English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1930-1941 DOI: 10.7536/PC180408 前一篇   后一篇

• 综述 •

氧化石墨烯还原程度的控制

陈利萍1, 杨蓉2*, 燕映霖1, 樊潮江1, 史忙忙1, 许云华3   

  1. 1. 西安理工大学材料科学与工程学院 西安 710048;
    2. 西安理工大学理学院 西安 710054;
    3. 榆林大学 榆林 719000
  • 收稿日期:2018-04-04 修回日期:2018-06-23 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 杨蓉 E-mail:yangrong@xaut.edu.cn
  • 基金资助:
    国家国际科技合作专项项目(No.2015DFR50350)、陕西省科技计划项目(No.2017GY-160)、陕西省自然科学基础研究计划(No.2017JQ5055)和国家自然科学基金青年项目(No.51702256)资助

The Control of Reduction Degree of Graphene Oxide

Liping Chen1, Rong Yang2*, Yinglin Yan1, Chaojiang Fan1, Mangmang Shi1, Yunhua Xu3   

  1. 1. School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China;
    2. School of Science, Xi'an University of Technology, Xi'an 710054, China;
    3. Yulin University, Yulin 719000, China
  • Received:2018-04-04 Revised:2018-06-23 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the International Science and Technology Cooperation Program of China(No. 2015DFR50350), the Key Research and Development Plan of Shaanxi Province(No. 2017GY-160), the Basic Research Plan of Natural Science Funded by Shaanxi Science and Technology Department(No. 2017JQ5055), and the National Natural Science Foundation of China(No. 51702256).
石墨烯作为只有一个原子层厚度的二维碳材料,具有优异的柔韧性、导电性等一系列优点,从而广泛应用于许多领域。氧化还原法是最常用且最有前景的石墨烯制备方法,然而在氧化过程中,大量含氧官能团的生成破坏了石墨烯的共轭结构,因此需要去除含氧官能团得到还原氧化石墨烯,以修复结构、恢复其高导电性。而许多领域运用石墨烯时,既需要其具有高导电性,又有一定量的含氧官能团或缺陷。因此,控制氧化石墨烯的还原程度尤为必要,既要充分利用含氧官能团的优点并保证石墨烯的导电性,又要根据石墨烯的应用需求,得到官能团种类及含量可控的还原氧化石墨烯,从而实现石墨烯材料的多元化应用。本文综述了近年来化学还原法、热还原(包括热退火和水/溶剂热还原)法和电化学还原法控制氧化石墨烯还原程度的研究现状,总结了几种方法的还原机制和效果以及部分还原氧化石墨烯的应用并进行了展望。
Graphene, a two-dimensional material with monoatomic thickness, possesses a series of excellent properties, such as flexibility and electrical conductivity, which makes it widely applied in many fields. Oxidation-reduction method is the most commonly used and promising method for the preparation of graphene. However, large amounts of oxygen-containing functional groups, such as hydroxyl, epoxy, carboxyl and carbonyl groups, are formed on the planes and edges of the graphene during the oxidation process, which makes its conjugated structure destroyed, causing the excellent electrical conductivity decreased. Consequently, graphene oxide needs to be reduced by removing the oxygen-containing functional groups to recover conjugated structure. Interestingly, graphene-based materials need both a certain amount or types of oxygen-containing functional groups on graphene oxide which determines the characteristic of graphene oxide, chemical activity, hydrophilicity, band gap or defects, etc., and the characteristic of graphene, such as high electrical conductivity, for application in many fields. The control of reduction degree of graphene oxide, obtaining partially reduced graphene oxide, can not only make most use of the merits of oxygen-containing functional groups and ensure enough conductivity, but also obtain the partially reduced graphene oxide with determined types and amount of oxygen-containing functional groups on the requirements of the applications, realizing the diverse applications of graphene, such as adsorption, electroatalysis, photocatalysis, and sensor. The methods for controlling reduction degree of graphene oxide include chemical reduction method, thermal reduction (thermal annealing, hydrothermal and solvethermal reduction) and electrochemical reduction. Herein research progress on the controlling conditions of partially reduced graphene oxide, reduction mechanism and effect, comparison of those reduction methods as well as the applications of partially reduced graphene oxide are reviewed, and current challenges and research directions are also presented.
Contents
1 Introduction
2 Reduction degree of GO controlled by chemical reduction method
2.1 Types and concentration of reduction agent
2.2 Reduction temperature
2.3 Reaction medium and pH
2.4 Reduction time
3 Reduction degree of GO controlled by thermal reduction methods
3.1 Thermal annealing
3.2 Hydrothermal (solvothermal)
4 Reduction degree of GO controlled by electrochemical reduction method
4.1 Reduction potential
4.2 Reduction time
5 Reduction mechanism and effect
5.1 Reduction mechanism of chemical reduction
5.2 Reduction mechanism of thermal reduction
5.3 Reduction mechanism of electrochemical reduction
5.4 Comparison of different reduction methods
6 Applications of controlling reduction degree
7 Conclusion

中图分类号: 

()
[1] Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S. Prog. Mater. Sci., 2011, 56(8):1178.
[2] Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22(35):3906.
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696):666.
[4] Somani P R, Somani S P, Umeno M.Chem. Phys. Lett., 2006, 430(1/3):56.
[5] Parvez K, Wu Z, Li R, Liu X, Graf R, J. Am. Chem. Soc., 2014, 136:6083.
[6] William S, Hummers J R, Richard E O. J. Am. Chem. Soc., 1958, 1339.
[7] Lerf A, He H, Forster M, Klinowski J. J. Phys. Chem. B, 1998, 102(23):4477.
[8] Compton O C, Nguyen S T. Small, 2010, 6(6):711.
[9] Zu C X, Manthiram A. Adv. Energy Mater., 2013, 3:1008.
[10] Ji L W, Rao M M, Zheng H M, Zhang L, Li Y C, Duan W H, Guo J H, Cairns E J, Zhang Y G. J. Am. Chem. Soc., 2011, 133(46):18522.
[11] Wang Z Y, Dong Y F, Li H J, Zhao Z B, Wu H B, Hao C, Liu S H, Qiu J S, Lou(David) X W. Nat. Commun., 2014, 5:5002.
[12] Zhou X Y, Chen F, Yang J, Ma L L, Bai T, Long B, Liao Q C, Liu C W. J. Electroanal. Chem., 2015, 747:59.
[13] Jiang Y, Lu M N, Ling X T, Jiao Z, Chen L L, Chen L, Hu P F, Zhao B. J. Alloy. Compd., 2015, 645:509.
[14] Zhou G M, Yin L C, Wang D W, Li L, Pei S F, Gentle I R, Li F, Cheng H M. ACS Nano, 2013, 7(6):5367.
[15] Wang C, Wang X S, Wang Y J, Chen J T, Zhou H H, Huang Y H. Nano Energy, 2015, 11:678.
[16] 夏前芳(Xia Q F), 黄颖娟(Huang Y J), 杨雪(Yang X), 李在均(Li Z J). 化学学报(Acta Chimica Sinica), 2012, 70(11):1315.
[17] Zhang J L, Yang H J, Shen G X, Cheng P, Zhang J Y, Guo S W.Chem. Commun., 2010, 46(7):1112.
[18] Ambrosi A, Chua C K, Bonanni A, Pumera M. Chem. Mater., 2012, 24(12):2292.
[19] Huang H, Tang Y, Xu L, Tang S, Du Y. ACS Appl. Mater. Inter., 2014, 6(13):10248.
[20] Zhang X M, Li K Z, Li H J, Lu J H, Fu Q G, Chu Y H. Synthetic Met., 2014, 193:132.
[21] Tajul Arifin N F, Aziz M. Jurnal Teknologi, 2017, 79(1/2):1.
[22] Wan D Y, Yang C Y, Lin T Q, Tang Y F, Zhou M, Zhong Y J, Huang F Q, Lin J H. ACS Nano, 2012, 6(10):9068.
[23] He J L, Fang L. Curr. Appl. Phys., 2016, 16(9):1152.
[24] Dey R S, Hajra S, Sahu R K, Raj C R, Panigrahi M K. Chem. Commun., 2012, 48(12):1787.
[25] 徐超(Xu C), 员汝胜(Yuan R S), 汪信(Wang X). 新型炭材料(New Carbon Materials), 2014, 71(1):345.
[26] Pei S F, Cheng H M. Carbon, 2012, 50(9):3210.
[27] 常云珍(Chang Y Z), 韩高义(Han G Y), 肖尧明(Xiao Y M), 周海涵(Zhou H H), 董建华(Dong J H). 新型炭材料(New Carbon Materials), 2017, 32(1):21.
[28] Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H. Adv. Funct. Mater., 2009, 19(12):1987.
[29] Yan S, He P G, Jia D C, Yang Z H, Duan X M, Wang S J, Zhou Y. Ceram. Int., 2016, 42(16):18181.
[30] Dong L L, Chen W G, Deng N, Zheng C H. Chem. Eng. J., 2016, 306:754.
[31] Wang R, Liu Y, Zhang Y Z, Wang L L, Yang G, Shen F, Deng S H, Zhang X H, He Y, Luo L. Ceram. Int., 2016, 42(16):19042.
[32] Yang J, Zhang E W, Li X F, Yu Y H, Qu J, Yu Z Z. ACS Appl. Mater. Inter., 2016, 8(3):2297.
[33] Vermisoglou E C, Giannakopoulou T, Romanos G, Boukos N, Psycharis V, Lei C, Lekakou C, Petridis D, Yu J G, Trapalis C. Appl. Surf. Sci., 2017, 392:244.
[34] Mathkar A, Tozier D, Cox P, Ong P, Galande C, Balakrishnan K, Reddy A L M, Ajayan P M. J. Phys. Chem. Lett., 2012, 3(8):986.
[35] Pei S F, Zhao J P, Du J H, Ren W C, Cheng H M. Carbon, 2010, 48(15):4466.
[36] Akhavan O. Carbon, 2011, 49(1):11.
[37] Akhavan O, Ghaderi E. J. Phys. Chem. C, 2009, 113(47):20214.
[38] Williams G, Seger B, Kamt P V. ACS Nano, 2008, 2(7):1487.
[39] Akhavan O. ACS Nano, 2010, 4(7):4174.
[40] Radich G, Krenselewski A L, Zhu J, Kamat P V. Chem. Mater., 2014, 26(15):4662.
[41] Dolbin A V, Khlistyuck M V, Esel'son V B, Gavrilko V G, Vinnikov N A, Basnukaeva R M, Maluenda I, Maser W K, Benito A M. Appl. Surf. Sci., 2016, 361:213.
[42] Nia Z K, Chen J Y, Tang B, Yuan B, Wang X G, Li J L. Carbon, 2017, 116:703.
[43] Singh M, Yadav A, Kumar S, Agarwal P. Appl. Surf. Sci., 2015, 326:236.
[44] Gao X F, Jang J, Nagase S. J. Phys. Chem. C, 2010, 114(2):832.
[45] Yamaguchi H, Ogawa S, Watanabe D, Hozumi H, Gao Y Q, Eda G, Mattevi C, Fujita T, Yoshigoe A, Ishizuka S, Adamska L, Yamada T, Dattelbaum A M, Gupta G, Doorn S K, Velizhanin K A, Teraoka Y, Chen M W, Htoon H, Chhowalla M, Mohite A D, Takakuwa Y. Phys. Status Solidi A, 2016, 213(9):2380.
[46] Lei Y, He Y, Fang C Y, Zhang Z. J. Mater. Sci.-Mater. El., 2017, 28(2):1750.
[47] Sasikala S P, Poulin P, Aymonier C. Adv. Mater., 2017, 29(22):1605473.
[48] Mei X F, Meng X Q, Wu F M. Physica E, 2015, 68:81.
[49] Tai G A, Zeng T, Li H X, Liu J S, Kong J Z, Lv F Y. Mater. Res. Express, 2014, 1(3):35605.
[50] Nethravathi C, Rajamathi M. Carbon, 2008, 46(14):1994.
[51] Bi H C, Yin K B, Xie X, Zhou Y L, Wan N, Xu F, Banhart F, Sun L T, Ruoff R S. Adv. Mater., 2012, 24(37):5124.
[52] Zheng X L, Peng Y S, Yang Y, Chen J L, Tian H W, Cui X Q, Zheng W T. J. Raman Spectrosc., 2017, 48(1):97.
[53] Guo H L, Wang X F, Qian Q Y, Wang F B, Xia X H. ACS Nano, 2009, 3(9):2653.
[54] Toh S Y, Loh K S, Kamarudin S K, Daud W R W. Chem. Eng. J., 2014, 251:422.
[55] Li W Y, Liu J G, Yan C W. Carbon, 2013, 55:313.
[56] Gao M M, Xu Y Y, Wang X H, Sang Y H, Wang S G. Electroanal., 2016, 28(6):1377.
[57] Feng X Y, Chen W F, Yan L F. RSC Adv., 2016, 6(83):80106.
[58] Dogan H Ö, Ekinci D, Demir V. Surf. Sci., 2013, 611:54.
[59] Fernández-Merino M J, Guardia L, Paredes J I, Villar-Rodil S, Solís-Fernandez P, Martínez-Alonso A, Tascón J M D. J. Phys. Chem. C, 2010, 114:6426.
[60] Abdullah M F, Zakaria R, Zein S H S. RSC Adv., 2014, 4(65):34510.
[61] Gao J, Liu F, Liu Y L, Ma N, Wang Z Q, Zhang X. Chem. Mater., 2010, 22(7):2213.
[62] Chua C K, Pumera M. Chem. Soc. Rev., 2014, 43(1):291.
[63] Chen J F, Shen L Y, Xiao Y H. J. Mater. Chem., 2010, 20(9):1722.
[64] Jin Y H, Huang S, Zhan M, Jia M Q, Hu D. Appl. Surf. Sci., 2013, 268:541.
[65] Thakur S, Karak N. Carbon, 2012, 50(14):5331.
[66] Toh S Y, Loh K S, Kamarudin S K, Daud W R W. Electrochim. Acta, 2016, 199:194.
[67] Zhou M, Wang Y L, Zhai Y M, Zhai J F, Ren W, Wang F, Dong S J. Chem.-Eur. J., 2009, 15:6116.
[68] Raj M A, John S A. J. Phys. Chem. C, 2013, 117(8):4326.
[69] Becerril H A, Mao J, Liu Z F, Stoltenberg R M, Bao Z N, Chen Y S. ACS Nano, 2008, 2(3):463.
[70] Li S W, Wang M, Lian Y F. Sci. China Chem., 2016, 59(4):405.
[71] Ambrosi A, Bonanni A, Sofer Z, Cross J S, Pumera M. Chem.-Eur. J., 2011, 17(38):10763.
[72] Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3(2):101.
[73] Bagri A, Mattevi C, Acik M, Chabal Y J, Chhowalla M, Shenoy V B. Nat. Chem., 2010, 2(7):581.
[74] Ye S B, Feng J C, Wu P Y. ACS Appl. Mater. Inter., 2013, 5(15):7122.
[75] Gao W, Alemany L B, Ci L J, Ajayan P M. Nat. Chem., 2009, 1(5):403.
[76] 侯若男(Hou R N), 彭同江(Peng T J), 孙红娟(Sun H J), 陈军刚(Chen J G). 人工晶体学报(Journal of Synthetic Crystals), 2014, 23(5):418.
[77] Boukhvalov D W, Katsnelson M I. J. Am. Chem. Soc., 2008, 130:10697.
[78] Li Z Y, Zhang W H, Luo Y, Yang J L, Hou J G. J. Am. Chem. Soc., 2009, 131(18):6320.
[79] Sadhukhan S, Ghosh T K, Rana D, Roy I, Bhattacharyya A, Sarkar G, Chakraborty M, Chattopadhyay D. Mater. Res. Bull., 2016, 79:41.
[80] Zhao X, Dong H W, Xiao Y, Hu H, Cai Y J, Liang Y R, Sun L Y, Liu Y L, Zheng M T. Electrochim. Acta, 2016, 218:32.
[81] Yang J, Gunasekaran S. Carbon, 2013, 51(1):36.
[82] Liu X, Qi X, Zhang Z, Ren L, Hao G L, Liu Y D, Wang Y, Huang K, Wei X L, Li J, Huang Z Y, Zhong J X. RSC Adv., 2014, 4(26):13673.
[83] Dolbin A V, Esel'son V B, Gavrilko V G, Manzhelii V G, Vinnikov N A, Basnukaeva R M, Danchuk V V, Mysko N S. Low Temp. Phys., 2013, 39(12):1397.
[84] Wan W C, Zhang F, Yu S, Zhan R Y, Zhou Y. New J. Chem., 2016, 40(4):3040.
[85] De Camargo M N L, Santhiago M, Maroneze C M, Silva C C C, Timm R A, Kubota L T. Electrochim. Acta, 2016, 197:194.
[86] Zhang Z P, Yan J, Jin H Z, Yin J G. Electrochim. Acta, 2014, 139:232.
[87] Kavan L, Yum J H, Graetzel M. ACS Appl. Mater Inter., 2012, 4(12):6999.
[88] Novoselov K. Nat. Mater., 2007, 6(10):720.
[89] Ambrosi A, Pumera M. Chem.-Eur. J., 2013, 19(15):4748.
[90] Landi G, Sorrentino A, Iannace S, Neitzert H C. Nanotechnology, 2017, 28(5):054005.
[1] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[2] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[3] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[4] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[5] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[6] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[7] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[8] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[9] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[10] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
[11] 吴文浩, 雷文, 王丽琼, 王森, 张海军. 单原子催化剂合成方法[J]. 化学进展, 2020, 32(1): 23-32.
[12] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[13] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[14] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[15] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
阅读次数
全文


摘要

氧化石墨烯还原程度的控制