English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1834-1846 DOI: 10.7536/PC160434 前一篇   后一篇

• 综述与评论 •

壳聚糖及其复合物对水中汞离子的脱除

高鹏1, 高彬彬1, 高建强1, 张锴2, 杨勇平2*, 陈鸿伟1   

  1. 1. 华北电力大学能源动力与机械工程学院动力系 保定 071000;
    2. 华北电力大学能源动力与机械工程学院 北京 102206
  • 收稿日期:2016-04-01 修回日期:2016-06-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 杨勇平,e-mail:yyp@ncepu.edu.cn E-mail:yyp@ncepu.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金项目(No.2014MS108),国家高技术研究发展(863)计划项目(No.2013AA065404)和国家自然科学基金项目(No.U1261210)资助

Chitosan and Its Composites for Removal of Mercury Ion from Aqueous Solution

Gao Peng1, Gao Binbin1, Gao Jianqiang1, Zhang Kai2, Yang Yongping2*, Chen Hongwei1   

  1. 1. School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China;
    2. School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2016-04-01 Revised:2016-06-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the Fundamental Research Funds for the Central Universities of China(No. 2014MS108),the National High Technology and Development Program of China(No. 2013AA065404),and the National Natural Science Foundation of China(No. U1261210)
由于汞的物理化学性质和对人体的毒副作用,汞减排已成为全球共识。当前除汞方法中,吸附法为一种较有潜力的方法。壳聚糖是一种天然的汞离子(Hg2+)吸附剂,以物理、化学手段改性后的衍生物更具有对环境中的汞吸附容量大,吸附效率高的优点。本文综述了壳聚糖及其衍生物脱除溶液中Hg2+的研究近况,介绍了壳聚糖物理(冷冻干燥、静电纺丝等)、化学修饰手段(交联和接枝等)以及与新型碳材料(碳纳米管、氧化石墨烯等)复合脱汞的最新研究,分析了壳聚糖及其复合物对水中Hg2+的去除效果和影响因素。最后,对壳聚糖吸附剂在汞污染治理中的研究作了展望。
Mercury emission reduction has become a global consensus due to the physiochemical properties of mercury and its side effects on humans. Adsorption is considered as a potential Hg2+ ions removal method. Chitosan is a natural Hg2+ ions adsorbent, and its Hg2+ ions adsorption capacity and efficiency can be improved by preparation of modified derivatives from physiochemical methods. Hg2+ ions adsorption by chitosan and its derivatives is now assumed to occur through several single or mixed interactions:the amino group (-NH2) and hydroxyl (-OH), which adsorb Hg2+ ions mainly through chelate, ion exchange or electrostatic force. The protonated amino group of chitosan and C=N group (Schiff base) of its derivatives may are the main selective functional groups responsible for Hg2+ ions adsorption. In this study, we review the research progress of Hg2+ ions removal by chitosan and its composites in the field of water treatment, and introduce the means of chitosan physiochemical modification (e.g. freeze drying, electrostatic spinning, crosslinking or grafting) as well as composite mercury removal by new carbon materials (e.g. carbon nanotubes, graphene oxide) in latest research. The removel efficiency and influential factors of Hg2+ ions removel by chitosan and its derivatives are discussed in detail. Finally, we discuss the research prospects of chitosan adsorbent materials in treatment of mercury pollution.

Contents
1 Introduction
2 The mechanism of mercury removal by chitosan and its derivatives
2.1 The influencing factors of mercury removal by chitosan and its derivatives
2.2 The mechanism of selective mercury removal by chitosan and its derivatives
3 The study of chitosan and its derivatives removal of mercury
3.1 Physical modification of chitosan
3.2 Chemical modification of chitosan
3.3 Novel chitosan composite sorbents
3.4 The effect of mercury removal by different modification methods
4 Problems and prospects

中图分类号: 

()
[1] Wang C, Tao S Y, Wei W, Meng C G, Liu F Y, Han M. J. Mater. Chem., 2010, 20:4635.
[2] The State Council of the People's Republic of China. Water Pollution Prevention Plan of Action, 2015.
[3] Zhang T, Kim B, Levard C, Reinsch B C, Lowry G V, Deshusses M A, Kim H. Environ. Sci. Technol., 2012, 46(13):6950.
[4] Parham H, Zargar B, Shiralipour R. J. Hazard. Mater., 2012, 205/206:94.
[5] Say R, Birlik E, Erdemgil Z, Denizli A, Ersoz A. J. Hazard. Mater., 2008, 150:560.
[6] Fu F L, Wang Q. Journal of Environmental Management, 2011, 92:407.
[7] 李新贵(Li X H), 封皓(Feng H), 黄美荣(Huang M R).化学进展(Progress in Chemistry), 2008, 20(2/3):233.
[8] 刘娟(Liu J).山西大学硕士论文(Master Dissertation of Shanxi University), 2003.
[9] 蒋挺大(Jiang T D). 壳聚糖(Chitosan).北京:化学工业出版社(Beijing:Chemical Industry Press), 2006.
[10] 高鹏(Gao P).华中科技大学硕士论文(Master Dissertation of Huazhong University of Science and Technology), 2006.
[11] Nasirimoghaddam S, Zeinali S, Sabbaghi S. Journal of Industrial and Engineering Chemistry, 2015, 27:79.
[12] Crini G. Prog. Polym.Sci., 2005, 30:38.
[13] Matha B. Doctoral Dissertation of Royal Institute of Technology, 2008.
[14] 谢光勇(Xie G Y), 杜传青(Du C Q). 工业水处理(Industrial Water Treatment), 2009, 29(5):24.
[15] 胡惠媛(Hu H Y), 朱虹(Zhu H). 化学进展(Progress in Chemistry), 2012, 24(11):2212.
[16] Khalid Z E, Eric G. Chemical Engineering Journal, 2015, 81:345.
[17] Wang X H, Deng W Y, Xie Y Y, Wang C Y. Chemical Engineering Journal, 2013, 228:232.
[18] Jeon C, HÖll W H. Water Research, 2003, 37:477.
[19] Boricha A G, Murthy Z V P. Journal of Membrane Science, 2009, 339:239.
[20] Wijesena R N, Tissera N, Kannangara Y Y, Lin Y, Amaratunga G A J, Nalin de Silvaa K M. Carbohydrate Polymers, 2015, 117:731.
[21] Kim M K, Sundaram K S, Iyengar G A, Lee K P. Chemical Engineering Journal, 2015, 267:51.
[22] Liu T Y, Yang X, Wang Z L, Yan X X. Water Research, 2013, 47:6691.
[23] Shafaei A, Ashtiani F Z, Kaghazchi T. Chemical Engineering Journal, 2007, 133:311.
[24] Reena S, Nahar S, Sangeeta T, Sandeep K T, Sanjay R D. RSC Adv., 2015, 5:16622.
[25] 张晓敏(Zhang X M), 张力(Zhang L), 贺雪英(He X Y), 吴俊涛(Wu J T). 化学进展(Progress in Chemistry), 2014, 26(11):1832.
[26] Allouchea F N, Guibal E, Mameri N. Colloids and Surfaces A:Physicochem.Eng. Aspects, 2014, 446:224.
[27] Abdel Khalek M A, Mahmoud G A, El-Kelesh N A. Chemistry and Materials Research, 2012, 2(7):2224.
[28] Liu H C, Chen W, Cui B, Liu C. Journal of Central South University, 2015, 22(11):4168.
[29] Zhang Y L, Yan W W, Sun Z M, Pan C, Mi X, Zhao G, Gao J P. Carbohydrate Polymers, 2015, 117:657.
[30] Khalek M A A, Mahmoud G A, El-Kelesh N A. Chemistry and Materials Research, 2012, 2(7):1.
[31] Chang Y H, Hsieh K H, Chang F C. Journal of Applied Polymer Science, 2009, 112:2445.
[32] Osifo P O, Webster A, Hein M, Neomagus H W J P, Gun M A, Grant D M. Bioresource Technology, 2008, 99:7377.
[33] Miretzkya P, Cirelli A F. Journal of Hazardous Materials, 2009, 167:10.
[34] Merrifield J D, Davids W G, MacRae J D, Amirbahman A.Water Research, 2004, 38:3132.
[35] 庞娅(Pang Y). 湖南大学博士论文(Doctoral Dissertation of Hunan University), 2012.
[36] 周莅霖(Zhou L L), 况锦铭(Kuang J M), 袁金颖(Yuan J Y). 化学进展(Progress in Chemistry), 2009, 21(9):1880.
[37] 张显(Zhang X), 吴天星(Wu T X), 宋小平(Song X P), 张云霞(Zhang Y X), 汪国忠(Wang G Z). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2015,48(8):1143.
[38] Karthik R, Meenakshi S. Chemical Engineering Journal, 2015, 263:168.
[39] Wang Z D, Zheng L C, Li C C, Zhang D, Xiao Y N, Guan G H, Zhu W X. Carbohydrate Polymers, 2013, 94:505.
[40] 徐玉婷(Xu Y T), 张灿(Zhang C). 中国药科大学学报(Journal of China Pharmaceutical University), 2010, 41(6):481.
[41] Wang Y, Qi Y F, Li Y F, Wu J J, Ma X J, Yu C, Ji L. Journal of Hazardous Materials, 2013, 260:9.
[42] 邵坚(Shao J), 祝丹丹(Zhu D D), 刘俊(Liu J). 环境科学与技术(Environmental Science & Technology), 2007, 30(6):6.
[43] Donia A M, Atia A A, Elwakeel K Z. Journal of Hazardous Materials, 2008,151:372.
[44] Wang L, Xing R E, Liu S, Cai S B, Yu H H, Feng J H, Li R F, Li P C. International Journal of Biological Macromolecules, 2010, 46:524.
[45] Wang F, Zheng Y, Zhu Y F, Wang A Q. Water Air Soil Pollut., 2016, 227:110.
[46] Zhu F Y, Zheng Y, Wang W B, Wang A Q. Journal of Water Process Engineering, 2015, 7:218.
[47] Zhang G Y, Qu R J, Sun C M, Ji C N, Chen H, Wang C H, Niu Y Z. Journal of Applied Polymer Science, 2008, 110:2321.
[48] Qu R J, Sun C M, Ma F, Zhang Y, Ji C N, Xu Q, Wang C H, Chen H. Journal of Hazardous Materials, 2009, 167:717.
[49] Shi D C, Yan F Y, Wang M, Zou Y, Zheng T C, Zhou X G, Chen L. Materials Research Bulletin, 2015, 70:958.
[50] Shi D C, Yan F Y, Zhou X G, Zheng T C, Shi Y Y, Fu W G, Chen L. Microchim Acta, 2016, 183:319.
[51] Kushwaha S, Sreedhar B, Padmaja P. Journal of Chemical & Engineering Data, 2010, 55(11):4691.
[52] Kushwaha S, Sudhakar P P. Carbohydrate Polymers, 2011, 86:1055.
[53] Liu Y S, Chen W B, Kim H. Journal of Macromolecular Science Part A:Pure and Applied Chemistry, 2012, 49:242.
[54] Zhang X Y, Ding S M, Wang Y T, Feng X H, Peng Q, Ma S L. Journal of Applied Polymer Science, 2006, 100:2705.
[55] Park S I, Kwak I S, Won S W, Yun Y S. Journal of Hazardous Materials, 2013, 248/249:211.
[56] 袁毅桦(Wang Y H), 雷莉(Lei L), 何慧(He H), 贾德民(Jia D M). 华南理工大学学报(自然科学版)(Journal of South China University of Technology(Natural Science Edition)), 2012, 40(7):148.
[57] Vieira R S, Beppu M M. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2006, 279:196.
[58] Xu F Q, Zhang N N, Long Y, Si Y M, Liu Y, Mi X, Wang X D, Xing F B, You X D, Gao J P. J. Hazard. Mater., 2011, 188(1/3):148.
[59] RabeloR B, Vieira R S, Luna F M T, Guibal E, Beppu M M. Adsorption Science & Technology, 2011, 30(1):1.
[60] Oshita K, Oshima M, Gao Y H, Lee K H, Motomizu S. Anal. Sci., 2002, 18:1121.
[61] Tao X, Li K, Yan H, Yang H, Li A M. Environmental Pollution, 2016, 209:21.
[62] Chen X J, Cai J C, Zhang Z H, Liu L J, Yang G L. Colloid Polym. Sci., 2014, 292:2157.
[63] Rocha, L S, Almeida Â, Nunes C, Henriques B, Coimbra M A, Lopes C B, Silva C M, Duarte A C, Pereira E. Chemical Engineering Journal, 2016, 300:217.
[64] Zhou L M, Liu Z R, Liu J H, Huang Q W. Desalination, 2010, 258:41.
[65] Monier M, Abdel-Latif D A. Journal of Hazardous Materials, 2012, 209/210:240.
[66] Zhou L M, Wang Y P, Liu Z R, Huang Q W. Journal of Hazardous Materials, 2009, 161:995.
[67] Wang X H, Yang L, Zhang J P, Wang C Y, Li Q Y. Chemical Engineering Journal, 2014, 251:404.
[68] Li K, Wang Y W, Huang M, Yan H, Yang H, Xiao S J, Li A M. Journal of Colloid and Interface Science, 2015, 455:261.
[69] Anirudhan T S, Divya L., Arsenic P J. J. Chem. Technol. Biotechnol., 2013, 88:878.
[70] 范立群(Fan L Q), 隋吴彬(Sui W B). 化学进展(Progress in Chemistry), 2013, 32(8):1832.
[71] Zhou L, Xiong W, Liu S. J. Mater. Sci., 2015, 50:769.
[72] Sreeprasad T S, Maliyekkal S M, Lisha K P, Pradeep T. Journal of Hazardous Materials, 2011, 186:921.
[73] Liu S L, Kang M M, Yan F F, Peng D L, Yang Y Q, He L H, Wang M H, Fang S M, Zhang Z H. Electrochimica Acta, 2015,160:64.
[74] Nivethaa E A K, Narayanan V, Stephen A. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 14:242.
[75] 彭先佳(Peng X J), 贾建军(Jia J J), 栾兆坤(Luan Z K), 王军(Wang J). 化学进展(Progress in Chemistry), 2009, 21(9):1987.
[76] Moghimi A. African Journal of Pure and Applied Chemistry, 2012, 6(12):195.
[77] Shawky H A, El-Aassar A H M, Abo-Zeid D E. Journal of Applied Polymer Science, 2012, 125(1):E93.
[78] 刘榆(Liu Y), 傅瑞琪(Fu R Q), 楼子墨(Lou Z M), 方文哲(Fang W Z), 王卓行(Wang Z X), 徐新华(Xu X H). 化学进展(Progress in Chemistry), 2015, 27(11):1665.
[79] Kuila T, Bose S, Mishra A K, Khanra P, Kim N H, Lee J H. Progress in Materials Science, 2012, 57:1061.
[80] Ziaei E, Mehdinia A, Jabbari A. Analytica Chimica Acta, 2014, 850:49.
[81] Kyzas G Z, Travlou N A, Deliyanni E A.Colloids and Surfaces B:Biointerfaces, 2014, 113:467.
[82] Hu H T, Wang X B, Wang J C, Liu F M, Zhang M, Xu C H. Applied Surface Science, 2011, 257:2637.
[83] 高鹏(Gao P), 向军(Xiang J), 张安超(Zhang A C). 中国环境科学(China Environmental Science), 2010, 30(6):733.
[84] 张安超(Zhang A C), 孙路石(Sun L S), 向军(Xiang J), 高鹏(Gao P), 胡松(Hu S), 徐朝芬(Xu C F), 付鹏(Fu P). 工程热物理学报(Journal of Engineering Themophysics), 2010, 31(9):1607.
[85] 张安超(Zhang A C), 向军(Xiang J), 胡松(Hu S), 盛伟(Sheng W), 刘志超(Liu Z C). 中国电机工程学报(Proceedings of the Chinese Society for Electrical Engineering), 2013, 33(29):18.
[86] Gao P, Gao B B, Gao J Q, Zhang K, Chen Y J, Yang Y P, Chen H W. IOP Conf. Series:Materials Science and Engineering, 2016, DOI:10.1088/1757-899X/137/1/012008.
[87] 高鹏(Gao P), 杨勇平(Yang Y P), 高彬彬(Gao B B), 高建强(Gao J Q), 张锴(Zhang K), 陈鸿伟(Chen H W), 樊海丽(Fan H L). 工程热物理年会(Engineering Thermo Physics Annual Meeting),中国,北京, 2015, 10.23.
[88] 苑春刚(Yuan C G), 张艳(Zhang Yan), 张扬阳(Zhang Y Y). 中国发明专利:CN102553526B, 2014.
[89] Lesa B, Aneggi E, Rossi G, Goi D. Journal of Hazardous Materials, 2009,171(1/3):647.
[90] Wang J X, Feng X B, Christopher W N, Shang L H. J. Hazard Mater., 2012, 221/222:1.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[3] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[4] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[5] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[6] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[9] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[10] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[11] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[12] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[13] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[14] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[15] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.