English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1511-1524 DOI: 10.7536/PC210203 前一篇   后一篇

• 综述 •

碳化硅块状气凝胶的制备及应用

张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春*()   

  1. 海军工程大学动力工程学院 武汉 430033
  • 收稿日期:2021-02-03 修回日期:2021-05-02 出版日期:2021-09-20 发布日期:2021-09-06
  • 通讯作者: 杨自春
  • 基金资助:
    国家自然科学基金项目(51802347)

Preparation and Applications of Silicon Carbide Monolithic Aerogels

Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang()   

  1. School of Power Engineering, Naval University of Engineering,Wuhan 430033, China
  • Received:2021-02-03 Revised:2021-05-02 Online:2021-09-20 Published:2021-09-06
  • Contact: Zichun Yang
  • Supported by:
    National Natural Science Foundation of China(51802347)

碳化硅气凝胶具有高温稳定性、低热膨胀系数、良好的抗热震性以及抗氧化和耐腐蚀等优异的性质,在高温和高腐蚀性环境下的隔热、电磁吸波、过滤和吸附等领域具有较大的应用潜力。然而,块状碳化硅气凝胶的可控制备一直是一项较大的挑战。本文综述了块状碳化硅气凝胶在制备工艺和应用两个方面的研究进展,首先分析总结了各种制备工艺及其优缺点,包括有机/SiO2复合气凝胶碳热还原法、预陶瓷化聚合物裂解法、化学气相沉积法、高温气相渗硅法和碳化硅纳米线组装法;然后,详细介绍了碳化硅气凝胶在高温隔热和电磁吸波两个领域的应用研究进展;最后,展望了碳化硅气凝胶未来的若干发展方向。

Silicon carbide aerogels have excellent properties such as high temperature stability, low thermal expansion coefficient, good thermal shock resistance, oxidation resistance and corrosion resistance, etc. They have great application potential in the fields of high temperature thermal insulation, electromagnetic wave adsorbing, filtration and adsorption under high temperature and high corrosive environment. However, the controllable preparation of bulk silicon carbide aerogels has always been a major challenge. As a new kind of aerogels, the preparation process of bulk SiC aerogels is more complicated than that of traditional oxide and carbon aerogels. In recent years, the research on preparation and application of SiC aerogels has entered a new stage. Many new strategies for preparing SiC aerogels have been developed, and many important progress has been made in the research of SiC aerogels in the fields of heat insulation and electromagnetic wave adsorbing. In this paper, the research progress on preparation and application of monolithic silicon carbide aerogels is reviewed. Firstly, the advantages and disadvantages of various preparation technologies are analyzed and summarized, including carbon thermal reduction method with organic/SiO2 composite aerogels, cracking method with pre-ceramic polymer, chemical vapor deposition method, high-temperature vapor-phase silicon cementation method and self-assembly method of SiC nanowire. Then the application research progress of SiC aerogel in high temperature insulation and electromagnetic wave adsorbing are introduced in detail. Finally, the development trend of SiC aerogel in the future is prospected.

Contents

1 Introduction

2 Preparation of SiC aerogels

2.1 Carbon thermal reduction of organic/SiO2 composite aerogels

2.2 Cracking of pre-ceramic polymer

2.3 Chemical vapor deposition

2.4 High-temperature vapor-phase silicon cementation

2.5 Assembly of SiC nanowire

3 Applications of SiC aerogels

3.1 High-temperature thermal insulation

3.2 Electromagnetic wave adsorbing

3.3 Other applications

4 Conclusion and outlook

()
图1 SiC气凝胶的制备工艺流程图[14]
Fig.1 Flow chart of the SiC aerogel preparation[14]
图2 SiC气凝胶的(a)实物图,(b)SEM图,(c)TEM图,(d)HRTEM图,(c)中插图为SAED图样[59]
Fig.2 (a) Photograph, (b) SEM image, (c) TEM image, (d) HRTEM image of SiC aerogels. Insets in (c): SAED patterns[59]
图3 SiC纳米线气凝胶的宏观和微观结构表征:(a)桃花雄蕊上密度约为 3 mg·cm-3 的 SiC NWAG;(b)密度约为 11 mg·cm-3 的大尺寸 SiC NWAG 管和柱;(c)植物叶片上不同形状的 SiC NWAG;(d)和(e)不同放大倍数下 SiC NWAG 的 SEM 图像,显示了具有许多高度缠结的 SiC 纳米线的网络,(d)中插图为纳米线的 EDS;(f)TEM 图像,插图显示相应的 HRTEM 图像和 SAED 图样[61]
Fig.3 Macro and micro characters of the SiC NWAGs. (a) SiC NWAG with density of about 3 mg·cm-3 on the stamen of a peach blossom. (b) Large-size SiC NWAG tube and column with density of about 11 mg·cm-3. (c) SiC NWAGs with different shapes on the leaves of a plant. (d) and (e) SEM images of the SiC NWAG with different magnifications showing the network with numerous highly entangled SiC nanowires. Inset in (d) showing the EDS of nanowires. (f) TEM image with the insets showing corresponding HRTEM image and SAED pattern[61]
图4 RF/SiO2气凝胶和SiC气凝胶的合成机理示意图[47]
Fig.4 Schematic of the formation of RF/SiO2 gels and SiC aerogels[47]
图5 SiC@SiO2纳米线气凝胶的制备工艺示意图及机械、耐火性能:(A) AH-SSCSNWA的制备工艺;(B) 体积约为 15 cm3 的 AH-SSCSNWA立于树叶上的照片,显示其超低密度;(C) 5 mg的AH-SSCSNWA可以支撑20 g的重量图片,显示AH-SSCSNWA的高刚度;(D)垂直燃烧试验表明AH-SSCSNWA具有良好的耐火性能[103]
Fig.5 Fabrication process and overview of the mechanical performance and fire resistance of the SiC@SiO2 aerogel. (A) Fabrication process of the AH-SSCSNWA. (B) Photograph of a piece of the AH-SSCSNWA with a volume of ~15 cm3, standing on a leaf, indicating its ultralow density. (C) Photograph showing that a 20 g weight can be supported by a piece of the AH-SSCSNWA with a weight of 5 mg, demonstrating the high stiffness of the AH-SSCSNWA. (D) Vertical burning test showing the good fire resistance of the AH-SSCSNWA[103]
图6 SiC纳米线气凝胶的隔热性能和抗烧蚀性能:(a) SiC NWAG的热导率与密度的函数关系;(b) SiC NWAG(密度5 mg·cm-3)在酒精灯和丁烷喷灯火焰下的隔热行为和(c)回弹性;(d) 密度为11 mg·cm-3的SiC NWAG在丁烷喷枪火焰下暴露1000 s的光学和(e)~(h)红外图像;(i) SiC NWAG背面三个参考点的随时间的温度变化;(j) 丁烷喷枪火焰烧蚀前后样品的光学图像;(k) SiC NWAG 在丁烷喷灯火焰侵蚀后的 SEM 图像;(l)气凝胶类材料在室温空气中的热导率与最大工作温度[61]
Fig.6 Thermal insulation performance and fire erosion resistance of the SiC NWAGs. (a) Thermal conductivities of the SiC NWAGs as a function of density. (b) Insulation behavior (density 5 mg·cm-3) and (c) resilience of SiC NWAG under alcohol lamp and butane blowtorch flame, respectively. (d) Optical and (e)~(h) infrared images of SiC NWAG with density of 11 mg·cm-3 exposed to a butane blowtorch flame for 1000s. (i) Time-dependent temperature evolution of three reference points on the back side of the SiC NWAG. (j) Optical images of the sample before and after butane blowtorch flame erosion. (k) SEM image of SiC NWAG after the butane blowtorch flame erosion. (l) Thermal conductivities at room temperature in air versus maximum working temperature for aerogel-like materials.[61]
表1 不同工艺制备的典型SiC气凝胶的性能数据
Table 1 Characteristic data of typical SiC aerogels prepared through various methods
图7 (a)密SiC陶瓷及(b)分级多孔SiC泡沫的电磁吸波效率;(c)密SiC陶瓷及分级多孔SiC泡沫在11 GHz下的电磁干扰屏蔽效能;(d)EMI屏蔽机理[94]
Fig.7 EMI shielding efficiency of samples: (a) dense SiC ceramic and (b) hierarchical porous SiC foam. (c) Specific EMI SE of dense SiC ceramic and hierarchical porous SiC foam at 11 GHz and (d) proposed EMI shielding mechanism are also shown[94]
图8 SiC纳米线气凝胶无纺布的制备工艺流程示意图:(1)在碳纤维上生长SiC纳米线,(2)超长SiC纳米线毡的形成,(3)通过压缩超长SiC纳米线毡制备SiC织物,(a)碳纤维,(b)生长在碳纤维上的SiC纳米线,(c)SiC纳米线毡,(d)SiC织物[117]
Fig.8 Schematic illustration of the preparation process for SiC nanowire nonwoven fabric. (1) The first stage is growth of SiC nanowires on carbon fiber, (2) the second is the formation of the ultralong SiC nanowire felt, and (3) the third is the fabrication of SiC fabric by the compression of ultralong SiC nanowire felt. (a) Carbon fiber, (b) SiC nanowires grown on carbon fiber, (c) SiC nanowire mat, (d) SiC fabric[117]
[1]
Baetens R, Jelle B P, Gustavsen A. Energy Build., 2011, 43(4): 761.

doi: 10.1016/j.enbuild.2010.12.012     URL    
[2]
Zhao S Y, Malfait W J, Guerrero-Alburquerque N, Koebel M M, Nyström G. Angew. Chem. Int. Ed., 2018, 57(26): 7580.

doi: 10.1002/anie.v57.26     URL    
[3]
Li J, Zhang E S, Liu Y Y, Huang H Y, Su Y F, Li W J. Prog. Chem., 2020, 32(06): 713.
(李健, 张恩爽, 刘圆圆, 黄红岩, 苏岳锋, 李文静. 化学进展, 2020, 32(06): 713.).
[4]
Shao Z D, Zhang Y, Cheng X. Prog. Chem., 2014, 26(08): 1329.
(邵再东, 张颖, 程璇. 化学进展, 2014, 26(08): 1329.).

doi: 10.7536/PC140231    
[5]
Du A, Zhou B, Zhang Z H, Shen J. Materials, 2013, 6(3): 941.

doi: 10.3390/ma6030941     URL    
[6]
Ye X L, Chen Z F, Ai S F, Hou B, Zhang J X, Liang X H, Zhou Q B, Liu H Z, Cui S. ACS Sustainable Chem. Eng., 2019, 7(2): 2774.

doi: 10.1021/acssuschemeng.8b05966     URL    
[7]
Sun Y R, Yang M X, Yu F, Chen J H, Ma J. Prog. Chem., 2015, 27(08): 1133.
(孙怡然, 杨明轩, 于飞, 陈君红, 马杰. 化学进展, 2015, 27(08): 1133.).
[8]
Chen X Y, Sun Y R, Yu F, Chen J H, Ma J. Prog. Chem., 2015, 27(11):1542.
(陈晓燕, 孙怡然, 于飞, 陈君红, 马杰. 化学进展, 2015, 27(11): 1542.).

doi: 10.7536/PC150430    
[9]
Liu Z H, Su X J, Hou G L. J. Inorg. Mater., 2010, 25(9): 911.

doi: 10.3724/SP.J.1077.2010.00911     URL    
[10]
Nardecchia S, Carriazo D, Ferrer M L, Gutiérrez M C, del Monte F. Chem. Soc. Rev., 2013, 42(2): 794.

doi: 10.1039/c2cs35353a     pmid: 23160635
[11]
Zhang Z, Zhao S, Chen G B, Feng J, Feng J Z, Yang Z C. Microporous Mesoporous Mater., 2020, 296: 109997.

doi: 10.1016/j.micromeso.2019.109997     URL    
[12]
Wu R B, Zhou K, Yue C Y, Wei J, Pan Y. Prog. Mater. Sci., 2015, 72: 1.

doi: 10.1016/j.pmatsci.2015.01.003     URL    
[13]
She J H, Ohji T, Deng Z Y. J. Am. Ceram. Soc., 2002, 85(8): 2125.

doi: 10.1111/jace.2002.85.issue-8     URL    
[14]
An Z M, Zhang R B, Fang D N. Ceram. Int., 2019, 45(9): 11368.

doi: 10.1016/j.ceramint.2019.02.216     URL    
[15]
An Z M, Ye C S, Zhang R B, Zhou P. Ceram. Int., 2019, 45(17): 22793.

doi: 10.1016/j.ceramint.2019.07.321     URL    
[16]
Jiang Y, Chen Y, Liu Y J, Sui G X. Chem. Eng. J., 2018, 337: 522.

doi: 10.1016/j.cej.2017.12.131     URL    
[17]
Li B B, Yuan X S, Gao Y, Wang Y, Liao J H, Rao Z Y, Mao B X, Huang H Q. Mater. Res. Express, 2019, 6(4): 045030.

doi: 10.1088/2053-1591/aafaef     URL    
[18]
Su L, Wang H J, Niu M, Fan X Y, Ma M B, Shi Z Q, Guo S W. ACS Nano, 2018, 12(4): 3103.

doi: 10.1021/acsnano.7b08577     URL    
[19]
Ferraro C, Garcia-Tuñon E, Rocha V G, Barg S, Fariñas M D, Alvarez-Arenas T E G, Sernicola G, Giuliani F, Saiz E. Adv. Funct. Mater., 2016, 26(10): 1636.

doi: 10.1002/adfm.v26.10     URL    
[20]
Peng F, Jiang Y G, Feng J, Cai H F, Feng J Z, Li L J. J. Inorgan. Mater., 2021, 36(7): 637.
(彭飞, 姜勇刚, 冯坚, 蔡华飞, 冯军宗, 李良军. 无机材料学报, 2021, 36(7): 637.).
[21]
Yang J F, Wang Q H, Wang T M. J. Inorg. Mater., 2018, 33(3): 259.

doi: 10.15541/jim20170180     URL    
[22]
Feng J Z, Feng J, Jiang Y G, Zhang C R. Mater. Lett., 2011, 65(23/24): 3454.

doi: 10.1016/j.matlet.2011.07.114     URL    
[23]
Feng J Z, Zhang C R, Feng J, Jiang Y G, Zhao N. ACS Appl. Mater. Interfaces, 2011, 3(12): 4796.

doi: 10.1021/am201287a     URL    
[24]
Ma S R, Mi Q Y, Yu J, He J S, Zhang J. Prog. Chem., 2014, 26(05): 796.
(马书荣, 米勤勇, 余坚, 何嘉松, 张军. 化学进展, 2014, 26(05): 796.).

doi: 10.7536/PC131032    
[25]
Suwanmethanond V, Goo E, Liu P K T, Johnston G, Sahimi M, Tsotsis T T. Ind. Eng. Chem. Res., 2000, 39(9): 3264.

doi: 10.1021/ie0000156     URL    
[26]
Feng J P, Wang Y L, Feng X, Huang Q, Ma S J, Mo W, Yang J L, Su X J, Lin M Q. Appl. Therm. Eng., 2016, 105: 39.

doi: 10.1016/j.applthermaleng.2016.05.136     URL    
[27]
Konstantinov A O, Harris C I, Janzén E. Appl. Phys. Lett., 1994, 65(21): 2699.

doi: 10.1063/1.112610     URL    
[28]
Zhang Z J, Wang F C, Yu X D, Wang Y W, Yan Y H, Li K, Luan Z Q. J. Am. Ceram. Soc., 2009, 92(1): 260.

doi: 10.1111/jace.2009.92.issue-1     URL    
[29]
Lu W J, Steigerwalt E S, Moore J T, Sullivan L M, Collins E W, Lukehart C M. J. Nanosci. Nanotech., 2004, 4(7): 803.

doi: 10.1166/jnn.2004.119     URL    
[30]
Li X T, Chen X H, Song H H. Mater. Sci. Eng.: B, 2011, 176(1): 87.

doi: 10.1016/j.mseb.2010.09.007     URL    
[31]
Zhang M, Lin H, Ding S Q, Wang T, Li Z J, Meng A L, Li Q D, Lin Y S. Compos. B: Eng., 2019, 179: 107525.

doi: 10.1016/j.compositesb.2019.107525     URL    
[32]
Eom J H, Kim Y W, Raju S. J. Asian Ceram. Soc., 2013, 1(3): 220.

doi: 10.1016/j.jascer.2013.07.003     URL    
[33]
Wang H, Sung I, Li X D, Kim D. J. Porous Mater., 2004, 11(4): 265.

doi: 10.1023/B:JOPO.0000046353.24308.86     URL    
[34]
Shcherban N. D. J. Ind. Eng. Chem., 2017, 50: 15.

doi: 10.1016/j.jiec.2017.02.002     URL    
[35]
Hotza D, Di Luccio M, Wilhelm M, Iwamoto Y, Bernard S, Diniz da Costa J C. J. Membr. Sci., 2020, 610: 118193.

doi: 10.1016/j.memsci.2020.118193     URL    
[36]
Hu P, Pan R Q, Dong S, Jin K F, Zhang X H. Ceram. Int., 2016, 42(2): 3625.

doi: 10.1016/j.ceramint.2015.11.027     URL    
[37]
Wan P, Wang J Y. J. Eur. Ceram. Soc., 2018, 38(2): 463.

doi: 10.1016/j.jeurceramsoc.2017.09.037     URL    
[38]
Meng G W, Cui Z, Zhang L D, Phillipp F. J. Cryst. Growth, 2000, 209(4): 801.

doi: 10.1016/S0022-0248(99)00435-2     URL    
[39]
Jin G Q, Guo X Y. Microporous Mesoporous Mater., 2003, 60(1/3): 207.

doi: 10.1016/S1387-1811(03)00378-0     URL    
[40]
Li X K, Liu L, Zhang Y X, Shen S D, Ge S, Ling L C. Carbon, 2001, 39(2): 159.

doi: 10.1016/S0008-6223(00)00020-8     URL    
[41]
Sung I K, Christian , Mitchell M, Kim D P, Kenis P J A. Adv. Funct. Mater., 2005, 15(8): 1336.

doi: 10.1002/(ISSN)1616-3028     URL    
[42]
Rewatkar P M, Taghvaee T, Saeed A M, Donthula S, Mandal C, Chandrasekaran N, Leventis T, Shruthi T K, Sotiriou-Leventis C, Leventis N. Chem. Mater., 2018, 30(5): 1635.

doi: 10.1021/acs.chemmater.7b04981     URL    
[43]
Malik R, Kim Y W, Song I H. J. Eur. Ceram. Soc., 2020, 40(3): 594.

doi: 10.1016/j.jeurceramsoc.2019.10.056     URL    
[44]
Wei B, Zhou J T, Yao Z J, Haidry A A, Guo X L, Lin H Y, Qian K, Chen W J. Ceram. Int., 2020, 46(5): 5788.

doi: 10.1016/j.ceramint.2019.11.029     URL    
[45]
Leventis N, Sadekar A, Chandrasekaran N, Sotiriou-Leventis C. Chem. Mater., 2010, 22(9): 2790.

doi: 10.1021/cm903662a     URL    
[46]
Kong Y, Zhong Y, Shen X D, Cui S, Yang M, Teng K M, Zhang J J. J. Non Cryst. Solids, 2012, 358(23): 3150.

doi: 10.1016/j.jnoncrysol.2012.08.029     URL    
[47]
Chen K, Bao Z H, Du A, Zhu X R, Wu G M, Shen J, Zhou B. Microporous Mesoporous Mater., 2012, 149(1): 16.

doi: 10.1016/j.micromeso.2011.09.008     URL    
[48]
Kong Y, Zhong Y, Shen X D, Cui S, Zhang J J, Yang M. J. Porous Mater., 2013, 20(4): 845.

doi: 10.1007/s10934-012-9660-4     URL    
[49]
Wu X D, Shao G F, Shen X D, Cui S, Chen X B. Chem. Eng. J., 2017, 330: 1022.

doi: 10.1016/j.cej.2017.08.052     URL    
[50]
An Z M, Ye C S, Zhang R B, Qu Q. J. Sol Gel Sci. Technol., 2019, 89(3): 623.

doi: 10.1007/s10971-019-04916-5     URL    
[51]
Kong Y, Shen X D, Cui S, Fan M H. RSC Adv., 2014, 4(109): 64193.

doi: 10.1039/C4RA11261J     URL    
[52]
Seraji M M, Ghafoorian N S, Bahramian A R, Alahbakhsh A. J. Non Cryst. Solids, 2015, 425: 146.

doi: 10.1016/j.jnoncrysol.2015.06.011     URL    
[53]
Zirakjou A, Kokabi M. Ceram. Int., 2020, 46(2): 2194.

doi: 10.1016/j.ceramint.2019.09.204     URL    
[54]
Kong Y, Zhong Y, Shen X D, Cui S, Fan M H. Microporous Mesoporous Mater., 2014, 197: 77.

doi: 10.1016/j.micromeso.2014.05.032     URL    
[55]
Seraji M M, Ghafoorian N S, Bahramian A R. J. Non Cryst. Solids, 2016, 435: 1.

doi: 10.1016/j.jnoncrysol.2015.12.021     URL    
[56]
Ghafoorian N S, Bahramian A R, Seraji M M. Mater. Des., 2015, 86: 279.

doi: 10.1016/j.matdes.2015.07.093     URL    
[57]
Li X T, Chen X H, Song H H. J. Mater. Sci., 2009, 44(17): 4661.

doi: 10.1007/s10853-009-3714-2     URL    
[58]
He F, Li Y, Luo J, Fang M H, He X D. J. Inorg. Mater., 2017, 32(5): 449.

doi: 10.15541/jim20160380     URL    
[59]
Kong Y, Zhong Y, Shen X D, Gu L H, Cui S, Yang M. Mater. Lett., 2013, 99: 108.

doi: 10.1016/j.matlet.2013.02.047     URL    
[60]
Worsley M A, Kuntz J D, Satcher J H, Baumann T F. J. Mater. Chem., 2010, 20(23): 4840.

doi: 10.1039/c0jm00661k     URL    
[61]
Lu D, Su L, Wang H J, Niu M, Xu L, Ma M B, Gao H F, Cai Z X, Fan X Y. ACS Appl. Mater. Interfaces, 2019, 11(48): 45338.

doi: 10.1021/acsami.9b16811     URL    
[62]
Ding J, Wu X D, Shen X D, Cui S, Zhong Y, An C, Cui Y, Chen X B. Chem. Eng. J., 2020, 382: 122880.

doi: 10.1016/j.cej.2019.122880     URL    
[63]
Dong B W, Deng B B, Liu Y G. Int. J. Mod. Phys. B, 2020, 34: 2040011.

doi: 10.1142/S0217979220400111     URL    
[64]
Xie M X, Wu X D, Liu J X, Zhang K. Ceram. Int., 2017, 43(13): 9896.

doi: 10.1016/j.ceramint.2017.04.175     URL    
[65]
Feng J Z, Xiao Y Y, Jiang Y G, Feng J. Ceram. Int., 2015, 41(4): 5281.

doi: 10.1016/j.ceramint.2014.11.111     URL    
[66]
Li X F, Feng J Z, Jiang Y G, Li L J, Feng J. Ceram. Int., 2019, 45(14): 17064.

doi: 10.1016/j.ceramint.2019.05.258     URL    
[67]
Li X F, Feng J Z, Jiang Y G, Li L J, Feng J. Ceram. Int., 2019, 45(8): 9704.

doi: 10.1016/j.ceramint.2019.01.169     URL    
[68]
Pradeep V S, Ayana D G, Graczyk-Zajac M, Soraru G D, Riedel R. Electrochimica Acta, 2015, 157: 41.

doi: 10.1016/j.electacta.2015.01.088     URL    
[69]
Nguyen V L, Zera E, Perolo A, Campostrini R, Li W J, Sorarù G D. J. Eur. Ceram. Soc., 2015, 35(12): 3295.

doi: 10.1016/j.jeurceramsoc.2015.04.018     URL    
[70]
Liu H L, Wei N, Li J, Zhang H Y, Chu P. Solid State Sci., 2018, 76: 15.

doi: 10.1016/j.solidstatesciences.2017.11.012     URL    
[71]
An G Q, Liu H L, Li H Y, Chen Z, Li J, Li Y J. Ceram. Int., 2020, 46(6): 7001.

doi: 10.1016/j.ceramint.2019.10.267     URL    
[72]
Wu Z, Cheng X Q, Zhang L, Li J, Yang C H. Ceram. Int., 2018, 44(12): 14947.

doi: 10.1016/j.ceramint.2018.05.115     URL    
[73]
Sorarù G D, Zera E, Campostrini R. Aerogels from Preceramic Polymers. Eds.: In: Klein L, Aparicio M, Jitianu A. Cham: Springer, 2016. 1.
[74]
Yang H X, Li C M, Yue X D, Huo J C, Ye F, Liu J X, Shi F, Ma J. Mater. Des., 2020, 185: 108217.

doi: 10.1016/j.matdes.2019.108217     URL    
[75]
Zera E, Brancaccio E, Tognana L, Rivoira L, Bruzzoniti M C, Sorarù G D. Adv. Eng. Mater., 2018, 20(7): 1701130.

doi: 10.1002/adem.v20.7     URL    
[76]
Guo W J, Ye Y C, Bai S X, Zhu L A, Li S. Ceram. Int., 2019, 45(11): 14146.

doi: 10.1016/j.ceramint.2019.04.115     URL    
[77]
Assefa D, Zera E, Campostrini R, Soraru G D, Vakifahmetoglu C. Ceram. Int., 2016, 42(10): 11805.

doi: 10.1016/j.ceramint.2016.04.101     URL    
[78]
Ma J, Ye F, Lin S J, Zhang B, Yang H X, Ding J J, Yang C P, Liu Q. Ceram. Int., 2017, 43(7): 5774.

doi: 10.1016/j.ceramint.2017.01.124     URL    
[79]
Yuan X Y, Lü J, Yan X B, Hu L T, Xue Q J. Microporous Mesoporous Mater., 2011, 142(2/3): 754.

doi: 10.1016/j.micromeso.2011.01.014     URL    
[80]
Chu P, Liu H L, Li Y J, Zhang H Y, Li J D. Ceram. Int., 2016, 42(15): 17053.

doi: 10.1016/j.ceramint.2016.07.213     URL    
[81]
Han D, Mei H, Xiao S, Cheng L. J. Am. Ceram. Soc, 2018, 101(5): 1991.

doi: 10.1111/jace.15365     URL    
[82]
Zera E, Campostrini R, Aravind P R, Blum Y, Sorarù G D. Adv. Eng. Mater., 2014, 16(6): 814.

doi: 10.1002/adem.201400134     URL    
[83]
Wang J C, Oschatz M, Biemelt T, Lohe M R, Borchardt L, Kaskel S. Microporous Mesoporous Mater., 2013, 168: 142.

doi: 10.1016/j.micromeso.2012.09.037     URL    
[84]
Wang M J, Liu F, Chen Y, Gao J M. Materials, 2018, 11(12): 2430.

doi: 10.3390/ma11122430     URL    
[85]
Greil P, Lifka T, Kaindl A. J. Eur. Ceram. Soc., 1998, 18(14): 1961.

doi: 10.1016/S0955-2219(98)00156-3     URL    
[86]
Ye X L, Chen Z F, Ai S F, Zhang J X, Hou B, Zhou Q B, Wang F, Liu H Z, Cui S. J. Compos. Mater., 2019, 53(28/30): 4117.

doi: 10.1177/0021998319851190     URL    
[87]
Li B B, Mao B X, Wang X B, He T, Huang H Q. J. Alloys Compd., 2020, 829: 154609.

doi: 10.1016/j.jallcom.2020.154609     URL    
[88]
Han D Y, Mei H, Farhan S, Xiao S S, Xia J C, Cheng L F. J. Am. Ceram. Soc., 2017, 100(5): 2243.

doi: 10.1111/jace.2017.100.issue-5     URL    
[89]
Yu S J, Chen Z, Wang Y, Luo R, Li B, Chen Z, Pan Y. Mater. Charact., 2017, 134: 296.

doi: 10.1016/j.matchar.2017.11.014     URL    
[90]
Xu X, Zhang Q Q, Hao M L, Hu Y, Lin Z Y, Peng L L, Wang T, Ren X X, Wang C, Zhao Z P, Wan C Z, Fei H L, Wang L, Zhu J, Sun H T, Chen W L, Du T, Deng B W, Cheng G J, Shakir I, Dames C, Fisher T S, Zhang X, Li H, Huang Y, Duan X F. Science, 2019, 363(6428): 723.

doi: 10.1126/science.aav7304     URL    
[91]
Li C Y, Xu Z, Ouyang H B, Chang L Y, Huang J F, Liu Y J. Appl. Compos. Mater., 2020, 27(3): 131.

doi: 10.1007/s10443-020-09801-x     URL    
[92]
Chabi S, Rocha V G, García-Tuñón E, Ferraro C, Saiz E, Xia Y D, Zhu Y Q. ACS Nano, 2016, 10(2): 1871.

doi: 10.1021/acsnano.5b05533     URL    
[93]
Liang C Y, Wang Z J. Chem. Eng. J., 2019, 373: 598.

doi: 10.1016/j.cej.2019.05.076     URL    
[94]
Liang C Y, Wang Z F, Wu L N, Zhang X C, Wang H, Wang Z J. ACS Appl. Mater. Interfaces, 2017, 9(35): 29950.

doi: 10.1021/acsami.7b07735     URL    
[95]
Bai L W. Master Dissertation of Harbin Institute of Technology, 2020.
(白力文. 哈尔滨工业大学硕士学位论文, 2020.).
[96]
Si Y, Wang X, Dou L, Yu J, Ding B. Sci. Adv., 2018, 4(4): 8925.
[97]
Wang H L, Zhang X, Wang N, Li Y, Feng X, Huang Y, Zhao C S, Liu Z L, Fang M H, Ou G, Gao H J, Li X Y, Wu H. Sci. Adv., 2017, 3(6): e1603170.

doi: 10.1126/sciadv.1603170     URL    
[98]
Su L, Li M Z, Wang H J, Niu M, Lu D, Cai Z X. ACS Appl. Mater. Interfaces, 2019, 11(17): 15795.

doi: 10.1021/acsami.9b02869     URL    
[99]
Han D Y, Mei H, Xiao S S, Xia J C, Gu J L, Cheng L F. J. Eur. Ceram. Soc., 2017, 37(3): 915.

doi: 10.1016/j.jeurceramsoc.2016.10.015     URL    
[100]
Zhang X S, Wang B, Wu N, Han C, Wu C Z, Wang Y D. J. Inorgan. Mater., 2021, (03): 1.
(张晓山, 王兵, 吴楠, 韩成治, 吴纯, 王应德. 无机材料学报, 2021, (03): 1.).
[101]
Tian Q, Wu N, Wang B, Wang Y D. Mater. Lett., 2019, 239: 109.

doi: 10.1016/j.matlet.2018.12.077     URL    
[102]
Shi W S, Zheng Y F, Peng H Y, Wang N, Lee C S, Lee S T. J. Am. Ceram. Soc., 2000, 83(12): 3228.

doi: 10.1111/jace.2000.83.issue-12     URL    
[103]
Su L, Wang H, Niu M, Dai S, Cai Z, Yang B, Huyan H, Pan X. Sci. Adv., 2020, 6(26): 6689.
[104]
Wu G Y, Cheng X, Yu Y X, Zhang Y. Prog. Chem., 2010, 22(10): 1892.
(吴国友, 程璇, 余煜玺, 张颖. 化学进展,2010, 22(10): 1892.)
[105]
Yokota H, Abe H, Ibukiyama M. J. Eur. Ceram. Soc., 2003, 23(10): 1751.

doi: 10.1016/S0955-2219(02)00374-6     URL    
[106]
Hirao K, Watari K, Brito M E, Toriyama M, Kanzaki S. J. Am. Ceram. Soc., 1996, 79(9): 2485.

doi: 10.1111/jace.1996.79.issue-9     URL    
[107]
Sun Y Q, Zhao Z H, Li X L, Zhao H Y, Hu Z P, Ji H M, Qi T. Ceram. Int., 2018, 44(5): 5233.

doi: 10.1016/j.ceramint.2017.12.132     URL    
[108]
Yokota H, Ibukiyama M. J. Eur. Ceram. Soc., 2003, 23(1): 55.

doi: 10.1016/S0955-2219(02)00074-2     URL    
[109]
Duan L Q, Xu C, Dai X Q, Xiong Z M, Zhang B, Zhang Z W, Cui C A, Xie A, Wu F. Mater. Des., 2020, 192: 108738.

doi: 10.1016/j.matdes.2020.108738     URL    
[110]
Zhou J T, Wei B, Yao Z J, Lin H Y, Tan R Y, Chen W J, Guo X L. J. Alloys Compd., 2020, 819: 153021.

doi: 10.1016/j.jallcom.2019.153021     URL    
[111]
Liang C Y. Doctoral Dissertation of Harbin Institute of Technology, 2020.
(梁彩云. 哈尔滨工业大学博士学位论文, 2020.).
[112]
Cheng Y H, Tan M Y, Hu P, Zhang X H, Sun B Q, Yan L W, Zhou S B, Han W B. Appl. Surf. Sci., 2018, 448: 138.

doi: 10.1016/j.apsusc.2018.04.132     URL    
[113]
Kang M G, Lezec H J, Sharifi F. Nanotechnology, 2013, 24(6): 065201.

doi: 10.1088/0957-4484/24/6/065201     URL    
[114]
Chen Y, Ola O, Chen H M, Wang N N, Xia Y D, Zhu Y Q. ACS Appl. Nano Mater., 2019, 2(12): 7540.

doi: 10.1021/acsanm.9b01590    
[115]
Bruzzoniti M C, Appendini M, Rivoira L, Onida B del Bubba M, Jana P, Sorarù G D. J. Am. Ceram. Soc., 2018, 101(2): 821.

doi: 10.1111/jace.2018.101.issue-2     URL    
[116]
Chen J J, Liao X, Wang M M, Liu Z X, Zhang J D, Ding L J, Gao L, Li Y. Nanoscale, 2015, 7(14): 6374.

doi: 10.1039/C5NR00776C     URL    
[117]
Chen J J, Jiang M, Lin W X, Ding L J, Xin L P. J. Mater. Sci., 2018, 53(5): 3289.

doi: 10.1007/s10853-017-1815-x     URL    
[1] 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 大面积钙钛矿太阳能电池[J]. 化学进展, 2019, 31(7): 1031-1043.
[2] 赵响, 赵宗彦. 四元化合物半导体Cu2ZnSnS4:结构、制备、应用及前景[J]. 化学进展, 2015, 27(7): 913-934.
[3] 陈媛芝, 张乐, 黄存新, 章健, 唐定远, 沈德元. TM2+: Ⅱ-Ⅵ族中红外激光材料[J]. 化学进展, 2015, 27(5): 511-521.
[4] 王奕寒, 脇坂港. 纳米纤维制备工艺进展及其对壳聚糖的适用性分析[J]. 化学进展, 2014, 26(11): 1821-1831.
[5] 刘一凡, 马玉玲, 徐琴琴, 银建中. 支撑型离子液体膜的制备、表征及稳定性评价[J]. 化学进展, 2013, 25(10): 1795-1804.
[6] 王新东, 谢晓峰, 王萌, 刘桂成, 苗睿瑛, 王一拓, 阎群. 直接甲醇燃料电池关键材料与技术[J]. 化学进展, 2011, 23(0203): 509-519.
[7] 高鹏,韩家军,朱永明,张翠芬,李宁. 金属锂二次电池锂负极改性[J]. 化学进展, 2009, 21(0708): 1678-1686.
[8] 罗民,高积强,乔冠军,金志浩. 生物模板法制备木材陶瓷*[J]. 化学进展, 2008, 20(06): 989-1000.
阅读次数
全文


摘要