English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1280-1292 DOI: 10.7536/PC200774 前一篇   后一篇

所属专题: 金属有机框架材料

• 综述 •

超薄二维MOF纳米材料的制备和应用

陈立忠1,2, 龚巧彬1, 陈哲1,*()   

  1. 1 华北电力大学环境科学与工程学院 北京 102206
    2 国家电网有限公司 北京 100871
  • 收稿日期:2020-07-31 修回日期:2020-10-10 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 陈哲
  • 基金资助:
    国家电网公司科技项目(5419-201999542A-0-0-00)

Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials

Lizhong Chen1,2, Qiaobin Gong1, Zhe Chen1()   

  1. 1 College of Environmental Science and Engineering, North China Electric Power University,Beijing 102206, China
    2 State Grid Corporation of China,Beijing 100871, China
  • Received:2020-07-31 Revised:2020-10-10 Online:2021-08-20 Published:2020-12-28
  • Contact: Zhe Chen
  • Supported by:
    Science and Technology Projects of State Grid Corporation of China(5419-201999542A-0-0-00)

超薄二维金属有机框架材料(MOF)纳米材料是MOF材料中的一类,不同于传统体相MOF材料,超薄片状结构赋予了它高比表面积、丰富的配位不饱和的金属位点等独特性质,能够有效改善MOF在催化、分离和传感等领域中的性能。本文综述了近年来国内外在超薄二维MOF纳米材料的构建及制备方法的研究进展,其中包括自上而下法、自下而上法以及独立于二者的二维氧化物模板牺牲法等。同时,本文详细讨论了超薄二维MOF纳米材料在气体吸附与气体分离、催化、能量储存和传感平台等领域的应用前景,并对未来超薄二维MOF纳米材料的研究面临的挑战和机遇做了进一步的分析。

Ultra-thin two dimensional metal-organic framework(MOF) nanomaterial is a kind of MOF materials. Different from the traditional bulk MOF materials, the ultra-thin sheet structure endows it with unique properties such as high specific surface area, rich coordination unsaturated metal sites and so on, which can effectively improve the performance of MOF in catalysis, separation and sensors. In this paper, the research progress on the construction and preparation methods of ultra-thin two dimensional MOF nanomaterials in recent years is reviewed, including top-down method, bottom-up method and 2D oxide sacrifice approach. At the same time, this paper discusses the application prospects of ultra-thin two dimensional MOF nanomaterials in the fields of gas adsorption and gas separation, catalysis, energy storage, sensing platform, and further analyzes the challenges and opportunities faced by the research of ultra-thin two dimensional MOF nanomaterials in the future.

Contents

1 Introduction

2 Preparation methods for the ultra-thin 2D MOF nanomaterials

2.1 Top-down preparation method

2.2 Bottom-up preparation method

2.3 2D oxide sacrifice approach

3 Applications of the ultra-thin 2D MOF nanomaterials

3.1 Gas separation and adsorption

3.2 Catalysis

3.3 Sensors

3.4 Energy Storage

3.5 Other application

4 Conclusion and outlook

()
图1 超薄二维MOF纳米材料的重要制备突破
Figure. 1 The timeline of important breakthroughs in the synthesis of ultra-thin 2D MOF nanomaterials. Copyright 2010, Springer Nature[16]. Copyright 2015, Springer Nature[17]. Copyright 2019, Wiley[18]. Copyright 2014, AAAS[19]. Copyright 2017, American Chemical Society[20]
图2 通过插入/化学剥离法合成Zn2(PdTCPP)超薄二维 MOF纳米片的过程示意图[20]
Fig. 2 Schematic diagram of the synthesis of ultra-thin 2D MOF nanosheets by intercalation and exfoliation approach[20]. Copyright 2017, ACS Publication
图3 Langmuir-Blodgett 法在固体表面多层沉积制备CoTCPP-py-Cu纳米薄膜[16]
Fig. 3 Schematic fabrication of the CoTCPP-py-Cu with Langmuir-Blodgett method[16]. Copyright 2010, Springer Nature
图4 (a)Zn-TCPP纳米片的常规合成及表面活性剂辅助生长制备超薄二维Zn-TCPP纳米片示意图;(b)超薄二维Zn-TCPP纳米片的TEM图像;插图为其在水溶液中的丁达尔效应;(c~f)Cu-TCPP、Cd-TCPP、Co-TCPP、Zn-TCPP(Fe)纳米片的TEM图像[36]
Fig. 4 (a) Conventional and surfactant assisted method for the synthesis of Zn-TCPP nanosheets and ultra-thin 2D Zn-TCPP nanosheets. (b) TEM images of ultra-thin 2D Zn-TCPP nanosheets; the inset shows the Tyndall effect in aqueous solution. (c~f) are TEM images of Cu-TCPP, Cd-TCPP, Co-TCPP and Zn-TCPP nanosheets, respectively[36]. Copyright 2015, Wiley
图5 微液滴法制备超薄二维MOF纳米片的流程示意图[63]
Fig. 5 Micro-droplet method for the synthesis of ultra-thin 2D MOF nanosheets[63]. Copyright 2018, ACS Publication
图6 盐微晶模板约束合成法制备超薄二维ZIF-67纳米片过程示意图[41]
Fig. 6 Schematic diagram for preparation of ultra-thin 2D ZIF-67 nanosheets by constrained synthesis in salt template. Copyright 2017, the Royal Society of Chemistry[41]
图7 通过二维氧化物模板牺牲法制备超薄二维MOF-74纳米片的过程示意图[18]
Fig. 7 Schematic diagram for preparation of 2D MOF-74 by 2D metal oxide sacrifice approach[18]. Copyright 2019, Wiley
图8 超薄二维MOF纳米片的膜分离应用示意图[66]
Fig. 8 Gas separation on MOF membrane composed of ultra-thin 2D nanosheets[66]. Copyright 2019, Wiley
[1]
Wang Q, Astruc D. Chem. Rev., 2020, 120(2): 1438.

doi: 10.1021/acs.chemrev.9b00223     pmid: 31246430
[2]
Xiao X, Zou L L, Pang H, Xu Q. Chem. Soc. Rev., 2020, 49(1): 301.

doi: 10.1039/c7cs00614d     pmid: 31832631
[3]
Safaei M, Foroughi M M, Ebrahimpoor N, Jahani S, Omidi A, Khatami M. Trac Trends Anal. Chem., 2019, 118: 401.

doi: 10.1016/j.trac.2019.06.007     URL    
[4]
Sun T T, Xu L B, Wang D S, Li Y D. Nano Res., 2019, 12(9): 2067.

doi: 10.1007/s12274-019-2345-4     URL    
[5]
Zhong M, Kong L J, Li N, Liu Y Y, Zhu J, Bu X H. Coord. Chem. Rev., 2019, 388: 172.

doi: 10.1016/j.ccr.2019.02.029     URL    
[6]
Ding M L, Flaig R W, Jiang H L, Yaghi O M. Chem. Soc. Rev., 2019, 48(10): 2783.

doi: 10.1039/C8CS00829A     URL    
[7]
Pascanu V, González Miera G, Inge A K, Martín-Matute B. J. Am. Chem. Soc., 2019, 141(18): 7223.

doi: 10.1021/jacs.9b00733     pmid: 30974060
[8]
Yuan S, Feng L, Wang K C, Pang J D, Bosch M, Lollar C, Sun Y J, Qin J S, Yang X Y, Zhang P, Wang Q, Zou L F, Zhang Y M, Zhang L L, Fang Y, Li J L, Zhou H C. Adv. Mater., 2018, 30(37): 1870277.
[9]
Liu Y, Liu Z F, Huang D L, Cheng M, Zeng G M, Lai C, Zhang C, Zhou C Y, Wang W J, Jiang D N, Wang H, Shao B B. Coord. Chem. Rev., 2019, 388: 63.

doi: 10.1016/j.ccr.2019.02.031     URL    
[10]
Kirchon A, Feng L, Drake H F, Joseph E A, Zhou H C. Chem. Soc. Rev., 2018, 47(23): 8611.

doi: 10.1039/c8cs00688a     pmid: 30234863
[11]
Chen Y Z, Zhang R, Jiao L, Jiang H L. Coord. Chem. Rev., 2018, 362: 1.

doi: 10.1016/j.ccr.2018.02.008     URL    
[12]
Liu W X, Yin R L, Xu X L, Zhang L, Shi W H, Cao X H. Adv. Sci., 2019, 6(12): 1802373.
[13]
Zhao M T, Huang Y, Peng Y W, Huang Z Q, Ma Q L, Zhang H. Chem. Soc. Rev., 2018, 47(16): 6267.

doi: 10.1039/C8CS00268A     URL    
[14]
Wang B Q, Zhao M T, Li L X, Huang Y, Zhang X, Guo C, Zhang Z C, Cheng H F, Liu W X, Shang J, Jin J, Sun X M, Liu J F, Zhang H. Natl. Sci. Rev., 2020, 7(1): 46.

doi: 10.1093/nsr/nwz118     URL    
[15]
Song X Y, Wang X Y, Li Y S, Zheng C Z, Zhang B W, Di C A, Li F, Jin C, Mi W B, Chen L, Hu W P. Angew. Chem. Int. Ed., 2020, 59(3): 1118.

doi: 10.1002/anie.v59.3     URL    
[16]
Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H. Nat. Mater., 2010, 9(7): 565.

doi: 10.1038/nmat2769     pmid: 20512155
[17]
Huang X, Sheng P, Tu Z Y, Zhang F J, Wang J H, Geng H, Zou Y, Di C A, Yi Y P, Sun Y M, Xu W, Zhu D B. Nat. Commun., 2015, 6(1): 7408.

doi: 10.1038/ncomms8408     URL    
[18]
Zhuang L Z, Ge L, Liu H L, Jiang Z R, Jia Y, Li Z H, Yang D J, Hocking R K, Li M R, Zhang L Z, Wang X, Yao X D, Zhu Z H. Angew. Chem. Int. Ed., 2019, 58(38): 13565.
[19]
Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Science, 2014, 346(6215): 1356.

doi: 10.1126/science.1254227     URL    
[20]
Ding Y J, Chen Y P, Zhang X L, Chen L, Dong Z H, Jiang H L, Xu H X, Zhou H C. J. Am. Chem. Soc., 2017, 139(27): 9136.

doi: 10.1021/jacs.7b04829     URL    
[21]
Liu Q, Li X F, Wen Y H, Xu Q D, Wu X T, Zhu Q L. Adv. Mater. Interfaces, 2020, 7(16): 2000813.
[22]
Lin Y F, Wan H, Wu D, Chen G, Zhang N, Liu X H, Li J H, Cao Y J, Qiu G Z, Ma R Z. J. Am. Chem. Soc., 2020, 142(16): 7317.

doi: 10.1021/jacs.0c01916     URL    
[23]
Wang J, Li N, Xu Y X, Pang H. Chem. Eur. J., 2020, 26(29): 6402.

doi: 10.1002/chem.v26.29     URL    
[24]
Peng Y, Yang W S. Adv. Mater. Interfaces, 2020, 7: 30.
[25]
Hwang J, Ejsmont A, Freund R, Goscianska J, Schmidt B V K J, Wuttke S. Chem. Soc. Rev., 2020, 49(11): 3348.

doi: 10.1039/C9CS00871C     URL    
[26]
Nielsen R B, Kongshaug K O, Fjellvåg H. J. Mater. Chem., 2008, 18(9): 1002.

doi: 10.1039/b712479a     URL    
[27]
Amo-Ochoa P, Welte L, González-Prieto R, Sanz Miguel P J, Gómez-García C J, Mateo-Martí E, Delgado S, Gómez-Herrero J, Zamora F. Chem. Commun., 2010, 46(19): 3262.

doi: 10.1039/b919647a     URL    
[28]
Luo Y H, Chen C, He C, Zhu Y Y, Hong D L, He X T, An P J, Wu H S, Sun B W. ACS Appl. Mater. Interfaces, 2018, 10(34): 28860.
[29]
Razavi S A A, Masoomi M Y, Morsali A. Ultrason. Sonochemistry, 2018, 41: 17.

doi: 10.1016/j.ultsonch.2017.09.009     URL    
[30]
Wang X Z, Mao X Y, Zhang Z Q, Guo R, Zhang Y Y, Zhu N J, Wang K, Sun P P, Huo J Z, Wang X R, Ding B. Inorg. Chem., 2020, 59(5): 2910.

doi: 10.1021/acs.inorgchem.9b03272     URL    
[31]
Li P Z, Maeda Y, Xu Q. Chem. Commun., 2011, 47(29): 8436.

doi: 10.1039/c1cc12510a     URL    
[32]
Tan J C, Saines P J, Bithell E G, Cheetham A K. ACS Nano, 2012, 6(1): 615.

doi: 10.1021/nn204054k     URL    
[33]
Saines P J, Tan J C, Yeung H H M, Barton P T, Cheetham A K. Dalton Trans., 2012, 41(28): 8585.

doi: 10.1039/c2dt30648d     pmid: 22669489
[34]
Zhu W S, Gao X, Li Q, Li H P, Chao Y H, Li M J, Mahurin S M, Li H M, Zhu H Y, Dai S. Angew. Chem. Int. Ed., 2016, 55(36): 10766.
[35]
Wang X R, Chi C L, Zhang K, Qian Y H, Gupta K M, Kang Z X, Jiang J W, Zhao D. Nat. Commun., 2017, 8(1): 1.

doi: 10.1038/s41467-016-0009-6     URL    
[36]
Zhao M T, Wang Y X, Ma Q L, Huang Y, Zhang X, Ping J F, Zhang Z C, Lu Q P, Yu Y F, Xu H, Zhao Y L, Zhang H. Adv. Mater., 2015, 27(45): 7372.

doi: 10.1002/adma.201503648     URL    
[37]
Abhervé A, Mañas-Valero S, Clemente-León M, Coronado E. Chem. Sci., 2015, 6(8): 4665.

doi: 10.1039/C5SC00957J     URL    
[38]
Dai R H, Peng F, Ji P F, Lu K D, Wang C, Sun J L, Lin W B. Inorg. Chem., 2017, 56(14): 8128.

doi: 10.1021/acs.inorgchem.7b00845     URL    
[39]
Chaudhari A K, Kim H J, Han I, Tan J C. Adv. Mater., 2017, 29(27): 201770193.
[40]
Jiang Y, Liu H Q, Tan X H, Guo L M, Zhang J T, Liu S N, Guo Y J, Zhang J, Wang H F, Chu W G. ACS Appl. Mater. Interfaces, 2017, 9(30): 25239.
[41]
Huang L, Zhang X P, Han Y J, Wang Q Q, Fang Y X, Dong S J. J. Mater. Chem. A, 2017, 5(35): 18610.
[42]
Zhao S L, Wang Y, Dong J C, He C T, Yin H J, An P F, Zhao K, Zhang X F, Gao C, Zhang L J, Lv J, Wang J X, Zhang J Q, Khattak A M, Khan N A, Wei Z X, Zhang J, Liu S Q, Zhao H J, Tang Z Y. Nat. Energy, 2016, 1(12): 1.

doi: 10.1038/ng0492-1     URL    
[43]
Li C, Hu X S, Tong W, Yan W S, Lou X B, Shen M, Hu B W. ACS Appl. Mater. Interfaces, 2017, 9(35): 29829.
[44]
Zhu D D, Guo C X, Liu J L, Wang L, Du Y, Qiao S Z. Chem. Commun., 2017, 53(79): 10906.
[45]
Li Z Q, Qiu L G, Wang W, Xu T, Wu Y, Jiang X. Inorg. Chem. Commun., 2008, 11(11): 1375.

doi: 10.1016/j.inoche.2008.09.010     URL    
[46]
Ning Y Q, Lou X B, Li C, Hu X S, Hu B W. Chem. Eur. J., 2017, 23(63): 15984.
[47]
Rui K, Zhao G Q, Chen Y P, Lin Y, Zhou Q, Chen J Y, Zhu J X, Sun W P, Huang W, Dou S X. Adv. Funct. Mater., 2018, 28(26): 1801554.
[48]
Clough A J, Skelton J M, Downes C A, de la Rosa A A, Yoo J W, Walsh A, Melot B C, Marinescu S C. J. Am. Chem. Soc., 2017, 139(31): 10863.
[49]
Clough A J, Yoo J W, Mecklenburg M H, Marinescu S C. J. Am. Chem. Soc., 2015, 137(1): 118.

doi: 10.1021/ja5116937     URL    
[50]
Makiura R, Kitagawa H, Akita Y, Yoshimoto M. J. Colloid Interface Sci., 2014, 413: 71.

doi: 10.1016/j.jcis.2013.09.024     URL    
[51]
Motoyama S, Makiura R, Sakata O, Kitagawa H. J. Am. Chem. Soc., 2011, 133(15): 5640.

doi: 10.1021/ja110720f     URL    
[52]
Hoshiko K, Kambe T, Sakamoto R, Takada K, Nishihara H. Chem. Lett., 2014, 43(2): 252.

doi: 10.1246/cl.130882     URL    
[53]
Dong R H, Pfeffermann M, Liang H W, Zheng Z K, Zhu X, Zhang J, Feng X L. Angew. Chem. Int. Ed., 2015, 54(41): 12058.
[54]
Qiao Z H, Liang Y Y, Zhang Z Q, Mei D H, Wang Z, Guiver M D, Zhong C L. Adv. Mater., 2020, 32(34): 2002165.
[55]
Sakaida S, Otsubo K, Sakata O, Song C, Fujiwara A, Takata M, Kitagawa H. Nat. Chem., 2016, 8(4): 377.

doi: 10.1038/nchem.2469     pmid: 27001734
[56]
Sakaida S, Haraguchi T, Otsubo K, Sakata O, Fujiwara A, Kitagawa H. Inorg. Chem., 2017, 56(14): 7606.

doi: 10.1021/acs.inorgchem.7b01113     pmid: 28661137
[57]
Otsubo K, Haraguchi T, Sakata O, Fujiwara A, Kitagawa H. J. Am. Chem. Soc., 2012, 134(23): 9605.

doi: 10.1021/ja304361v     URL    
[58]
Dmitriev A, Spillmann H, Lin N, Barth J V, Kern K. Angew. Chem., 2003, 115(23): 2774.

doi: 10.1002/ange.200250610     URL    
[59]
Spillmann H, Dmitriev A, Lin N, Messina P, Barth J V, Kern K. J. Am. Chem. Soc., 2003, 125(35): 10725.
[60]
Li Y, Xiao J, Shubina T E, Chen M, Shi Z L, Schmid M, Steinrück H P, Gottfried J M, Lin N. J. Am. Chem. Soc., 2012, 134(14): 6401.

doi: 10.1021/ja300593w     URL    
[61]
Zhao M T, Lu Q P, Ma Q L, Zhang H. Small Methods, 2017, (1/2): 1600030.
[62]
Wang Y X, Zhao M T, Ping J F, Chen B, Cao X H, Huang Y, Tan C L, Ma Q L, Wu S X, Yu Y F, Lu Q P, Chen J Z, Zhao W, Ying Y B, Zhang H. Adv. Mater., 2016, 28(21): 4149.

doi: 10.1002/adma.201600108     URL    
[63]
Wang Y, Li L J, Yan L T, Gu X, Dai P C, Liu D D, Bell J G, Zhao G M, Zhao X B, Thomas K M. Chem. Mater., 2018, 30(9): 3048.

doi: 10.1021/acs.chemmater.8b00765     URL    
[64]
Xiao X, Song H B, Lin S Z, Zhou Y, Zhan X J, Hu Z M, Zhang Q, Sun J Y, Yang B, Li T Q, Jiao L Y, Zhou J, Tang J, Gogotsi Y. Nat. Commun., 2016, 7(1): 1.
[65]
Hu Z G, Mahdi E M, Peng Y W, Qian Y H, Zhang B, Yan N, Yuan D Q, Tan J C, Zhao D. J. Mater. Chem. A, 2017, 5(19): 8954.

doi: 10.1039/C7TA00413C     URL    
[66]
Peng Y, Yang W S. Adv. Mater. Interfaces, 2020, 7(1): 1901514.
[67]
Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Science, 2014, 346(6215): 1356.

doi: 10.1126/science.1254227     URL    
[68]
Peng Y, Li Y S, Ban Y J, Yang W S. Angewandte Chemie, 2017, 129(33): 9889.

doi: 10.1002/ange.v129.33     URL    
[69]
Tanh Jeazet H B, Staudt C, Janiak C. Dalton Trans., 2012, 41(46): 14003.
[70]
Nik O G, Chen X Y, Kaliaguine S. J. Membr. Sci., 2012, 413/414: 48.

doi: 10.1016/j.memsci.2012.04.003     URL    
[71]
Monteiro B, Nabais A, Casimiro M, Martins A, Francisco R, Neves L, Pereira C. Membranes, 2018, 8(4): 93.

doi: 10.3390/membranes8040093     URL    
[72]
Chen R Z, Yao J F, Gu Q F, Smeets S, Baerlocher C, Gu H X, Zhu D R, Morris W, Yaghi O M, Wang H T. Chem. Commun., 2013, 49(82): 9500.

doi: 10.1039/c3cc44342f     URL    
[73]
Li W X, Fang W, Wu C, Dinh K N, Ren H, Zhao L, Liu C T, Yan Q Y. J. Mater. Chem. A, 2020, 8(7): 3658.

doi: 10.1039/C9TA13473E     URL    
[74]
Wei X D, Li N, Liu N. Electrochimica Acta, 2019, 318: 957.

doi: 10.1016/j.electacta.2019.06.141     URL    
[75]
Zhu D D, Qiao M, Liu J L, Tao T, Guo C X. J. Mater. Chem. A, 2020, 8(17): 8143.

doi: 10.1039/D0TA03138K     URL    
[76]
Miner E M, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincă M. Nat. Commun., 2016, 7(1): 1.
[77]
Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H. Chem. Rev., 2017, 117(9): 6225.

doi: 10.1021/acs.chemrev.6b00558     URL    
[78]
Han B, Ou X W, Deng Z Q, Song Y, Tian C, Deng H, Xu Y J, Lin Z. Angew. Chem. Int. Ed., 2018, 57(51): 16811.
[79]
He L H, Duan F H, Song Y P, Guo C P, Zhao H, Tian J Y, Zhang Z H, Liu C S, Zhang X J, Wang P Y, Du M, Fang S M. 2D Mater., 2017, 4(2): 025098.
[80]
Lu W B, Wu X F. New J. Chem., 2018, 42(5): 3180.

doi: 10.1039/C7NJ04754A     URL    
[81]
Zhao Y W, Jiang L, Shangguan L, Mi L, Liu A R, Liu S Q. J. Mater. Chem. A, 2018, 6(6): 2828.

doi: 10.1039/C7TA07911G     URL    
[82]
Su F F, Zhang S, Ji H F, Zhao H, Tian J Y, Liu C S, Zhang Z H, Fang S M, Zhu X L, Du M. ACS Sens., 2017, 2(7): 998.

doi: 10.1021/acssensors.7b00268     URL    
[83]
Dong R H, Zhang Z T, Tranca D C, Zhou S Q, Wang M C, Adler P, Liao Z Q, Liu F, Sun Y, Shi W J, Zhang Z, Zschech E, Mannsfeld S C B, Felser C, Feng X L. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w     URL    
[84]
Guo J, Zhang Y, Zhu Y F, Long C, Zhao M T, He M, Zhang X F, Lv J, Han B, Tang Z Y. Angew. Chem. Int. Ed., 2018, 57(23): 6873.

doi: 10.1002/anie.v57.23     URL    
[85]
Gao X C, Cui R X, Zhang M, Liu Z L. Mater. Lett., 2017, 197: 217.

doi: 10.1016/j.matlet.2017.02.082     URL    
[86]
He C B, Lu K D, Liu D M, Lin W B. J. Am. Chem. Soc., 2014, 136(14): 5181.

doi: 10.1021/ja4098862     URL    
[87]
Felsher D W. Nat. Rev. Cancer, 2003, 3(5): 375.

pmid: 12724735
[1] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[2] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[3] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[4] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[5] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[6] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[7] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[8] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[9] 周文, 张鑫, 马宏鹏, 许杰, 郭斌, 李盘欣. 热塑性淀粉制备的化学与物理机制及方法[J]. 化学进展, 2021, 33(11): 1972-1982.
[10] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.
[11] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[12] 严壮, 刘雅玲, 唐智勇. 二维导电金属有机骨架材料[J]. 化学进展, 2021, 33(1): 25-41.
[13] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[14] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[15] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
阅读次数
全文


摘要