English
新闻公告
More
化学进展 2021, Vol. 33 Issue (1): 25-41 DOI: 10.7536/PC201059 前一篇   后一篇

• 特邀评论 •

二维导电金属有机骨架材料

严壮1,2, 刘雅玲1,2,*(), 唐智勇1,2,*()   

  1. 1 国家纳米科学中心 中国科学院纳米系统与多级次制造重点实验室 中国科学院纳米科学卓越创新中心 北京 100190
    2 中国科学院大学纳米科学与技术学院 北京 100049
  • 收稿日期:2020-10-30 修回日期:2020-12-07 出版日期:2021-01-24 发布日期:2020-12-11
  • 通讯作者: 刘雅玲, 唐智勇
  • 作者简介:
    * Corresponding author e-mail: (Yaling Liu);zytang@nanoctr.cn(Zhiyong Tang)
  • 基金资助:
    中国科学院战略性先导科技专项(XDB36000000); ,国家重点研发计划(2016YFA0200700); ,国家自然科学基金项目(92056204); ,国家自然科学基金项目(22073021); ,国家自然科学基金项目(21890381); ,国家自然科学基金项目(21721002); ,国家自然科学基金项目(21722301); 中国科学院前沿重点研究计划(QYZDJ-SSW-SLH038)

Two Dimensional Electrically Conductive Metal-Organic Frameworks

Zhuang Yan1,2, Yaling Liu1,2,*(), Zhiyong Tang1,2,*()   

  1. 1 CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology,Beijing 100190, China
    2 School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-10-30 Revised:2020-12-07 Online:2021-01-24 Published:2020-12-11
  • Contact: Yaling Liu, Zhiyong Tang
  • Supported by:
    the Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000); the National Key Basic Research Program of China(2016YFA0200700); the National Natural Science Foundation of China(92056204); the National Natural Science Foundation of China(22073021); the National Natural Science Foundation of China(21890381); the National Natural Science Foundation of China(21721002); the National Natural Science Foundation of China(21722301); and the Frontier Science Key Project of Chinese Academy of Sciences(QYZDJ-SSW-SLH038)

金属有机骨架(MOFs)是由金属离子或簇与有机配体以配位键组装而成的晶态多孔材料,其高的孔隙率及功能可设计性使其广泛应用于各种领域。然而,传统MOFs多数电导率非常低,这严重制约了其在电学相关领域的发展。近年来,导电金属有机骨架尤其是二维导电金属有机骨架(2D ECMOFs)材料因其结构中独特的π-π堆积及π-d共轭作用而呈现出半导体甚至类金属的电子输运性质而受到广泛关注,已在传感器、电子器件、电催化、电池和超级电容器等电学和能源相关领域展现出潜在的应用价值。本文将从2D ECMOFs的导电机理、结构、合成方法及应用等方面对近几年该领域的重要进展进行综述,并对其未来发展的挑战和机遇提出展望。

Metal-organic frameworks(MOFs) are a class of crystalline porous materials formed by self-assembly of metal ions or clusters and organic ligands through coordination bonds. Due to the high porosity and functional designability, MOFs have found wide applications of which make them widely used in various fields. However, most traditional MOFs have poor conductivity, which severely restricts their development in electrical related fields. In recent years, electrically conductive MOFs, especially two dimensional electrically conductive MOFs(2D ECMOFs), have attracted a great deal of research attention due to their semiconducting or metallic properties closely-related to their unique π-π stacking and π-d conjugation structures, which have great application potentials in electrical and energy related fields such as sensors, electronics, electrocatalysts, batteries, and supercapacitors. In this review, the recent progress in conducting mechanisms, structures, synthesis strategies and applications of 2D ECMOFs are summarized and highlighted. Furthermore, future challenges and opportunities based on the current research status are prospected.

Contents

1 Introduction

2 Mechanisms of conduction of 2D ECMOFs

2.1 Physical mechanism

2.2 Chemical mechanism

3 Structures of 2D ECMOFs

3.1 Symmetric structure

3.2 Asymmetric structure

4 Synthesis strategies of 2D ECMOFs

4.1 Single phase method

4.2 Interface-assisted method

4.3 Other methods

5 Applications of 2D ECMOFs

5.1 Sensors

5.2 Energy storage

5.3 Energy conversion

5.4 Electronics

6 Conclusion and outlook

()
图1 带状输运和跳跃输运机制示意图
Fig. 1 Band-like and hopping transport modes
图2 通过空间和通过价键电荷转移示意图
Fig. 2 Through-space and through-bond transport
图3 Cu3(THQ)2 (左),Cu3(HHTP)2 (中)和Cu3(HHTP)(THQ) (右)的六方结构和性质[29]
Fig. 3 Hexagonal structure and properties of Cu3(THQ)2(left), Cu3(HHTP)2(middle) and Cu3(HHTP)(THQ)(right)[29]. Copyright 2020, 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图4 几类具有不同对称性的代表性2D ECMOFs配体的分子结构示意图
Fig. 4 Molecular structures of several representative 2D ECMOFs ligands with diverse symmetry
图5 不同对称性配体构成的2D ECMOFs 结构简图
Fig. 5 Schematic illustration of several 2D ECMOFs with diverse symmetry
图6 Ni3(HITP)2的合成示意图[19]
Fig. 6 Synthesis of Ni3(HITP2[19]. Copyright 2014, American Chemistry Society
图7 (a)蒸气诱导合成Ni3(HITP)2薄膜示意图;(b)厘米级膜生长过程电子显微镜照片(标尺100 nm);(c~e)最薄膜、厚膜和最厚膜的光学照片[62]
Fig. 7 (a) Schematic representation of the vapor-induced formation of Ni3(HITP)2 films;(b) SEM images of centimeter-scale film during the process of growth(scale bars: 100 nm); Optical images of(c) the thinnest film,(d) the thicker film, and(e) the thickest film[62]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图8 单层Ni-BHT膜的合成与表征: (a)合成示意图;(b)在高取向热解石墨(HOPG)上的原子力显微镜(AFM)相位图及截面分析,亮区对应于Ni-BHT;(c)单层Ni-BHT的AFM结构图及截面分析,扫描范围为(b)中白色方框[17]
Fig. 8 Synthesis and characterization of single-layer Ni-BHT. (a) Schematic illustration of the synthesis process;(b) AFM phase image on HOPG and its cross-sectional analysis. The bright areas correspond to Ni-BHT;(c) AFM topological image of single-layer Ni-BHT and its cross-sectional analysis. The white square in(b) corresponds to the scan area[17]. Copyright 2013, American Chemical Society
图9 (a)Cu3(HHTP)2晶体结构示意图;(b)通过喷涂法以LBL方式外延生长Cu3(HHTP)2薄膜示意图[64]
Fig. 9 Illustration of (a) the crystal structure of Cu3(HHTP)2 and(b) the preparation of Cu3(HHTP)2 thin-film in a LBL fashion by a spray method[64]. Copyright 2017, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图10 基于Cu3(HHTP)2、Cu3(HITP)2和Ni3(HITP)2三种2D ECMOFs构建的气体传感阵列对不同种类代表性VOCs的传感性能对比,其中ΔG/G0是暴露在200 ppm VOCs气体中30 s的相对响应;每种响应为12次测试平均结果(针对每种ECMOF的3个独立器件进行4次测试),标准差由误差棒表示[33]
Fig. 10 Sensing responses of the 2D ECMOF array based on Cu3(HHTP)2, Cu3(HITP)2 and Ni3(HITP)2 to representative examples from different categories of VOCs, where ΔG/G0 is the relative response(change in conductance) upon a 30 s exposure to 200 ppm of the VOC vapor; each response is averaged from 12 measurements(4 exposures to 3 separate devices for each ECMOF); error bars show one standard deviation[33]. Copyright 2015, American Chemical Society
图11 界面诱导生长Ni3(HITP)2修饰分离膜在锂硫电池中应用示意图[81]
Fig. 11 Schematic illustration of the interface-induced growth of the conductive Ni3(HITP)2 modified separator for the application in Li-S batteries[81]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图12 (a)在50 mA·g-1下2D Cu-THQ MOF电极恒流充放电曲线,I-VI标记的六个区域对应(b)图中2D Cu-THQ MOF的各种充放电过程;(b)充放电过程中2D Cu-THQ MOF重复配位单元电子态的演变,蓝色和灰色圆圈分别表示Li和O之间的结合位点以及Cu的价态变化[88]
Fig. 12 (a) Galvanostatic charge/discharge curves of 2D Cu-THQ MOF electrode at 50 mA·g-1. The six areas marked by I-VI represent the various charge/discharge processes of 2D Cu-THQ MOF marked in(b);(b) The evolution of electronic states of the repeating coordination unit of 2D Cu-THQ MOF during the charge/discharge process. The binding sites between Li and O, and variation of valence states of Cu, are indicated by blue and gray circles[88]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图13 (a)基于Cu-BHT的FET示意图;(b)底栅底接触FETs光学照片;(c,d)输出曲线;(e,f)转移曲线[5]
Fig. 13 (a) Illustrative schematic of Cu-BHT-based field-effect transistors;(b) Photograph of bottom-gate bottom-contact FETs based on the Cu-BHT film;(c, d) Output and(e, f) transfer characteristics of Cu-BHT-based FETs[5]. Copyright 2015, Springer Nature
图14 (a)基于2D ECMOF的垂直有机自旋阀器件(OSVs);(b)垂直OSV截面电子显微镜照片,包含50 nm LSMO、100 nm Cu3(HHTP)2、50 nm Co电极及50 nm Au;(c~e)10 K下LSMO/Cu3(HHTP)2(100 nm)/Co OSVs的磁滞回线、磁阻回线及磁阻温度依赖性曲线[106]
Fig. 14 (a) Diagram of the 2D ECMOF-based vertical OSVs;(b) SEM image of the cross-section of the vertical OSV consisting of LSMO(50 nm), Cu3(HHTP)2 spacer(100 nm), Co electrode(50 nm), and Au(50 nm);(c) Magnetic hysteresis loops and(d) the magnetoresistance loop for the LSMO/Cu3(HHTP)2(100 nm)/Co OSVs at 10 K;(e) Temperature dependence of the magnetoresistance value[106]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
[1]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science , 2013, 341: 1230444.

doi: 10.1126/science.1230444     URL    
[2]
Hendon C H, Tiana D, Walsh A. Phys. Chem. Chem. Phys., 2012, 14: 13120.

doi: 10.1039/c2cp41099k     URL    
[3]
Sun L, Campbell M G, Dincă M. Angew. Chem. Int. Ed. , 2016, 55: 3566.

doi: 10.1002/anie.201506219     URL    
[4]
Talin A A, Centrone A, Ford A C, Foster M E, Stavila V, Haney P, Kinney R A, Szalai V, El Gabaly F, Yoon H P, Leonard F, Allendorf M D. Science , 2014, 343: 66.

doi: 10.1126/science.1246738     URL    
[5]
Huang X, Sheng P, Tu Z, Zhang F, Wang J, Geng H, Zou Y, Di C A, Yi Y, Sun Y, Xu W, Zhu D. Nat. Commun., 2015, 6: 7408.

doi: 10.1038/ncomms8408     URL    
[6]
Huang X, Zhang S, Liu L, Yu L, Chen G, Xu W, Zhu D. Angew. Chem. Int. Ed., 2018, 57: 146.

doi: 10.1002/anie.201707568     URL    
[7]
Campbell M G, Dincă M. Sensors, 2017, 17: 1108.

doi: 10.3390/s17051108     URL    
[8]
Koo W T, Jang J S, Kim I D. Chem , 2019, 5: 1938.

doi: 10.1016/j.chempr.2019.04.013     URL    
[9]
Liu J, Song X, Zhang T, Liu S, Wen H, Chen L. Angew. Chem. Int. Ed., 2020.

doi: https://doi.org/10.1002/anie.202006102    
[10]
Yu M, Dong R, Feng X. J. Am. Chem. Soc., 2020, 142: 12903.

doi: 10.1021/jacs.0c05130     URL    
[11]
Li Z H , Tan M J , Zheng Y H , Luo Y Y , Jing Q S , Jiang J K , Li M J. J. Inorg. Mater. , 2020, 35( 7): 769.
李泽晖, 谭美娟, 郑元昊, 骆雨阳, 经求是, 蒋靖坤, 李明杰. 无机材料学报, 2020, 35( 7): 769.
[12]
Song X, Liu J, Zhang T, Chen L. Sci. China Chem., 2020, 63: 1391.

doi: 10.1007/s11426-020-9791-2     URL    
[13]
Coropceanu V, Cornil J, da Silva Filho D A, Olivier Y, Silbey R, Bredas J L. Chem. Rev., 2007, 107: 926.

doi: 10.1021/cr050140x     URL    
[14]
Mott N F, Davis E A. Electronic Processes in Non-Crystalline materials. Oxford University Press , 2012.
[15]
Hofmann P. Solid State Physics : An Introduction . John Wiley & Sons , 2015.
[16]
Sakanoue T, Sirringhaus H. Nat. Mater., 2010, 9: 736.

doi: 10.1038/nmat2825     URL    
[17]
Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu J H, Sasaki S, Kim J, Nakazato K, Takata M, Nishihara H. J. Am. Chem. Soc., 2013, 135: 2462.

doi: 10.1021/ja312380b     URL    
[18]
Kambe T, Sakamoto R, Kusamoto T, Pal T, Fukui N, Hoshiko K, Shimojima T, Wang Z, Hirahara T, Ishizaka K, Hasegawa S, Liu F, Nishihara H. J. Am. Chem. Soc., 2014, 136: 14357.

doi: 10.1021/ja507619d    
[19]
Sheberla D, Sun L, Blood-Forsythe M A, Er S, Wade C R, Brozek C K, Aspuru-Guzik A, Dincă M. J. Am. Chem. Soc., 2014, 136: 8859.

doi: 10.1021/ja502765n    
[20]
Clough A J, Skelton J M, Downes C A, de la Rosa A A, Yoo J W, Walsh A, Melot B C, Marinescu S C. J. Am. Chem. Soc., 2017, 139: 10863.

doi: 10.1021/jacs.7b05742     URL    
[21]
Dou J H, Sun L, Ge Y, Li W, Hendon C H, Li J, Gul S, Yano J, Stach E A, Dincă M. J. Am. Chem. Soc., 2017, 139: 13608.

doi: 10.1021/jacs.7b07234     URL    
[22]
Dong R, Han P, Arora H, Ballabio M, Karakus M, Zhang Z, Shekhar C, Adler P, Petkov P S, Erbe A, Mannsfeld S C B, Felser C, Heine T, Bonn M, Feng X, Cánovas E. Nat. Mater., 2018, 17: 1027.

doi: 10.1038/s41563-018-0189-z     URL    
[23]
Clough A J, Orchanian N M, Skelton J M, Neer A J, Howard S A, Downes C A, Piper L F J, Walsh A, Melot B C, Marinescu S C. J. Am. Chem. Soc., 2019, 141: 16323.

doi: 10.1021/jacs.9b06898     URL    
[24]
Day R W, Bediako D K, Rezaee M, Parent L R, Skorupskii G, Arguilla M Q, Hendon C H, Stassen I, Gianneschi N C, Kim P, Dincă M. ACS Cent. Sci., 2019, 5: 1959.

doi: 10.1021/acscentsci.9b01006     URL    
[25]
Foster M E, Sohlberg K, Allendorf M D, Talin A A. J. Phys. Chem. Lett., 2018, 9: 481.

doi: 10.1246/cl.1980.481     URL    
[26]
Hmadeh M, Lu Z, Liu Z, Gándara F, Furukawa H, Wan S, Augustyn V, Chang R, Liao L, Zhou F, Perre E, Ozolins V, Suenaga K, Duan X, Dunn B, Yamamto Y, Terasaki O, Yaghi O M. Chem. Mater. , 2012, 24: 3511.

doi: 10.1021/cm301194a     URL    
[27]
Park J, Hinckley A C, Huang Z, Feng D, Yakovenko A A, Lee M, Chen S, Zou X, Bao Z. J. Am. Chem. Soc., 2018, 140: 14533.

doi: 10.1021/jacs.8b06666     URL    
[28]
Meng Z, Mirica K A. Nano Res., 2021, 14: 369.

doi: 10.1007/s12274-020-2874-x     URL    
[29]
Yao M S, Zheng J J, Wu A Q, Xu G, Nagarkar S S, Zhang G, Tsujimoto M, Sakaki S, Horike S, Otake K, Kitagawa S. Angew. Chem. Int. Ed., 2020, 59: 172.

doi: 10.1002/anie.v59.1     URL    
[30]
Shinde S S, Lee C H, Jung J Y, Wagh N K, Kim S H, Kim D H, Lin C, Lee S U, Lee J H. Energ. Environ. Sci. , 2019, 12: 727.

doi: 10.1039/C8EE02679C     URL    
[31]
Chen T, Dou J H, Yang L, Sun C, Libretto N J, Skorupskii G, Miller J T, Dincă M. J. Am. Chem. Soc. , 2020, 142: 12367.

doi: 10.1021/jacs.0c04458     URL    
[32]
Skorupskii G, Trump B A, Kasel T W, Brown C M, Hendon C H, Dincă M. Nat. Chem., 2020, 12: 131.

doi: 10.1038/s41557-019-0372-0     URL    
[33]
Campbell M G, Liu S F, Swager T M, Dincă M. J. Am. Chem. Soc. , 2015, 137: 13780.

doi: 10.1021/jacs.5b09600     URL    
[34]
Li W H, Ding K, Tian H R, Yao M S, Nath B, Deng W H, Wang Y, Xu G. Adv. Funct. Mater. , 2017, 27: 1702067.

doi: 10.1002/adfm.v27.27     URL    
[35]
Clough A J, Yoo J W, Mecklenburg M H, Marinescu S C. J. Am. Chem. Soc. , 2015, 137: 118.

doi: 10.1021/ja5116937     URL    
[36]
Dong R, Pfeffermann M, Liang H, Zheng Z, Zhu X, Zhang J, Feng X. Angew. Chem. Int. Ed. , 2015, 54: 12058.

doi: 10.1002/anie.201506048     URL    
[37]
Campbell M G, Sheberla D, Liu S F, Swager T M, Dincă M. Angew. Chem. Int. Ed., 2015, 54: 4349.

doi: 10.1002/anie.201411854     URL    
[38]
Lian Y, Yang W, Zhang C, Sun H, Deng Z, Xu W, Song L, Ouyang Z, Wang Z, Guo J, Peng Y. Angew. Chem. Int. Ed., 2020, 59: 286.

doi: 10.1002/anie.v59.1     URL    
[39]
Sun X, Wu K H, Sakamoto R, Kusamoto T, Maeda H, Nishihara H. Chem. Lett., 2017, 46: 1072.

doi: 10.1246/cl.170382     URL    
[40]
Cui Y, Yan J, Chen Z, Xing W, Ye C, Li X, Zou Y, Sun Y, Liu C, Xu W, Zhu D. iScience , 2020, 23: 100812.

doi: 10.1016/j.isci.2019.100812     URL    
[41]
Wang Z, Wang G, Qi H, Wang M, Wang M, Park S, Wang H, Yu M, Kaiser U, Fery A, Zhou S, Dong R, Feng X. Chem. Sci., 2020, 11: 7665.

doi: 10.1039/D0SC01408G     URL    
[42]
Feng D, Lei T, Lukatskaya M R, Park J, Huang Z, Lee M, Shaw L, Chen S, Yakovenko A A, Kulkarni A, Xiao J, Fredrickson K, Tok J B, Zou X, Cui Y, Bao Z. Nat. Energy , 2018, 3: 30.

doi: 10.1038/s41560-017-0044-5     URL    
[43]
Park J, Lee M, Feng D, Huang Z, Hinckley A C, Yakovenko A, Zou X, Cui Y, Bao Z. J. Am. Chem. Soc., 2018, 140: 10315.

doi: 10.1021/jacs.8b06020     URL    
[44]
Cui Y, Yan J, Chen Z, Zhang J, Zou Y, Sun Y, Xu W, Zhu D. Adv. Sci. , 2019, 6: 1802235.

doi: 10.1002/advs.v6.9     URL    
[45]
Bi S, Banda H, Chen M, Niu L, Chen M, Wu T, Wang J, Wang R, Feng J, Chen T, Dincă M., Kornyshev A A, Feng G. Nat. Mater., 2020, 19: 552.

doi: 10.1038/s41563-019-0598-7     URL    
[46]
Dong R, Zhang Z, Tranca D C, Zhou S, Wang M, Adler P, Liao Z, Liu F, Sun Y, Shi W, Zhang Z, Zschech E, Mannsfeld S C B, Felser C, Feng X. Nat. Commun., 2018, 9: 2637.

doi: 10.1038/s41467-018-05141-4     URL    
[47]
Jia H, Yao Y, Zhao J, Gao Y, Luo Z, Du P. J. Mater. Chem. A , 2018, 6: 1188.

doi: 10.1039/C7TA07978H     URL    
[48]
Liu J, Zhou Y, Xie Z, Li Y, Liu Y, Sun J, Ma Y, Terasaki O, Chen L. Angew. Chem. Int. Ed., 2020, 59: 1081.

doi: 10.1002/anie.v59.3     URL    
[49]
Wu A Q, Wang W Q, Zhan H B, Cao L A, Ye X L, Zheng J J, Kumar P N, Chiranjeevulu K, Deng W H, Wang G E, Yao M S, Xu G. Nano Res., 2021, 14: 438.

doi: 10.1007/s12274-020-2823-8     URL    
[50]
Yoon H, Lee S, Oh S, Park H, Choi S, Oh M. Small , 2019, 15: 1805232.

doi: 10.1002/smll.v15.17     URL    
[51]
Zhong H, Ghorbani-Asl M, Ly K H, Zhang J, Ge J, Wang M, Liao Z, Makarov D, Zschech E, Brunner E, Weidinger I M, Zhang J, Krasheninnikov A V, Kaskel S, Dong R, Feng X. Nat. Commun., 2020, 11: 1409.

doi: 10.1038/s41467-020-15141-y     URL    
[52]
Hou R, Miao M, Wang Q, Yue T, Liu H, Park H S, Qi K, Xia B Y. Adv. Energy Mater., 2019, 10: 1901892.

doi: 10.1002/aenm.v10.1     URL    
[53]
Hoppe B, Hindricks K D J, Warwas D P, Schulze H A, Mohmeyer A, Pinkvos T J, Zailskas S, Krey M R, Belke C, König S, Fröba M, Haug R J, Behrens P. CrystEngComm , 2018, 20: 6458.

doi: 10.1039/C8CE01264D     URL    
[54]
Xing D, Wang Y, Zhou P, Liu Y, Wang Z, Wang P, Zheng Z, Cheng H, Dai Y, Huang B. Appl. Catal. B-Environ., 2020, 278: 119295.

doi: 10.1016/j.apcatb.2020.119295     URL    
[55]
Dong R, Zhang T, Feng X. Chem. Rev., 2018, 118: 6189.

doi: 10.1021/acs.chemrev.8b00056     URL    
[56]
Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Chem. Soc. Rev., 2018, 47: 6267.

doi: 10.1039/C8CS00268A     URL    
[57]
Li Y Z, Fu Z H, Xu G. Coord. Chem. Rev. , 2019, 388: 79.

doi: 10.1016/j.ccr.2019.02.033     URL    
[58]
Wang L, Sahabudeen H, Zhang T, Dong R. NPG 2 D Mater. Appl., 2018, 2: 26.
[59]
Maeda H, Sakamoto R, Nishihara H. Langmuir , 2016, 32: 2527.

doi: 10.1021/acs.langmuir.6b00156     URL    
[60]
Allendorf M D, Dong R, Feng X, Kaskel S, Matoga D, Stavila V. Chem. Rev., 2020, 120: 8581.

doi: 10.1021/acs.chemrev.0c00033     URL    
[61]
Wu G, Huang J, Zang Y, He J, Xu G. J. Am. Chem. Soc., 2017, 139: 1360.

doi: 10.1021/jacs.6b08511     URL    
[62]
Yuan K, Song T, Zhu X, Li B, Han B, Zheng L, Li J, Zhang X, Hu W. Small , 2019, 15: 1804845.

doi: 10.1002/smll.v15.12     URL    
[63]
Rubio-Gimenez V, Galbiati M, Castells-Gil J, Almora-Barrios N, Navarro-Sanchez J, Escorcia-Ariza G, Mattera M, Arnold T, Rawle J, Tatay S, Coronado E, Marti-Gastaldo C. Adv. Mater., 2018, 30: 1704291.
[64]
Yao M S, Lv X J, Fu Z H, Li W H, Deng W H, Wu G D, Xu G. Angew. Chem. Int. Ed., 2017, 56: 16510.
[65]
Dong L, Gao Z A, Lin N. Prog. Surf. Sci., 2016, 91: 101.
[66]
Gao Z, Hsu C H, Liu J, Chuang F C, Zhang R, Xia B, Xu H, Huang L, Jin Q, Liu P N, Lin N. Nanoscale , 2019, 11: 878.
[67]
Zhang R, Liu J, Gao Y, Hua M, Xia B, Knecht P, Papageorgiou A C, Reichert J, Barth J V, Xu H, Huang L, Lin N. Angew. Chem. Int. Ed. , 2020, 59: 2669.
[68]
Du X, Zhang J, Wang H, Huang Z, Guo A, Zhao L, Niu Y, Li X, Wu B, Liu Y. Mater. Chem. Front., 2020, 4: 243.
[69]
Wang M, Shi H, Zhang P, Liao Z, Wang M, Zhong H, Schwotzer F, Nia A S, Zschech E, Zhou S, Kaskel S, Dong R, Feng X. Adv. Funct. Mater., 2020, 30: 2002664.
[70]
Liu X, Zhuo M, Zhang W, Gao M, Liu X H, Sun B, Wu J. Ultrason. Sonochem., 2020, 67: 105179.
[71]
Rubio-Gimenez V, Almora-Barrios N, Escorcia-Ariza G, Galbiati M, Sessolo M, Tatay S, Martí-Gastaldo C. Angew. Chem. Int. Ed., 2018, 57: 15086.
[72]
Stassen I, Dou J H, Hendon C, Dincă M. ACS Cent. Sci., 2019, 5: 1425.
[73]
Koo W T, Kim S J, Jang J S, Kim D H, Kim I D. Adv. Sci. , 2019, 6: 1900250.
[74]
Yao M S, Xiu J W, Huang Q Q, Li W H, Wu W W, Wu A Q, Cao L A, Deng W H, Wang G E, Xu G. Angew. Chem. Int. Ed., 2019, 58: 14915.

doi: 10.1002/anie.v58.42     URL    
[75]
Mendecki L, Mirica K A. ACS Appl. Mater. Inter., 2018, 10: 19248.

doi: 10.1021/acsami.8b03956     URL    
[76]
Wu F, Fang W, Yang X, Xu J, Xia J, Wang Z. J. Chin. Chem. Soc-TAIP., 2018, 66: 522.
[77]
Cao L A, Yao M S, Jiang H J, Kitagawa S, Ye X L, Li W H, Xu G. J. Mater. Chem. A , 2020, 8: 9085.

doi: 10.1039/D0TA01379J     URL    
[78]
Sheberla D, Bachman J C, Elias J S, Sun C J, Shao-Horn Y, Dincă M. Nat. Mater. , 2017, 16: 220.

doi: 10.1038/nmat4766     URL    
[79]
Li Y, Li Q, Zhao S, Chen C, Zhou J, Tao K, Han L. ChemistrySelect , 2018, 3: 13596.

doi: 10.1002/slct.201803150     URL    
[80]
Li Y L, Zhou J J, Wu M K, Chen C, Tao K, Yi F Y, Han L. Inorg. Chem., 2018, 57: 6202.

doi: 10.1021/acs.inorgchem.8b00493     URL    
[81]
Zang Y, Pei F, Huang J, Fu Z, Xu G, Fang X. Adv. Energy Mater., 2018, 8: 1802052.

doi: 10.1002/aenm.v8.31     URL    
[82]
Cai D, Lu M, Li, Cao J, Chen D, Tu H, Li J, Han W. Small , 2019, 15: 1902605.

doi: 10.1002/smll.v15.44     URL    
[83]
Gu S, Bai Z, Majumder S, Huang B, Chen G. J. Power Sources , 2019, 429: 22.

doi: 10.1016/j.jpowsour.2019.04.087     URL    
[84]
Guo L, Sun J, Sun X, Zhang J, Hou L, Yuan C. Nanoscale Adv. , 2019, 1: 4688.

doi: 10.1039/C9NA00616H     URL    
[85]
Sun J, Guo L, Sun X, Zhang J, Liu Y, Hou L, Yuan C. J. Mater. Chem. A , 2019, 7: 24788.

doi: 10.1039/C9TA08788E     URL    
[86]
Wu Z, Adekoya D, Huang X, Kiefel M J, Xie J, Xu W, Zhang Q, Zhu D, Zhang S. ACS Nano , 2020, 14: 12016.

doi: 10.1021/acsnano.0c05200     URL    
[87]
Wada K, Sakaushi K, Sasaki S, Nishihara H. Angew. Chem. Int. Ed., 2018, 57: 8886.

doi: 10.1002/anie.201802521     URL    
[88]
Jiang Q, Xiong P, Liu J, Xie Z, Wang Q, Yang X Q, Hu E, Cao Y, Sun J, Xu Y, Chen L. Angew. Chem. Int. Ed., 2020, 59: 5273.

doi: 10.1002/anie.v59.13     URL    
[89]
Nam K W, Park S S, Dos Reis R, Dravid V P, Kim H, Mirkin C A, Stoddart J F. Nat. Commun., 2019, 10: 4948.

doi: 10.1038/s41467-019-12857-4     URL    
[90]
Wang F, Liu Z, Yang C, Zhong H, Nam G, Zhang P, Dong R, Wu Y, Cho J, Zhang J, Feng X. Adv. Mater., 2020, 32: 1905361.

doi: 10.1002/adma.v32.4     URL    
[91]
Andreiadis E S, Jacques P A, Tran P D, Leyris A, Chavarot-Kerlidou M, Jousselme B, Matheron M, PÉcaut J, Palacin S, Fontecave M, Artero V. Nat. Chem., 2013, 5: 48.

doi: 10.1038/NCHEM.1481    
[92]
Ito Y, Cong W, Fujita T, Tang Z, Chen M. Angew. Chem. Int. Ed., 2015, 54: 2131.

doi: 10.1002/anie.201410050     URL    
[93]
Downes C A, Clough A J, Chen K, Yoo J W, Marinescu S C. ACS Appl. Mater. Inter., 2018, 10: 1719.

doi: 10.1021/acsami.7b15969     URL    
[94]
Miner E M, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincă M. Nat. Commun., 2016, 7: 10942.

doi: 10.1038/ncomms10942     URL    
[95]
Miner E M, Gul S, Ricke N D, Pastor E, Yano J, Yachandra V K, Van Voorhis T, Dincă M. ACS Catal., 2017, 7: 7726.

doi: 10.1021/acscatal.7b02647     URL    
[96]
Miner E M, Wang L, Dincă M. Chem. Sci., 2018, 9: 6286.

doi: 10.1039/C8SC02049C     URL    
[97]
Park J, Chen Z, Flores R A, Wallnerstrom G, Kulkarni A, Norskov J K, Jaramillo T F, Bao Z. ACS Appl. Mater. Inter., 2020, 12: 39074.

doi: 10.1021/acsami.0c09323     URL    
[98]
Zhong H, Ly K H, Wang M, Krupskaya Y, Han X, Zhang J, Zhang J, Kataev V, Buchner B, Weidinger I M, Kaskel S, Liu P, Chen M, Dong R, Feng X. Angew. Chem. Int. Ed., 2019, 58: 10677.

doi: 10.1002/anie.v58.31     URL    
[99]
Li W H, Lv J, Li Q, Xie J, Ogiwara N, Huang Y, Jiang H, Kitagawa H, Xu G, Wang Y. J. Mater. Chem. A , 2019, 7: 10431.

doi: 10.1039/C9TA02169H     URL    
[100]
Li C, Gao Y, Xia X, Zhu J, Wang X, Fu Y. Small , 2020, 16: 1907043.

doi: 10.1002/smll.v16.8     URL    
[101]
Shi X, Hua R, Xu Y, Liu T, Lu G. Sustain. Energ. Fuels , 2020, 4: 4589.

doi: 10.1039/D0SE00515K     URL    
[102]
Zhang C F , Chen Z W , Lian Y B , Chen Y J , Li Q , Gu Y D , Lu Y T , Deng Z , Peng Y. Acta Phys-Chim. Sin ., 2019, 35( 12): 1404.

doi: 10.3866/PKU.WHXB201905030     URL    
张楚风, 陈哲伟, 连跃彬, 陈宇杰, 李沁, 顾银冬, 陆永涛, 邓昭, 彭扬. 物理化学学报, 2019, 35( 12): 1404.
[103]
Wang B, Luo Y, Liu B, Duan G. ACS Appl. Mater. Inter., 2019, 11: 35935.

doi: 10.1021/acsami.9b14319     URL    
[104]
Wang Z F, Su N, Liu F. Nano Lett., 2013, 13: 2842.

doi: 10.1021/nl401147u     URL    
[105]
Pal T, Doi S, Maeda H, Wada K, Tan C M, Fukui N, Sakamoto R, Tsuneyuki S, Sasaki S, Nishihara H. Chem. Sci., 2019, 10: 5218.

doi: 10.1039/C9SC01144G     URL    
[106]
Song X, Wang X, Li Y, Zheng C, Zhang B, Di C A, Li F, Jin C, Mi W, Chen L, Hu W. Angew. Chem. Int. Ed., 2020, 59: 1118.

doi: 10.1002/anie.v59.3     URL    
[107]
Sun L, Liao B, Sheberla D, Kraemer D, Zhou J, Stach E A, Zakharov D, Stavila V, Talin A A, Ge Y, Allendorf M D, Chen G, LÉonard F, Dincă M. Joule , 2017, 1: 168.

doi: 10.1016/j.joule.2017.07.018     URL    
[108]
Nonoguchi Y, Sato D, Kawai T. Polymers, 2018, 10: 962.

doi: 10.3390/polym10090962     URL    
[109]
de Lourdes Gonzalez-Juarez M, Flores E, Martin-Gonzalez M, Nandhakumar I, Bradshaw D. J. Mater. Chem. A , 2020, 8: 13197.

doi: 10.1039/D0TA04939E     URL    
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[5] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[6] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[7] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[8] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[9] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[12] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[13] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[14] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[15] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
阅读次数
全文


摘要

二维导电金属有机骨架材料