English
新闻公告
More
化学进展 2018, Vol. 30 Issue (11): 1624-1633 DOI: 10.7536/PC180314 前一篇   后一篇

• 综述 •

电解质在超级电容器中的应用

易锦馨1,2, 霍志鹏1*, Abdullah M. Asiri3, Khalid A. Alamry3, 李家星1,3*   

  1. 1. 中国科学院合肥物质科学研究院等离子体物理研究所 中国科学院光伏与节能材料重点实验室 合肥 230031;
    2. 中国科学技术大学 合肥 230026;
    3. 阿卜杜勒阿齐兹国王大学 自然科学学院 化学系 吉达 21589
  • 收稿日期:2018-03-12 修回日期:2018-05-08 出版日期:2018-11-15 发布日期:2018-08-17
  • 通讯作者: 霍志鹏,e-mail:zhipenghuo@163.com;李家星,e-mail:lijx@ipp.ac.cn E-mail:zhipenghuo@163.com;lijx@ipp.ac.cn
  • 基金资助:
    国家高技术研究发展计划(No.21677146)和安徽省自然科学基金项目(No.1708085MB31)资助

Development and Application of Electrolytes in Supercapacitors

Jinxin Yi1,2, Zhipeng Huo1*, Abdullah M. Asiri3, Khalid A. Alamry3, Jiaxing Li1,3*   

  1. 1. Key Laboratory of Photovolatic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
    2. University of Science and Technology of China, Hefei 230026, China;
    3. Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • Received:2018-03-12 Revised:2018-05-08 Online:2018-11-15 Published:2018-08-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21677146) and the Anhui Provincial Natural Science Foundation (No. 1708085MB31).
超级电容器作为一种新型储能装置,因充放电快、功率密度高和循环寿命长的优异性能而引起了广泛的关注。电解质作为影响超级电容器性能的关键因素之一,其离子类型与尺寸、电化学窗口及电导率等性质对器件的工作电压、能量密度及循环寿命有着重要影响。针对近年来的研究现状,本文概述了超级电容器的储能原理、性能评估的关键参数及电解质在超级电容器中的应用研究进展。介绍了电解质的分类,包括水系电解质、有机电解质、离子液电解质和氧化还原电解质在内的液态电解质,及包括固态聚合物电解质、无机固态电解质及凝胶聚合物电解质在内的固态/准固态电解质。评述各类电解质的最新研发进展,讨论了电解质性质对超级电容器性能的影响,并阐明了超级电容器电解质的设计和优化方法。最后,分析了制备高性能电解质所面临的困难,并就其未来的研究方向作出了展望。
As a new type of energy storage device, supercapacitors have attracted wide attention because of their excellent performance, such as high charge and discharge speed, high power density, and long cycle life. The electrolytes have been considered as one of the most important factors affecting the performance of supercapacitors, whose ionic type and size, ion mobility, ionic conductivity, viscosity, thermal/electrochemical stability and the operating voltage window have the important influence on the working voltage, energy density and cycle life of the device. In view of recent research status of electrolytes, this paper summarizes the charge storage mechanism, key parameters of performance evaluation and the research progress of electrolytes in supercapacitors. The classification of electrolytes is specially presented, including liquid electrolytes which incorporate aqueous, organic, ionic liquid, redox-active electrolytes and solid-state/quasi-solid-state electrolytes which cover inorganic solid-state electrolytes, solid polymer electrolytes, and gel polymer electrolytes. The latest research and development of various electrolytes are reviewed and discussed, and the influences of electrolyte properties on the performance of supercapacitors are discussed in detail. The methods of design and optimization of electrolytes for supercapacitors are emphasized in this paper. The difficulties of producing high-performance electrolytes are pointed out, and the future research directions are put forward to overcome these difficulties without sacrificing existing advantages.
Contents
1 Introduction
2 Electrolytes and their categories
2.1 Liquid electrolytes
2.2 Solid-state/quasi-solid-state electrolytes
3 Conclusion

中图分类号: 

()
[1] Service R F. Science, 2006, 313:902.
[2] Burke A. Electrochim. Acta, 2007, 53:1083.
[3] Frackowiak E. Physical Chemistry Chemical Physics, 2007, 9:1774.
[4] Yu Z, Tetard L, Zhai L, Thomas J. Energy & Environmental Science, 2015, 8:702.
[5] Wei L, Nitta N, Yushin G. ACS Nano, 2013, 7:6498.
[6] Wu X L, Wen T, Guo H L, Yang S, Wang X, Xu A W. ACS Nano, 2013, 7:3589.
[7] Portet C, Yushin G, Gogotsi Y. Carbon, 2007, 45:2511.
[8] Wu Z S, Sun Y, Tan Y Z, Yang S, Feng X, Müllen K. J. Am. Chem. Soc., 2012, 134:19532.
[9] Wang G, Zhang L, Zhang J. Chem. Soc. Rev., 2012, 41:797.
[10] Wang K, Wu H, Meng Y, Wei Z. Small, 2014, 10:14.
[11] 刘海晶(Liu H H), 夏永姚(Xia Y Y). 化学进展(Progress in Chemistry), 2011, 23:595.
[12] Guan C, Liu J, Wang Y, Mao L, Fan Z, Shen Z, Zhang H, Wang J. ACS Nano, 2015, 9:5198.
[13] Lee M, Wee B H, Hong J D. Advanced Energy Materials, 2015, 5:1401890.
[14] Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z. Adv. Mater., 2015, 27:1117.
[15] 李丹(Li D), 林保平(Lin B P), 孙莹(Sun Y), 杨洪(Yang H), 张雪勤(Zhang X Q). 化学进展(Progress in Chemistry), 2015, 27(4):404.
[16] Zhang L L, Zhao X S. Chem. Soc. Rev., 2009, 38:2520.
[17] Jost K, Dion G, Gogotsi Y. J. Mater. Chem. A, 2014, 2:10776.
[18] Galiński M, Lewandowski A, Stepniak I. Electrochim. Acta, 2006, 51:5567.
[19] Fic K, Lota G, Meller M, Frackowiak E. Energy and Environmental Science, 2012, 5:5842.
[20] Lota G, Frackowiak E. Electrochem. Commun., 2009, 11:87.
[21] Fic K, Frackowiak E, Beguin F. J. Mater. Chem., 2012, 22:24213.
[22] Senthilkumar S T, Selvan R K, Lee Y, Melo J S. J. Mater. Chem., 2013, 1:1086.
[23] Ma G, Li J, Sun K, Peng H, Mu J, Lei Z. J. Power Sources, 2014, 256:281.
[24] Chen L, Bai H, Huang Z, Li L. Energy and Environmental Science, 2014, 7:1750.
[25] Roldan S, Granda M, Menendez R, Santamaria R, Blanco C. Electrochim. Acta, 2012, 83:241.
[26] Roldan S, Gonzalez Z, Blanco C, Granda M, Menendez R, Santamaria R. Electrochim. Acta, 2011, 56:3401.
[27] Wu J, Yu H, Fan L, Luo G, Lin J, Huang M. J. Mater. Chem., 2012, 22:19025.
[28] Roldán S, Blanco C, Granda M, Menéndez R, Santamaría R. Angew. Chem. Int. Ed., 2011, 50:1699.
[29] Jiménez-Cordero D, Heras F, Gilarranz M A, Raymundo-Piñero E. Carbon, 2014, 71:127.
[30] Deng L, Wang J, Zhu G, Kang L, Hao Z, Lei Z, Yang Z, Liu Z H. J. Power Sources, 2014, 248:407.
[31] Suárez-Guevara J, Ruiz V, Gomez-Romero P. J. Mater. Chem. A, 2014, 2:1014.
[32] Shinde S S, Gund G S, Dubal D P, Jambure S B, Lokhande C D. Electrochim. Acta, 2014, 119:1.
[33] Wang H, Sun X, Liu Z, Lei Z. Nanoscale, 2014, 6:6577.
[34] Mao B S, Wen Z, Bo Z, Chang J, Huang X, Chen J. ACS Appl. Mater. Interfaces, 2014, 6:9881.
[35] Li L, Peng S, Cheah Y, Teh P, Wang J, Wee G, Ko Y, Wong C, Srinivasan M. Chemistry, 2013, 19:5892.
[36] Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z. Carbon, 2014, 67:119.
[37] Li S, Li Q, Lu L, Wang H. RSC Adv., 2012, 2:3298.
[38] Hui X, Ying S M, Yuan G, Chong C, Li L. Electrochem. Solid-State Lett., 2012, 15:A60.
[39] Burke A, Miller M. J. Power Sources, 2011, 196:514.
[40] Yang C M, Kim Y J, Endo M, Kanoh H, Yudasaka M, Iijima S, Kaneko K. J. Am. Chem. Soc., 2007, 129:20.
[41] Arulepp M, Permann L, Leis J, Perkson A, Rumma K, Jänes A, Lust E. J. Power Sources, 2004, 133:320.
[42] Zheng J P, Jow T R. J.Electrochem.Soc., 1997, 144:2417.
[43] Ue M, Ida K, Mori S. J. Electrochem. Soc., 1994, 141:2989.
[44] Chiba K, Ueda T, Yamaguchi Y, Oki Y, Shimodate F, Naoi K. J. Electrochem. Soc., 2011, 158:A872.
[45] Naoi K. Fuel Cells, 2010, 10:825.
[46] Janes A, Thomberg T, Eskusson J, Lust E. J. Electrochem. Soc., 2013, 160:A1025.
[47] Tian S, Li Q, Yoshio M, Wang H. J. Power Sources, 2014, 256:404.
[48] Makoto U E. Electrochemistry, 2007, 75:565.
[49] Yu X, Ruan D, Wu C, Jing W, Shi Z. J. Power Sources, 2014, 265:309.
[50] Laheäär A, Kurig H, Jänes A, Lust E. Electrochim. Acta, 2009, 54:4587.
[51] Väli R, Laheäär A, Jänes A, Lust E. Electrochim. Acta, 2014, 121:294.
[52] Chandrasekaran R, Koh M, Yamauchi A, Ishikawa M. J. Power Sources, 2010, 195:662.
[53] Ebina T, Uno H, Ishizawa S, Nanbu N, Sasaki Y. Chem. Lett., 2005, 34:1014.
[54] Jiang D E, Wu J. Journal of Physical Chemistry Letters, 2013, 4:1260.
[55] Tanaka A, Iiyama T, Ohba T, Ozeki S, Urita K, Fujimori T, Kanoh H, Kaneko K. J. Am. Chem. Soc., 2010, 132:2112.
[56] Yang L, Fishbine B H, Migliori A, Pratt L R. J. Am. Chem. Soc., 2009, 131:12373.
[57] Zhang Q, Rong J, Ma D, Wei B. Energy and Environmental Science, 2011, 4:2152.
[58] McDonough J K, Frolov A I, Presser V, Niu J, Miller C H, Ubieto T, Fedorov M V, Gogotsi Y. Carbon, 2012, 50:3298.
[59] Brandt A, Pohlmann S, Varzi A, Balducci A, Passerini S. Mrs Bulletin/Materials Research Society, 2013, 38:554.
[60] Rogers R D. Acc. Chem. Res., 2007, 40:1077.
[61] Armand M, Endres F, Macfarlane D R, Ohno H, Scrosati B. Nature Materials, 2009, 8:621.
[62] Xia X, Zhan J, Zhong Y, Wang X, Tu J, Fan H J. Small, 2017, 13:1602742.
[63] Wang J, Tang J, Ding B, Malgras V, Chang Z, Hao X, Wang Y, Dou H, Zhang X, Yamauchi Y. Nature Communications, 2017, 8:15717.
[64] Shen B, Xu Z, Guo R, Lang J, Chen J, Yan X. J. Mater. Chem. A, 2016, 4:8180.
[65] Balducci A, Henderson W A, Mastragostino M, Passerini S, Simon P, Soavi F. Electrochim. Acta, 2005, 50:2233.
[66] Lin R, Taberna P, Fantini S, Presser V, Perez C R, Malbosc F, Rupesinghe N L, Teo K B K, Gogotsi Y, Simon P. Journal of Physical Chemistry Letters, 2011, 2:2396.
[67] Fu Y, Cai X, Wu H, Lv Z, Hou S, Peng M, Yu X, Zou D. Adv. Mater., 2012, 24:5713.
[68] Jost K, Stenger D, Perez C R, McDonough J K, Lian K, Gogotsi Y, Dion G. Energy and Environmental Science, 2013, 6:2698.
[69] Liu L, Shen B, Jiang D, Guo R, Kong L, Yan X. Advanced Energy Materials, 2016, 6:1600763.
[70] Lu X, Yu M, Wang G, Tong Y, Li Y. Energy and Environmental Science, 2014, 7:2160.
[71] Peng X, Liu H, Yin Q, Wu J, Chen P, Zhang G, Liu G, Wu C, Xie Y. Nature Communications, 2016, 7:11782.
[72] Kim D, Lee G, Kim D, Yun J, Lee S S, Ha J S. Nanoscale, 2016, 8:15611.
[73] Niu Z, Dong H, Zhu B, Li J, Hng H H, Zhou W, Chen X, Xie S. Adv. Mater., 2013, 25:1058.
[74] Sivaraman P, Thakur A, Kushwaha R K, Ratna D, Samui A B. Electrochemical and Solid State Letters, 2006, 9:A435.
[75] Meng C, Liu C, Chen L, Hu C, Fan S. Nano Lett., 2010, 10:4025.
[76] Yu H, Wu J, Fan L, Lin Y, Xu K, Tang Z, Cheng C, Tang S, Lin J, Huang M. J. Power Sources, 2012, 198:402.
[77] Lee Y S, Ju S H, Kim J H, Hwang S S, Choi J M, Sun Y K, Kim H, Scrosati B, Kim D W. Electrochem. Commun., 2012, 17:18.
[78] Duay J, Gillette E, Liu R, Lee S B. Physical Chemistry Chemical Physics, 2012, 14:3329.
[79] Wang K, Zhang X, Li C, Sun X, Meng Q, Ma Y, Wei Z. Adv. Mater., 2015, 27:7451.
[80] Ramasamy C, Palma J, Anderson M. J. Solid State Electrochem., 2014, 18:2903.
[81] Yuksel R, Sarioba Z, Cirpan A, Hiralal P, Unalan H E. ACS Appl. Mater. Interfaces, 2014, 6:15434.
[82] Huang C W, Wu C A, Hou S S, Kuo P L, Hsieh C T, Teng H. Adv. Funct. Mater., 2012, 22:4677.
[83] Dicarmine P M, Schon T B, McCormick T M, Klein P P, Seferos D S. Journal of Physical Chemistry C, 2014, 118:8295.
[84] Ketabi S, Lian K. Electrochim. Acta, 2013, 103:174.
[85] Pandey G P, Hashmi S A. J. Mater. Chem. A, 2013, 1:3372.
[86] Pandey G P, Hashmi S A. J. Power Sources, 2013, 243:211.
[87] Liu X, Wen Z, Wu D, Wang H, Yang J, Wang Q. J. Mater. Chem. A, 2014, 2:11569.
[88] Zhi J, Reiser O, Wang Y, Hu A. Nanoscale, 2016, 8:11976.
[89] Ma G, Dong M, Sun K, Feng E, Peng H, Lei Z. J. Mater. Chem. A, 2015, 3:4035.
[90] Angell C A, Liu C, Sanchez E. Nature, 1993, 362:137.
[91] Fenton D E, Parker J M, Wright P V. Polymer, 1973, 14:589.
[92] Tanaka R, Sakurai M, Sekiguchi H, Mori H, Murayama T, Ooyama T. Electrochim. Acta, 2001, 46:1709.
[93] Yang X Y, Chen L H, Li Y, Rooke J C, Sanchez C, Su B L. Chem. Soc. Rev., 2017, 46:481.
[94] 崔孟忠(Cui M Z), 李竹云(Li Z Y), 张洁(Zhang J), 冯圣玉(Feng S Y). 化学进展(Progress in Chemistry), 2008, 17(12):1987.
[95] 骆蓉(Luo R), 聂进(Nie J). 功能高分子学报(Journal of Function Polymer), 2004, 17(1):151.
[96] Armand M B. Fast Ion Transport in Solids. Amsterdam:North Houand, 1979. 131.
[97] Vallée A, Besner S, Prud' Homme J. Electrochim. Acta, 1992, 37:1579.
[98] Allcock H R. Soft Matter, 2012, 8:7521.
[99] Verma M L, Minakshi M, Singh N K. Electrochim. Acta, 2014, 137:497.
[100] Fonseca C P, Cezare T T, Neves S. J. Power Sources, 2002, 112:395.
[101] Francisco B E, Jones C, Lee S, Stoldt C R. Appl. Phys. Lett., 2012, 100:103902.
[102] Ulihin A S, Mateyshina Y G, Uvarov N F. Solid State Ionics, 2013, 251:62.
[103] Zhang Q, Scrafford K, Li M, Cao Z, Xia Z, Ajayan P M, Wei B. Nano Lett., 2014, 14:1938.
[104] 陈龙(Chen L), 池上森(Chi S S), 董源(Deng Y), 李丹(Li D), 张博晨(Zhang B C), 范丽珍(Fan L Z). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2018, 46(1), doi:10.14062/j.issn.0454-5648.2018.01.03.
[105] 刘丽露(Liu L L), 戚兴国(Qi X G), 邵元骏(Shao Y J), 潘都(Pan D), 白莹(Bai Y), 胡勇胜(Hu S Y), 李泓(Li H), 陈立泉(Chen L Q). 储能科学与技术(Energy Storage Science and Technology), 2017, 6(5):961.
[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[8] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[9] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[10] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[11] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[12] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[13] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[14] 严壮, 刘雅玲, 唐智勇. 二维导电金属有机骨架材料[J]. 化学进展, 2021, 33(1): 25-41.
[15] 李栋, 郑育英, 南皓雄, 方岩雄, 刘全兵, 张强. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014.
阅读次数
全文


摘要

电解质在超级电容器中的应用