English
新闻公告
More
化学进展 2020, Vol. 32 Issue (1): 23-32 DOI: 10.7536/PC190704 前一篇   后一篇

所属专题: 电化学有机合成

• •

单原子催化剂合成方法

吴文浩, 雷文, 王丽琼, 王森, 张海军**()   

  1. 1. 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
  • 收稿日期:2019-07-05 出版日期:2020-01-15 发布日期:2019-12-11
  • 通讯作者: 张海军
  • 基金资助:
    国家自然科学基金项目(51672194); 国家自然科学基金项目(51872210); 湖北省教育厅高等学校优秀中青年科技创新团队计划(T201602); 湖北自然科学基金创新群体项目资助(2017CFA004)

Preparation of Single Atom Catalysts

Wenhao Wu, Wen Lei, Liqiong Wang, Sen Wang, Haijun Zhang**()   

  1. 1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received:2019-07-05 Online:2020-01-15 Published:2019-12-11
  • Contact: Haijun Zhang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51672194); National Natural Science Foundation of China(51872210); Excellent Young and Middle-aged Science and Technology Innovation Team Program of Hubei Provincial Education Department(T201602); Hubei Natural Science Foundation Innovation Group Project(2017CFA004)

单原子催化剂作为一种原子尺度的催化剂,在制氢、CO氧化及光催化等领域均具有广阔的应用前景。大量实验结果和理论计算证实了金属单原子和载体之间的相互作用,及由两者之间电荷转移引起的电子结构改变是单原子催化剂具有高的选择性和催化活性的主要原因。本文着重综述了近年来共沉淀法、化学还原法及浸渍法所制备单原子催化剂的催化性能,并进行展望。

Single atom catalysts, as catalysts with atomic scale, have a wide range of applications in the fields of hydrogen production, CO oxidation, photocatalysts, etc. Extensive efforts of experimental/theoretical studies show that the strong metal support interactions and the changes in electronic structure are the main reasons for the high selectivity and catalytic activity of the single atom catalysts. This paper mainly summarizes the recent researches on the preparation methods including coprecipitation method, successive reduction method and wet-impregnation method, catalytic performance and high catalytic selectivity of single atom catalysts. And finally, the prospects for future investigations of single atom catalysts are proposed.

()
表1 常用的单原子催化剂制备方法
Table 1 Commonly used preparation methods for single atom catalysts
图1 Pt1/FeO x 单原子催化剂的HAADF-STEM图像[17]
Fig. 1 HAADF-STEM images of Pt1/FeO x single atom catalysts[17]
图2 Ag/Hollandite型MnO2的合成过程示意图[35]
Fig. 2 Schematic formation mechanisms of Ag/Hollandite-MnO2 [35]
图3 (a) Pt/多壁碳纳米管、Pt/C、Au25/多壁碳纳米管及Pt1Au24/多壁碳纳米管的CV图;(b)Pt掺杂Au25(Pt1Au24(SR)18)团簇单原子催化剂HCOOH氧化示意图[34]
Fig. 3 (a) CVs of Pt/MCNTs, Pt/C (top panel), Au25/MCNTs and Pt1Au24/MCNTs; (b) Illustration of single Pt atom-doped Au25(Pt1Au24(SR)18) NCs for HCOOH oxidation[34]
图4 置换反应法制备皇冠-明珠结构Au-Pd单原子催化剂过程示意图[46]
Fig. 4 Schematic illustration of synthesis of Crown-Jewel structure of Au-Pd SACs by replacement reaction method[46]
图5 (a) Pt1@Fe-N-C的元素面扫描图像;(b) Pt1@Fe-N-C的催化活性示意图[39]
Fig. 5 (a) Elemental mapping of Pt1@Fe-N-C catalyst; (b) Proposed schematic diagram of Pt1-O2-Fe1-N4-C12 as the active moiety of Pt1@Fe-N-C[39]
图6 (a) 单原子催化剂CoN4/氮掺杂石墨烯的合成示意图;(b) CoN4/氮掺杂石墨烯的HAADF-STEM图像[42]
Fig. 6 (a) Schematic illustration of the synthesis of single-atom CoN4/NG catalyst; (b) HAADF-STEM image of the CoN4/NG with cobalt atom bright points[42]
[1]
Zhang H , Toshima N . Journal of Colloid & Interface Science, 2013,394(1):166.
[2]
Jian L , Botao Q , Ning L , Lin L , Xiucheng S , Jingyue L , Xiaodong W , Tao Z . Chemical Communications, 2015,51(37):7911. https://www.ncbi.nlm.nih.gov/pubmed/25858347

doi: 10.1039/c5cc00714c     URL     pmid: 25858347
[3]
Wang W L , Santos E J , Jiang B , Cubuk E D , Ophus C , Centeno A , Pesquera A , Zurutuza A , Ciston J , Westervelt R . Nano Letters, 2016,14(2):450. https://www.ncbi.nlm.nih.gov/pubmed/24447230

doi: 10.1021/nl403327u     URL     pmid: 24447230
[4]
Gao G , Jiao Y , Waclawik E R , Du A . Journal of the American Chemical Society, 2016,138(19):6292. https://www.ncbi.nlm.nih.gov/pubmed/27116595

doi: 10.1021/jacs.6b02692     URL     pmid: 27116595
[5]
焦成鹏(Jiao C P), 黄自力(Huang Z L), 张海军(Zhang H J), 张少伟(Zhang S W). 化学进展(Progress in Chemistry), 2015,27(5):472.
[6]
王小凤(Wang X F), 黄自力(Huang Z L), 张海军(Zhang H J). 稀有金属材料与工程(Rare Metal Mat Eng), 2013,42(8):001751.
[7]
Lin S , Ye X , Johnson R S , Hua G . Journal of Physical Chemistry C, 2013,117(33):17319.
[8]
Lin J , Wang A , Qiao B , Liu X , Yang X , Wang X , Liang J , Li J , Liu J , Zhang T . Journal of the American Chemical Society, 2013,135(41):15314. https://www.ncbi.nlm.nih.gov/pubmed/24090210

doi: 10.1021/ja408574m     URL     pmid: 24090210
[9]
Zhao P , Su Y , Zhang Y , Li S J , Chen G . Chemical Physics Letters, 2011,515(1):159.
[10]
Ren H , Wang Y , Yang Y , Tang X , Peng Y , Peng H , Xiao L , Lu J , Abruña H D , Zhuang L . ACS Catalysis, 2017,7(10):6485.
[11]
Li M , Wu S , Yang X , Hu J , Peng L , Bai L , Huo Q , Guan J . Applied Catalysis A: General, 2017,543:61.
[12]
Marcinkowski M D , Darby M T , Liu J , Wimble J M , Lucci F R , Lee S , Michaelides A , Flytzani-Stephanopoulos M , Stamatakis M , Sykes E C H . Nature Chemistry, 2018,10(3):325. https://www.ncbi.nlm.nih.gov/pubmed/29461520

doi: 10.1038/nchem.2915     URL     pmid: 29461520
[13]
Yan H , Lin Y , Wu H , Zhang W , Sun Z , Cheng H , Liu W , Wang C , Li J , Huang X , Yao T , Yang J , Wei S , Lu J . Nature Communications, 2017,8(1):1070. https://www.ncbi.nlm.nih.gov/pubmed/29057957

doi: 10.1038/s41467-017-01259-z     URL     pmid: 29057957
[14]
Tamura M , Kitanaka T , Nakagawa Y , Tomishige K . ACS Catalysis, 2015,6(1):376. https://pubs.acs.org/doi/10.1021/acscatal.5b02258

doi: 10.1021/acscatal.5b02258     URL    
[15]
Pei G X , Liu X Y , Wang A , Lee A F , Isaacs M A , Li L , Pan X , Yang X , Wang X , Tai Z , Wilson K , Zhang T . ACS Catalysis, 2015,5(6):3717. https://pubs.acs.org/doi/10.1021/acscatal.5b00700

doi: 10.1021/acscatal.5b00700     URL    
[16]
王勇(Wang Y), 张文华(Zhang W H), 邓德会(Deng D H), 包信和(Bao X H). 催化学报(Chinese Journal of Catalysis), 2017,38(9):1443.
[17]
Qiao B , Wang A , Yang X , Allard L F , Jiang Z , Cui Y , Liu J , Li J , Zhang T . Nature Chemistry, 2011,3(8):634. https://www.ncbi.nlm.nih.gov/pubmed/21778984

doi: 10.1038/nchem.1095     URL     pmid: 21778984
[18]
Cheng Q , Yang L , Zou L , Zou Z , Chen C , Hu Z , Yang H . ACS Catalysis, 2017,7(10):6864.
[19]
Li X , Bi W , Zhang L , Tao S , Chu W , Zhang Q , Luo Y , Wu C , Xie Y . Advanced Materials, 2016,28(12):2427. https://www.ncbi.nlm.nih.gov/pubmed/26822495

doi: 10.1002/adma.201505281     URL     pmid: 26822495
[20]
Liu P , Zhao Y , Qin R , Mo S , Chen G , Gu L , Chevrier DM , Zhang P , Guo Q , Zang D , Wu B , Fu G , Zheng N . Science, 2016,352(6287):797. https://www.ncbi.nlm.nih.gov/pubmed/27174982

doi: 10.1126/science.aaf5251     URL     pmid: 27174982
[21]
Qiao B , Lin J , Wang A , Chen Y , Zhang T , Liu J . Chinese Journal of Catalysis, 2015,36(9):1505.
[22]
Zhang H , Hwang S , Wang M , Feng Z , Karakalos S , Luo L , Qiao Z , Xie X , Wang C , Su D , Shao Y , Wu G . Journal of the American Chemical Society, 2017,139(40):14143. https://www.ncbi.nlm.nih.gov/pubmed/28901758

doi: 10.1021/jacs.7b06514     URL     pmid: 28901758
[23]
Poh C K , Lim S H , Lin J , Feng Y P . The Journal of Physical Chemistry C, 2014,118(25):13525.
[24]
Aich P , Wei H , Basan B , Kropf A J , Schweitzer N M , Marshall C L , Miller J T , Meyer R . The Journal of Physical Chemistry C, 2015,119(32):18140.
[25]
Bulushev D A , Zacharska M , Shlyakhova E V , Chuvilin A L , Guo Y , Beloshapkin S , Okotrub A V , Bulusheva L G . ACS Catalysis, 2015,6(2):681.
[26]
Li Z , He T , Matsumura D , Miao S , Wu A , Liu L , Wu G , Chen P . ACS Catalysis, 2017,7(10):6762.
[27]
Dhiman M , Polshettiwar V . ChemCatChem, 2018,10(5):881.
[28]
Peters B , Scott S L . The Journal of Chemical Physics, 2015,142(10):104708. https://www.ncbi.nlm.nih.gov/pubmed/25770558

doi: 10.1063/1.4914145     URL     pmid: 25770558
[29]
Liang S , Hao C , Shi Y . Chemcatchem, 2015,7(17):2559. http://doi.wiley.com/10.1002/cctc.201500363

doi: 10.1002/cctc.201500363     URL    
[30]
Zhang H , Toshima N . Journal of Colloid and Interface Science, 2013,394:166. 3aae4769-bf14-4f76-b882-064f4afa4676 http://dx.doi.org/10.1016/j.jcis.2012.11.059

doi: 10.1016/j.jcis.2012.11.059     URL     pmid: 23290434
[31]
Hayashi S , Ishida R , Hasegawa S , Yamazoe S , Tsukuda T . Topics in Catalysis, 2017,61(1~2):136. http://link.springer.com/10.1007/s11244-017-0876-z

doi: 10.1007/s11244-017-0876-z     URL    
[32]
Narula C K , Allard L F , Stocks G M , Mosesdebusk M . Scientific Reports, 2014,4, 7238. https://www.ncbi.nlm.nih.gov/pubmed/25429995

doi: 10.1038/srep07238     URL     pmid: 25429995
[33]
Jun X , Fu C J , Hang L Y , Tao Y W , Ying Z , Rong Z L , Feng W H , Hu P , Yun W , Jun Z H . Chemistry-A European Journal, 2014,20(8):2138. https://www.ncbi.nlm.nih.gov/pubmed/24403011

doi: 10.1002/chem.201303366     URL     pmid: 24403011
[34]
Lu Y , Zhang C , Li X , Frojd A R , Xing W , Clayborne A Z , Chen W . Nano Energy, 2018,50:316. https://linkinghub.elsevier.com/retrieve/pii/S2211285518303677

doi: 10.1016/j.nanoen.2018.05.052     URL    
[35]
Ding J , Fan M , Zhong Q , Russell A G . Applied Catalysis B: Environmental, 2018,232:348. https://linkinghub.elsevier.com/retrieve/pii/S0926337318302571

doi: 10.1016/j.apcatb.2018.03.058     URL    
[36]
Zhang H , Lu L , Kawashima K , Okumura M , Haruta M , Toshima N . Advanced Materials, 2015,27(8):1383. https://www.ncbi.nlm.nih.gov/pubmed/25511851

doi: 10.1002/adma.201404870     URL     pmid: 25511851
[37]
Zhang H , Kawashima K , Okumura M , Toshima N . Journal of Materials Chemistry A, 2014,2(33):13498.
[38]
Shan J , Liu J , Li M , Lustig S , Lee S , Flytzani-Stephanopoulos M . Applied Catalysis B: Environmental, 2018,226:534.
[39]
Zeng X , Shui J , Liu X , Liu Q , Li Y , Shang J , Zheng L , Yu R . Advanced Energy Materials, 2018,8(1):1701345. http://doi.wiley.com/10.1002/aenm.v8.1

doi: 10.1002/aenm.v8.1     URL    
[40]
Lang R , Li T , Matsumura D , Miao S , Ren Y , Cui Y T , Tan Y , Qiao B , Li L , Wang A , Wang X , Zhang T . Angewandte Chemie International Edition, 2016,55(52):16054. https://www.ncbi.nlm.nih.gov/pubmed/27862789

doi: 10.1002/anie.201607885     URL     pmid: 27862789
[41]
Kim J , Roh C W , Sahoo S K , Yang S , Bae J , Han J W , Lee H . Advanced Energy Materials, 2018,8(1):1701476. http://doi.wiley.com/10.1002/aenm.v8.1

doi: 10.1002/aenm.v8.1     URL    
[42]
Yang L , Shi L , Wang D , Lv Y , Cao D . Nano Energy, 2018,50:691. https://linkinghub.elsevier.com/retrieve/pii/S221128551830418X

doi: 10.1016/j.nanoen.2018.06.023     URL    
[43]
Moses-DeBusk M , Yoon M , Allard L F , Mullins D R , Wu Z , Yang X , Veith G , Stocks G M , Narula C K . Journal of the American Chemical Society, 2013,135(34):12634. https://www.ncbi.nlm.nih.gov/pubmed/23952672

doi: 10.1021/ja401847c     URL     pmid: 23952672
[44]
Jiang K , Siahrostami S , Zheng T , Hu Y , Hwang S , Stavitski E , Peng Y , Dynes J , Gangisetty M , Su D , Attenkofer K , Wang H . Energy & Environmental Science, 2018,11(4):893. https://linkinghub.elsevier.com/retrieve/pii/0360544286900095

doi: 10.1016/0360-5442(86)90009-5     URL    
[45]
Yang M , Allard L F , Flytzani-Stephanopoulos M . Journal of the American Chemical Society, 2013,135(10):3768. https://www.ncbi.nlm.nih.gov/pubmed/23437858

doi: 10.1021/ja312646d     URL     pmid: 23437858
[46]
Zhang H , Watanabe T , Okumura M , Haruta M , Toshima N . Nature Materials, 2012,11(1):49. https://www.ncbi.nlm.nih.gov/pubmed/22019941

doi: 10.1038/nmat3143     URL     pmid: 22019941
[47]
李中春(Li Z C), 罗胜利(Luo S L), 周全法(Zhou Q F). 稀有金属材料与工程(Rare Metal Mat Eng), 2010,39(10):1863.
[48]
Bootharaju M S , Joshi C P , Parida M R , Mohammed O F , Bakr O M . Angewandte Chemie International Edition, 2016,55(3):922. https://www.ncbi.nlm.nih.gov/pubmed/26611172

doi: 10.1002/anie.201509381     URL     pmid: 26611172
[49]
Kistler J D , Chotigkrai N , Xu P D , Enderle B , Praserthdam P , Chen C Y , Browning N D , Gates B C . Angewandte Chemie, 2014,126(34):9050. https://www.ncbi.nlm.nih.gov/pubmed/24986134

doi: 10.1002/ange.v126.34     URL     pmid: 24986134
[50]
Gu X K , Qiao B , Huang C Q , Ding W C , Sun K , Zhan E , Zhang T , Liu J , Li W X . ACS Catalysis, 2014,4(11):3886. e52ab543-ccfa-43ef-ac5c-579bbc2c3834 http://dx.doi.org/10.1021/cs500740u

doi: 10.1021/cs500740u     URL    
[51]
Wang L , Zhang S R , Zhu Y , Patlolla A , Shan J J , Yoshida H , Takeda S , Frenkel A I , Tao F . ACS Catalysis, 2016,3(5):1011. https://pubs.acs.org/doi/10.1021/cs300816u

doi: 10.1021/cs300816u     URL    
[52]
Cheng Y , Zhao S , Li H , He S , Veder J P , Johannessen B , Xiao J , Lu S , Pan J , Chisholm M F , Yang S Z , Liu C , Chen J G , Jiang S P . Applied Catalysis B: Environmental, 2019,243:294. https://linkinghub.elsevier.com/retrieve/pii/S0926337318310026

doi: 10.1016/j.apcatb.2018.10.046     URL    
[53]
Markku L , Mikko R . Angewandte Chemie International Edition, 2003,42(45):5548. https://www.ncbi.nlm.nih.gov/pubmed/14639717

doi: 10.1002/anie.200301652     URL     pmid: 14639717
[54]
Sun S , Zhang G , Gauquelin N , Chen N , Zhou J , Yang S , Chen W , Meng X , Geng D , Banis M N , Li R , Ye S , Knights S , Botton G A , Sham T K , Sun X . Scientific Reports, 2013,3(1):65.
[55]
Yan H , Cheng H , Yi H , Lin Y , Yao T , Wang C L , Li J J , Wei S Q , Lu J L . Journal of the American Chemical Society, 2015,137(33):10484. https://www.ncbi.nlm.nih.gov/pubmed/26268551

doi: 10.1021/jacs.5b06485     URL     pmid: 26268551
[56]
Qiu H J , Ito Y , Cong W , Tan Y , Liu P , Hirata A , Fujita T , Tang Z , Chen M . Angewandte Chemie International Edition, 2016,54(47):14031. https://www.ncbi.nlm.nih.gov/pubmed/26474177

doi: 10.1002/anie.201507381     URL     pmid: 26474177
[57]
Yao Z , Yan J , Mietek J , Zhang S Q . Angewandte Chemie, 2015,54(1):52. https://www.ncbi.nlm.nih.gov/pubmed/25384712

doi: 10.1002/anie.201407031     URL     pmid: 25384712
[58]
Yan J , Yao Z , Mietek J , Zhang Q S . Chemical Society Reviews, 2015,46(25):2060.
[59]
Subbaraman R , Tripkovic D , Chang K C , Strmcnik D , Paulikas A P , Hirunsit P , Chan M , Greeley J , Stamenkovic V , Markovic N M . Nature Materials, 2012,11(6):550. https://www.ncbi.nlm.nih.gov/pubmed/22561903

doi: 10.1038/nmat3313     URL     pmid: 22561903
[60]
Hu P , Huang Z , Amghouz Z , Makkee M , Xu F , Kapteijn F , Dikhtiarenko A , Chen Y , Gu X , Tang X . Angewandte Chemie International Edition, 2014,53(13):3418. https://www.ncbi.nlm.nih.gov/pubmed/24599751

doi: 10.1002/anie.201309248     URL     pmid: 24599751
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[3] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[4] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[5] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[6] 刘张波, 刘蓓蓓, 夏长荣. 固体氧化物燃料电池的纳米阳极[J]. 化学进展, 2013, 25(11): 1821-1829.
[7] 熊中强,米镇涛,张香文. 非晶态合金催化剂研究[J]. 化学进展, 2005, 17(04): 614-621.
阅读次数
全文


摘要

单原子催化剂合成方法