCl and ammonia solution(λex=340 nm).(d) Photographs of CDs@SBA-15 under UV light[74]. Copyright 2019, Royal Society of Chemistry
图11 (a)CDs和ox-CDs水溶液的紫外-可见吸收光谱;(b)CDs和ox-CDs固相的漫反射吸收光谱[76]
Fig. 11 (a) UV-visible absorption spectra of CDs and ox-CDs aqueous solutions.(b) Diffuse reflection absorption spectra of solid phases of CDs and ox-CDs[76]. Copyright 2018, Wiley
图12 (a),(b)CDs220乙醇溶液的TEM图;(c)不同浓度CDs220水溶液和CDs220粉末在340 nm激发下的荧光发射图谱;(d)d-CDs220(1),t-CDs220(2),CDs220(3),PVA220(4)和CDs220@淀粉(5)在日光(上)和紫外光(下)的图像;(e)以上粉体的固态荧光图谱[78]
Fig. 12 (a), (b) TEM images of CDs220 ethanol solution.(c) Fluorescence emission spectra of CDs220 aqueous solution and CDs220 powders excited at 340 nm.(d) Images of d-CDs220(1), t-CDs220(2), CDs220(3), PVA220(4) and CDs220@starch(5) under daylight(top) and ultraviolet(bottom). (e) Solid-state fluorescence spectra of the above powders[78]. Copyright 2015, Wiley
图13 CDs粉末制备路线原理图[79]
Fig. 13 Schematic diagram of CDs powders preparation route[79]. Copyright 2018,Elsevier
图14 (a) CDs11粉的原位形成过程示意图;(b)CDs12粉末TEM图;(c)CDs21粉末TEM图[80]
Fig. 14 (a) Schematic of in situ formation process of CDs11 powder.(b) TEM image of CDs12 powder.(c) TEM image of CDs21 powder[80]. Copyright 2018, Elsevier
图15 (a) CDs@AlPO-5复合材料的SEM图(左)和在紫外、蓝光和绿光激发下的荧光图(右);(b)CDs@2D-AlPO复合材料的SEM图(左)和在紫外、蓝光和绿光激发下的荧光图(右);(c)CDs@MgAPO-5复合材料的SEM图(左)和在紫外、蓝光和绿光激发下的荧光图(右);(d)CDs@AlPO-5在室温下的荧光衰变图[81]
Fig. 15 (a)SEM image(left) and fluorescence microscopy images(right) excited under UV, blue and green light of CDs @AlPO-5 composite.(b)SEM image(left) and fluorescence microscopy images(right) excited under UV, blue and green light of CDs@2D-AlPO composite.(c)SEM image(left) and fluorescence microscopy images(right) excited under UV, blue and green light of CDs@MgAPO-5.(d)PL decays of CDs@AlPO-5 at room temperature[81]. Copyright 2017, Science
图16 (a)蓝色H-CDs单体和红色团聚体;(b)H-CDs从分散到团聚体形成原理图;(c)蓝色荧光猝灭和红色荧光打开原理(左)和H-CDs的表面和核心结构(右)[82]
Fig. 16 (a) The schematic diagram of blue H-CDs monomers and red aggregates.(b) The schematic diagram of H-CDs formation from dispersion to aggregate.(c) Principle of blue fluorescence quenching and red fluorescence opening(left) and proposed surface and core structure of H-CDs(right)[82]. Copyright 2019,Nature
[1]
Sun Y P, Zhou B, Lin Y, Wang W, Shiral F K A, Pankaj P, Mohammed J M, Barbara A H, Wang X, Wang H F, Luo P G, Yang H, Muhammet E K, Chen B L, Veca L M, Xie S Y. Journal of the American Chemical Society, 2006,128:7756. https://pubs.acs.org/doi/10.1021/ja062677d

doi: 10.1021/ja062677d     URL    
[2]
Bhattacharyya S, Ehrat F, Urban P, Teves R, Wyrwich R, Doblinger M, Feldmann J, Urban A S, Stolarczyk J K. Nature Communications, 2017,8(1):1401. http://www.nature.com/articles/s41467-017-01463-x

doi: 10.1038/s41467-017-01463-x     URL    
[3]
Li W D, Liu Y, Wu M, Feng X L, Redfern S A T, Shang Y, Yong X, Feng T L, Wu K F, Liu Z Y, Li B J, Chen Z M, Tse J S, Lu S Y, Yang B. Advanced Materials, 2018,30(31):1800676. http://doi.wiley.com/10.1002/adma.v30.31

doi: 10.1002/adma.v30.31     URL    
[4]
Liu C A, Fu Y J, Xia Y J, Zhu C, Hu L L, Zhang K, Wu H H, Huang H, Liu Y, Xie T F, Zhong J, Kang Z H. Nanoscale, 2018,10(5):2454. http://xlink.rsc.org/?DOI=C7NR08000J

doi: 10.1039/C7NR08000J     URL    
[5]
Zhang J Y, Wu S H, Lu X M, Wu P, Liu J W. Nano Letters, 2019,19(5):3214 https://pubs.acs.org/doi/10.1021/acs.nanolett.9b00725

doi: 10.1021/acs.nanolett.9b00725     URL    
[6]
金静(Jin J), 朱守俊(Zhu S J), 宋玉彬(Song Y B), 宋薇(Song W), 杨柏(Yang B), 赵冰(Zhao B). 光谱学与光谱分析 (Spectroscopy and Spectral Analysis), 2016,36:291.
[7]
白静静(Bai J J), 胡国胜(Hu G S), 张静婷(Zhang J T), 刘冰肖(Liu B X), 王玉龙(Wang Y L), 李振中(Li Z Z). 光子学报 (Acta Photonica Sinica), 2019,48(4):0416001
[8]
Jiang K, Sun S, Zhang L, Wang Y H, Cai C Z, Lin H W. ACS Applied Materials & Interfaces, 2015,7(41):23231. https://pubs.acs.org/doi/10.1021/acsami.5b07255

doi: 10.1021/acsami.5b07255     URL    
[9]
Miao X, Yan X L, Qu D, Li D B, Tao F F, Sun Z C. ACS Applied Materials & Interfaces, 2017,9(22):18549. https://pubs.acs.org/doi/10.1021/acsami.7b04514

doi: 10.1021/acsami.7b04514     URL    
[10]
Chen J, Wei J S, Zhang P, Niu X Q, Zhao W, Zhu Z Y, Ding H, Xiong H M. ACS Applied Materials & Interfaces, 2017,9(22):18429. https://pubs.acs.org/doi/10.1021/acsami.7b03917

doi: 10.1021/acsami.7b03917     URL    
[11]
曲松楠(Qu S N), 刘星元(Liu X Y), 申德振(Shen D Z). 发光学报 (Chinese Journal of Luminescence), 2014,35:1019.
[12]
Liu J J, Li D W, Zhang K, Yang M X, Sun H C, Yang B. Small, 2018,14(15):1703919. http://doi.wiley.com/10.1002/smll.201703919

doi: 10.1002/smll.201703919     URL    
[13]
Yang L, Jiang W H, Qiu L P, Jiang X W, Zuo D Y, Wang D K, Yang L. Nanoscale, 2015,7(14):6104. http://xlink.rsc.org/?DOI=C5NR01080B

doi: 10.1039/C5NR01080B     URL    
[14]
Yang W N, Zhang H, Lai J X, Peng X Y, Hu Y P, Gu W, Ye L. Carbon, 2018,128:78. https://linkinghub.elsevier.com/retrieve/pii/S0008622317311831

doi: 10.1016/j.carbon.2017.11.069     URL    
[15]
Strauss V, Marsh K, Kowal M D, El-Kady M, Kaner R B. Advanced Materials, 2018,30(8):1704449. http://doi.wiley.com/10.1002/adma.v30.8

doi: 10.1002/adma.v30.8     URL    
[16]
Wang F, Chen Y H, Liu C Y, Ma D G. Chemical Communications, 2011,47(12):3502. http://dx.doi.org/10.1039/c0cc05391k

doi: 10.1039/c0cc05391k     URL    
[17]
Zhang D Z, Liu C Y, Li K Z, Chen Y, Ruan S P, Zhang X D, Li C N. Nanoscale, 2018,10(14):6459. http://xlink.rsc.org/?DOI=C8NR00214B

doi: 10.1039/C8NR00214B     URL    
[18]
Li L, Chen Y H, Liu Z H, Chen Q, Wang X D, Zhou H P. Advanced Materials, 2016,28(44):9862 http://doi.wiley.com/10.1002/adma.201603021

doi: 10.1002/adma.201603021     URL    
[19]
Sun C, Zhang Y, Ruan C, Yin C Y, Wang X Y, Wang Y D, Yu W W. Advanced Materials, 2016,28(45):10088. http://doi.wiley.com/10.1002/adma.201603081

doi: 10.1002/adma.201603081     URL    
[20]
Wang Y L, Yan L P, Ji G Q, Wang C, Gu H M, Luo Q, Chen Q, Chen L W, Yang Y Z, Ma C Q, Liu X G. ACS Applied Materials & Interfaces, 2019,11(2):2243. https://pubs.acs.org/doi/10.1021/acsami.8b17128

doi: 10.1021/acsami.8b17128     URL    
[21]
Hu S L, Guo Y, Dong Y G, Yang J L, Liu J, Cao S R. Journal of Materials Chemistry, 2012,22(24):12053. http://dx.doi.org/10.1039/c2jm30584d

doi: 10.1039/c2jm30584d     URL    
[22]
Hu S L, Dong Y G, Yang J L, Liu J, Tian F, Cao S R. Asian Journal of Chemistry, 2012,7(11):2711.
[23]
Ray S C, Saha A, Nikhil R J, Rupa S. The Journal of Physical Chemistry C, 2009,113:18546. https://pubs.acs.org/doi/10.1021/jp905912n

doi: 10.1021/jp905912n     URL    
[24]
Tian L, Ghosh D, Chen W, Pradhan S, Chang X J, Chen S W. Chemistry of Materials, 2009,21(13):2803. https://pubs.acs.org/doi/10.1021/cm900709w

doi: 10.1021/cm900709w     URL    
[25]
Hu C, Yu C, Li M Y, Wang X N, Yang J Y, Zhao Z B, Eychmuller A, Sun Y P, Qiu J S. Small, 2014,10(23):4926. http://dx.doi.org/10.1002/smll.201401328

doi: 10.1002/smll.201401328     URL    
[26]
Deng J H, Lu Q J, M N X, Li H T, Liu M L, Xu M C, Tan L, Xie Q J, Zhang Y Y, Yao S Z. Chemistry, 2014,20(17):4993.
[27]
Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H, Yang X B, Lee S T. Angewandte Chemie International Edition, 2010,49(26):4430. http://doi.wiley.com/10.1002/anie.200906154

doi: 10.1002/anie.200906154     URL    
[28]
Zhang Y L, Wang L, Zhang H C, Liu Y, Wang H Y, Kang Z H, Lee S T. RSC Advances, 2013,3(11):3733. http://dx.doi.org/10.1039/c3ra23410j

doi: 10.1039/c3ra23410j     URL    
[29]
Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B P, Pang D W. Advanced Materials, 2011,23(48):5801. http://dx.doi.org/10.1002/adma.201102866

doi: 10.1002/adma.201102866     URL    
[30]
Guo Y M, Wang Z, Shao H W, Jiang X Y. Carbon, 2013,52:583. http://dx.doi.org/10.1016/j.carbon.2012.10.028

doi: 10.1016/j.carbon.2012.10.028     URL    
[31]
卢思宇(Lu S Y), 杨柏(Yang B). 高分子学报 (Acta Polymerica Sinica), 2017,7:1200.
[32]
Jiang K, Sun S, Zhang L, Lu Y, Wu A G, Cai C Z, Lin H W. Angew. Chem. Inter. Ed., 2015,54(18):5450.
[33]
Li D, Jing P T, Sun L H, An Y, Shan X Y, Lu X H, Zhou D, Han D, Shen D Z, Zhai Y C, Qu S N, Zboril R, Rogach A L. Advanced Materials, 2018,30(13):1705913. https://onlinelibrary.wiley.com/toc/15214095/30/13

doi: 10.1002/adma.v30.13     URL    
[34]
Ding H, Wei J S, Zhang P, Zhou, Z Y, Gao Q Y, Xiong H M. Small, 2018,14(22):1800612. http://doi.wiley.com/10.1002/smll.v14.22

doi: 10.1002/smll.v14.22     URL    
[35]
Yang S H, Sun X H, Wang Z Y, Wang X Y, Guo G S, Pu Q S. Nano Research, 2018,11(3):1369. https://doi.org/10.1007/s12274-017-1751-8

doi: 10.1007/s12274-017-1751-8     URL    
[36]
Qu S N, Wang X Y, Lu Q P, Liu X Y, Wang L J. Angewandte Chemie International Edition, 2012,51(49):12215. http://doi.wiley.com/10.1002/anie.v51.49

doi: 10.1002/anie.v51.49     URL    
[37]
Wang L, Zhu S J, Wang H Y, Qu S N, Zhang Y L, Zhang J H, Chen Q D, Xu H L, Han W, Yang B, Sun H B. ACS Nano, 2014,8(3):2541. https://pubs.acs.org/doi/10.1021/nn500368m

doi: 10.1021/nn500368m     URL    
[38]
Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc, 2004,126:12736. https://pubs.acs.org/doi/10.1021/ja040082h

doi: 10.1021/ja040082h     URL    
[39]
Miao X, Qu D, Yang D X, Nie B, Zhao Y K, Fan H Y, Sun Z C. Advanced Materials, 2018,30(1):1704740. http://doi.wiley.com/10.1002/adma.201704740

doi: 10.1002/adma.201704740     URL    
[40]
胡胜亮(Hu S L), 白培康(Bai P K), 孙景(Sun J), 曹士锐(Cao S R). 化学进展 (Progress in Chemistry), 2010,22:345. http://www.progchem.ac.cn//CN/abstract/abstract10278.shtml
[41]
Wang B B, Jin J C, Xu Z Q, Jiang Z W, Li X, Jiang F L, Liu Y. Journal of Colloid and Interface Science, 2019,551:101. https://linkinghub.elsevier.com/retrieve/pii/S0021979719305259

doi: 10.1016/j.jcis.2019.04.088     URL    
[42]
Bao L, Liu C, Zhang Z L, Pang D W. Advanced Materials, 2015,27(10):1663. http://doi.wiley.com/10.1002/adma.201405070

doi: 10.1002/adma.201405070     URL    
[43]
Ding Y F, Zheng J X, Wang J L, Yang Y Z, Liu X G. Journal of Materials Chemistry C, 2019,7(6):1502 http://xlink.rsc.org/?DOI=C8TC04887H

doi: 10.1039/C8TC04887H     URL    
[44]
Ding H, Yu S B, Wei J S, Xiong H M. ACS Nano, 2016,10(1):484. https://pubs.acs.org/doi/10.1021/acsnano.5b05406

doi: 10.1021/acsnano.5b05406     URL    
[45]
Yuan F L, Wang Z B, Li X H, Li Y C, Tan Z A, Fan L Z, Yang S H. Advanced Materials, 2017,29(3):1604436. http://doi.wiley.com/10.1002/adma.v29.3

doi: 10.1002/adma.v29.3     URL    
[46]
Wang Z F, Yuan F L, Li X, Li H, Y, Zhong H Z, Fan L Z, Yang S H. Advanced Materials, 2017,29(37):1702910. https://onlinelibrary.wiley.com/toc/15214095/29/37

doi: 10.1002/adma.v29.37     URL    
[47]
Lu S Y, Sui L Z, Liu J J, Zhu S J, Chen A, Jin M X, Yang B. Advanced Materials, 2017,29(15):1603443. http://doi.wiley.com/10.1002/adma.201603443

doi: 10.1002/adma.201603443     URL    
[48]
Ehrat F, Bhattacharyya S, Schneider J, Lof A, Wyrwich R, Rogach A L, Stolarczyk J K, Urban A S, Feldmann J. Nano Letters, 2017,17(12):7710. https://pubs.acs.org/doi/10.1021/acs.nanolett.7b03863

doi: 10.1021/acs.nanolett.7b03863     URL    
[49]
Krysmann M J, Kelarakis A, Dallas P, Giannelis E P. Journal of the American Chemical Society, 2012,134(2):747. http://dx.doi.org/10.1021/ja204661r

doi: 10.1021/ja204661r     URL    
[50]
Essner J B, Kist J A, Polo-Parada L, Baker, G A. Chemistry of Materials, 2018,30(6):1878. https://pubs.acs.org/doi/10.1021/acs.chemmater.7b04446

doi: 10.1021/acs.chemmater.7b04446     URL    
[51]
Wang X, Cao L, Lu F S, Meziani M J, Li H T, Qi G, Zhou B, Harruff B A, Kermarrec F, Sun Y P. Chemical Communications, 2009,25:3774.
[52]
Hu S L, Chang Q, Lin K, Yang J L. Carbon, 2016,105:484. https://linkinghub.elsevier.com/retrieve/pii/S0008622316303499

doi: 10.1016/j.carbon.2016.04.078     URL    
[53]
丁艳丽(Ding Y L), 胡胜亮(Hu S L), 常青(Chang Q). 高等学校化学学报 (Chemical Journal of Chinese Universities), 2015,36:619. http://www.cjcu.jlu.edu.cn/CN/abstract/abstract25698.shtml

doi: 10.7503/cjcu20140930     URL    
[54]
Yuan Y S, Jiang J Z, Liu S P, Yang J D, Zhang H, Yan J J, Hu X L. Sensors and Actuators B: Chemical, 2017,242:545. https://linkinghub.elsevier.com/retrieve/pii/S092540051631841X

doi: 10.1016/j.snb.2016.11.050     URL    
[55]
Deng Y H, Chen X, Wang F, Zhang X A, Zhao D X, Shen D Z. Nanoscale, 2014,6(17):10388. http://dx.doi.org/10.1039/c4nr02544j

doi: 10.1039/c4nr02544j     URL    
[56]
Xie Z, Wang F, Liu C Y. Advanced Materials, 2012,24(13):1716. http://doi.wiley.com/10.1002/adma.201104962

doi: 10.1002/adma.201104962     URL    
[57]
Wang Y, Kalytchuk S, Zhang Y, Shi H C, Kershaw S V, Rogach A L. The Journal of Physical Chemistry Letters, 2014,5(8):1412. https://pubs.acs.org/doi/10.1021/jz5005335

doi: 10.1021/jz5005335     URL    
[58]
Gan Z X, Liu L Z, Wang L, Luo G S, Mo C L, Chang C L. Physical Chemistry Chemical Physics, 2018,20(26):18089. http://xlink.rsc.org/?DOI=C8CP02069H

doi: 10.1039/C8CP02069H     URL    
[59]
Bhunia S K, Nandi S, Shikler R, Jelinek R. Nanoscale, 2016,8(6):3400. http://xlink.rsc.org/?DOI=C5NR08400H

doi: 10.1039/C5NR08400H     URL    
[60]
Wang W T, Kim T H, Yan Z F, Tade M O, Li Q. Advanced Materials Research, 2012,557/559:739. https://www.scientific.net/AMR.557-559

doi: 10.4028/www.scientific.net/AMR.557-559     URL    
[61]
Wang Y L, Zhao Y Q, Zhang F, Chen L, Yang Y Z, Liu X G. New Journal of Chemistry, 2016,40(10):8710. http://xlink.rsc.org/?DOI=C6NJ01753C

doi: 10.1039/C6NJ01753C     URL    
[62]
Nie H, Li M J, Li Q S, Liang S J, Tan Y Y, Sheng L, Shi W, Zhang S X A. Chemistry of Materials, 2014,26(10):3104. http://dx.doi.org/10.1021/cm5003669

doi: 10.1021/cm5003669     URL    
[63]
Sun M Y, Qu S N, Hao Z D, Ji W Y, Jing P T, Zhang H, Zhang L G, Zhao J L, Shen D Z. Nanoscale, 2014,6(21):13076. http://dx.doi.org/10.1039/c4nr04034a

doi: 10.1039/c4nr04034a     URL    
[64]
Zhou D, Zhai Y C, Qu S N, Li D, Jing P T, Ji W Y, Shen D Z, Rogach A L. Small, 2017,13(6):1602055. http://doi.wiley.com/10.1002/smll.v13.6

doi: 10.1002/smll.v13.6     URL    
[65]
Liu K K, Li X M, Cheng S B, Zhou R, Liang Y C, Dong L, Shan C X, Zeng H B, Shen D Z. Nanoscale, 2018,10(15):7155. http://xlink.rsc.org/?DOI=C8NR01209A

doi: 10.1039/C8NR01209A     URL    
[66]
Kim T H, Wang F, McCormick P, Wang L Z, Brown C, Li Q. Journal of Luminescence, 2014,154:1. http://dx.doi.org/10.1016/j.jlumin.2014.04.002

doi: 10.1016/j.jlumin.2014.04.002     URL    
[67]
Zhai Y C, Zhou D, Jing P T, Li D, Zeng H B, Qu S N. Journal of Colloid and Interface Science, 2017,497:165. https://linkinghub.elsevier.com/retrieve/pii/S0021979717302503

doi: 10.1016/j.jcis.2017.03.007     URL    
[68]
Wang Y, Kalytchuk S, Wang L Y, Zhovtiuk O, Cepe K, Zboril R, Rogach A L. Chemical Communication, 2015,51(14):2950. http://xlink.rsc.org/?DOI=C4CC09589H

doi: 10.1039/C4CC09589H     URL    
[69]
Green D C, Holden M A, Levenstein M A, Zhang S H, Johnson B R G, Gala de Pablo J, Ward A, Botchway S W, Meldrum F C. Nature Communications, 2019,10(1):206. https://doi.org/10.1038/s41467-018-08214-6

doi: 10.1038/s41467-018-08214-6     URL    
[70]
Wang J L, Zhang F, Wang Y L, Yang Y Z, Liu X G. Carbon, 2018,126:426. https://linkinghub.elsevier.com/retrieve/pii/S0008622317310424

doi: 10.1016/j.carbon.2017.10.041     URL    
[71]
Wang A W, Hou Y L, Kang F W, Lyu F C, Xiong Y, Chen W C, Lee C S, Xu Z T, Rogach A L, Lu J, Li Y Y. Journal of Materials Chemistry C, 2019,7(8):2207. http://xlink.rsc.org/?DOI=C8TC04171G

doi: 10.1039/C8TC04171G     URL    
[72]
Zhang Q H, Tian Y, Wang C F, Chen S. RSC Advances, 2016,6(53):47616. http://xlink.rsc.org/?DOI=C6RA05689J

doi: 10.1039/C6RA05689J     URL    
[73]
Hu S L, Ding Y L, Chang Q, Trinchi A, Lin K, Yang J L, Liu J. Nanoscale, 2015,7(10):4372. http://xlink.rsc.org/?DOI=C4NR07119K

doi: 10.1039/C4NR07119K     URL    
[74]
Chang Q, Yang S S, Xue C R, Li N, Wang Y Z, Li Y, Wang H Q, Yang J L, Hu S L. Nanoscale, 2019,11(15):7247. http://xlink.rsc.org/?DOI=C9NR01224A

doi: 10.1039/C9NR01224A     URL    
[75]
Wang D, Liu J G, Chen J F, Dai L M. Advanced Materials Interfaces, 2016,3(1), 1500439. http://doi.wiley.com/10.1002/admi.201500439

doi: 10.1002/admi.201500439     URL    
[76]
Zhou Z J, Tian P F, Liu X Y, Mei S L, Zhou D, Li D, Jing P T, Zhang W L, Guo R Q, Qu S N, Rogach A L. Advanced Science, 2018,5(8):1800369. http://doi.wiley.com/10.1002/advs.v5.8

doi: 10.1002/advs.v5.8     URL    
[77]
Li D, Han D, Qu S N, Liu L, Jing P T, Zhou D, Ji W Y, Wang X Y, Zhang T F, Shen D Z. Light: Science & Applications, 2016,5(7):e16120.
[78]
Chen Y H, Zheng M T, Xiao Y, Dong H W, Zhang H R, Zhuang J L, Hu H, Lei B F, Liu Y L. Advanced Materials, 2015,28(2):312. http://doi.wiley.com/10.1002/adma.201503380

doi: 10.1002/adma.201503380     URL    
[79]
Jiang B P, Yu Y X, Guo X L, Ding Z Y, Zhou B, Liang H, Shen X C. Carbon, 2017,128:12. https://linkinghub.elsevier.com/retrieve/pii/S0008622317311843

doi: 10.1016/j.carbon.2017.11.070     URL    
[80]
Shen C L, Zang J H, Lou Q, Su L X, Li Z, Liu Z Y, Dong L, Shan C X. Carbon, 2018,136:359. https://linkinghub.elsevier.com/retrieve/pii/S0008622318304743

doi: 10.1016/j.carbon.2018.05.015     URL    
[81]
Liu J C, Wang N, Yu Y, Yan Y, Zhang H Y, Li J Y, Yu J H. Science Advances, 2017,3(5):e1603171. https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1603171

doi: 10.1126/sciadv.1603171     URL    
[82]
Yang H Y, Liu Y L, Guo Z Y, Lei B F, Zhuang J L, Zhang X J, Liu Z M, Hu C F. Nature Communication, 2019,10(1):1789. https://doi.org/10.1038/s41467-019-09830-6

doi: 10.1038/s41467-019-09830-6     URL    
[83]
Zhou D, Jing P T, Wang Y, Zhai Y C, Li D, Xiong Y, Baranov A V, Qu S N, Rogach A L. Nanoscale Horizons, 2019, 4, ( 2):388. http://xlink.rsc.org/?DOI=C8NH00247A

doi: 10.1039/C8NH00247A     URL    
[84]
Zhang Y Q, Zhuo P, Yin H, Fan Y, Zhang J H, Liu X Y, Chen Z Q. ACS Applied Materials & Interfaces, 2019,11(27):24395. https://pubs.acs.org/doi/10.1021/acsami.9b04600

doi: 10.1021/acsami.9b04600     URL    
[85]
Wang H J, Yu T T, Chen H L, Nan W B, Xie L Q, Zhang Q Q. Dyes and Pigments, 2018,159:245 https://linkinghub.elsevier.com/retrieve/pii/S0143720818309987

doi: 10.1016/j.dyepig.2018.06.039     URL    
[86]
Zhang Y Q, Li C F, FanY, Wang C B, Yang R F, Liu X Y, Zhou L. Nanoscale, 2016,8(47):19744. http://xlink.rsc.org/?DOI=C6NR06553H

doi: 10.1039/C6NR06553H     URL    
[87]
Yeh H C, Wu W C, Chen C T. Chemical Communications, 2003, ( 3):404.
[88]
Hong Y N, Lam J W Y, Tang B Z. Chemical Communications, 2009, ( 29):4332.
[89]
Qu S N, Liu X Y, Guo X Y, Chu M H, Zhang L G, Shen D Z. Advanced Functional Materials, 2014,24(18):2689. http://onlinelibrary.wiley.com/doi/10.1002/adfm.201303352/abstract

doi: 10.1002/adfm.201303352     URL    
[90]
Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew. Chem. Int. Ed., 2013,52(30):7800. http://doi.wiley.com/10.1002/anie.v52.30

doi: 10.1002/anie.v52.30     URL    
[91]
Hu S L, Tian R X, Dong Y G, Yang J L, Liu J, Chang Q. Nanoscale, 2013,5(23):11665. http://dx.doi.org/10.1039/c3nr03893a

doi: 10.1039/c3nr03893a     URL    
[92]
Tian R X, Hu S L, Wu L L, Chang Q, Yang J L, Liu J. Applied Surface Science, 2014,301:156. http://dx.doi.org/10.1016/j.apsusc.2014.02.028

doi: 10.1016/j.apsusc.2014.02.028     URL    
[93]
Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew. Chem. Int. Ed., 2013,52(14):3953. http://doi.wiley.com/10.1002/anie.v52.14

doi: 10.1002/anie.v52.14     URL    
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[7] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[8] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[9] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[10] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[11] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[12] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[13] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[14] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[15] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
阅读次数
全文


摘要

固态荧光碳点的制备