English
新闻公告
More
化学进展 2016, Vol. 28 Issue (7): 1070-1075 DOI: 10.7536/PC160403 前一篇   后一篇

• 综述与评论 •

ⅣB金属配合物催化烯烃聚合与共聚

袁世芳1,2*, 牛春霞2,3, 魏学红2, 孙文华3*   

  1. 1. 山西大学应用化学研究所 太原 030006;
    2. 山西大学化学化工学院 太原 030006;
    3. 中国科学院化学研究所工程塑料重点实验室 北京 100190
  • 收稿日期:2016-04-01 修回日期:2016-04-01 出版日期:2016-07-15 发布日期:2016-05-17
  • 通讯作者: 袁世芳, 孙文华 E-mail:yuansf@sxu.edu.cn;whsun@iccas.as.cn
  • 基金资助:
    国家自然科学基金项目(No.21101101,1362204和U1362204)资助

ⅣB-Metal Complex Catalysts toward Olefin Polymerization and Copolymerization

Yuan Shifang1,2*, Niu Chunxia2,3, Wei Xuehong2, Sun Wenhua3*   

  1. 1. Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China;
    2. The School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
    3. Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2016-04-01 Revised:2016-04-01 Online:2016-07-15 Published:2016-05-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21101101,1362204 and U1362204).
在大品种聚烯烃材料中,高附加值聚烯烃通常由乙烯与α-烯烃共聚制备。ⅣB金属配合物能够为烯烃聚合和共聚提供许多催化剂模型;不仅如此,在烯烃聚合机理研究中还可以帮助理解反应中间体和活性物种。针对聚烯烃产业的实用催化剂体系,催化剂不仅满足高的催化活性,而且能够满足升温操作的稳定性。企业的利润需要高附加值聚烯烃,要求催化剂体系能够通过条件变化制得不同性能的聚烯烃材料,而且可以实现乙烯与α-烯烃的共聚。这些对配合物催化剂的需求,在ⅣB金属配合物催化剂中获得了良好地体现;能够在烯烃聚合中获得分子量从低到高的聚合物,也可以进行乙烯与(甚至含有官能团的)α-烯烃共聚制备功能聚烯烃。按照取代基团的分类,本文综述了近年来ⅣB金属配合物催化烯烃聚合与共聚研究的新进展,特别是重点讨论了具有良好热稳定性的配合物催化剂结构变化对于催化活性和聚合性能的影响。
Within large-volume polyolefin materials, the value-adding polyolefins have been commonly produced through the copolymerization of ethylene with α-olefin. The Ⅳ B metal complexes have provided various models of precatalysts toward α-olefin polymerization and copolymerization. Meanwhile those metal complexes have also been used as the intermediates or active species in order to understand the mechanism of olefin copolymerization. Targeting a practicing catalytic system for polyolefin industry, the Ⅳ B metal complexes would meet the demands of highly active catalysis, moreover, the catalytic systems should be remained enough stable at the elevated temperature. To have value-adding materials for higher profits, the catalytic system could be adaptable for polyolefins with various properties through being operated under different parameters; such features have been fitted well to Ⅳ B metal precatalysts, which achieve to produce polyolefins with the molecular weights in the useful range from medium to ultrahigh due to different polymerization conditions as well as functionalized polyolefins through the copolymerization of ethylene with α-olefin containing functional groups. Recent progress of Ⅳ B metal complexes for olefin polymerization and copolymerization has been reviewed herein, focusing on different metal complexes being classified due to groups of their ligands used. Moreover, the correlation between structures of metal complexes and their catalytic activity have been considered along with reaction temperatures.

Contents
1 Introduction
2 Constrained geometry catalysts
3 Imino-amido type catalysts
3.1 Pyridyl-amide catalysts
3.2 Imino-amido catalysts
3.3 Imino-enamido catalysts
3.4 Amidoquinoline catalysts
4 Bridging nitrogenous heterocyclic catalysts
5 Conclusion

中图分类号: 

()
[1] Smith K, Waters R. Linear Low-Density Polyethylene (LLDPE) Resins (580.1320). In IHC Chemical Economics Handbook; IHS:Englewood, CO, 2014, 12.
[2] Klosin J, Fontaine P P, Figueroa R. Acc. Chem. Res., 2015, 48:2004.
[3] Brintzinger H H, Fischer D, Mülhaupt R, Rieger B, Waymouth, R M. Angew. Chem. Int. Ed., 1995, 34:1143.
[4] Shapiro P J, Bunel E, Schaefer W P, Bercaw J E. Organometallics, 1990, 9:867.
[5] McKnight A L, Waymouth R M. Chem. Rev., 1998, 98:2587.
[6] Okuda J. Chem. Ber., 1990, 123:1649.
[7] Stevens J C, Timmers F J, Wilson D R, Schmidt G F, Nickias P N, Rosen R K, Knight G W, Lai S Y. European Patent Application, EP416815A2, 1991.
[8] Canich J A M. (Exxon Chemical Co.) European Patent Application, EP420436A1, 1991.
[9] Wang W J, Kolodka E, Zhu S, Hamielec A E. J. Polym. Sci. Part A:Polym. Chem., 1999, 37:2949.
[10] He Y, Qiu X, Klosin J, Cong R, Roof G R, Redwine D. Macromolecules, 2014, 47:3782.
[11] Klosin J, Kruper W J, Nickias P N, Roof G R, De Waele P, Abboud K A. Organometallics, 2001, 20:2663.
[12] Klosin J, Kruper W J, Patton J T, Abboud K A J. Organomet. Chem., 2009, 694:2581.
[13] Arriola D J, Bokota M, Campbell R E, Jr, Klosin J, LaPointe R E, Redwine O D, Shankar R B, Timmers F J, Abboud K A. J. Am. Chem. Soc., 2007, 129:7065.
[14] Murray R E, Mawson S, Williams C C, Schreck D J (Univation Technologies, LLC). PCT Int. Appl. WO 037511A2, 2000.
[15] Boussie T R, Diamond G M, Goh C, Hall K A, LaPointe A M, Leclerc M K, Murphy V, Shoemaker J A W, Turner H, Ro sen R K, Stevens J C, Alfano F, Busico V, Cipullo R, Talarico G. Angew. Chem. Int. Ed., 2006, 45:3278.
[16] Domski G J, Lobkovsky E B, Coates G W. Macromolecules, 2007, 40:3510.
[17] Arriola D J, Carnahan E M, Hustad P D, Kuhlman R L, Wenzel T T. Science, 2006, 312:714.
[18] Frazier K A, Froese R D, He Y, Klosin J, Theriault C N, Vosejpka P C, Zhou Z, Abboud K A. Organometallics, 2011, 30:3318.
[19] Froese R D J, Hustad P D, Kuhlman R L, Wenzel T T. J. Am. Chem. Soc., 2007, 129:7831.
[20] De Waele P, Jazdzewski B A, Klosin J, Murray R E, Theriault C N, Vosejpka P C, Petersen J L. Organometallics, 2007, 26:3896.
[21] Froese R D J, Jazdzewski B A, Klosin J, Kuhlman R L, Theriault C N, Welsh D M, Abboud K A. Organometallics, 2011, 30:251.
[22] Zhang C, Pan H, Klosin J, Tu S, Jaganathan A, Fontaine P P. Org. Process Res. Dev., 2015, 19:1383.
[23] Kuhlman R L, Klosin J. Macromolecules, 2010, 43:7903.
[24] Figueroa R, Froese R D, He Y, Klosin J, Theriault C N, Abboud K A. Organometallics, 2011, 30:1695.
[25] Fontaine P P, Figueroa R, McCann S D, Mort D, Klosin J. Organometallics, 2013, 32:2963.
[26] Klosin J, Fontaine P P, Figueroa R, McCann S D, Mort D. Organometallics, 2013, 32:6488.
[27] Fontaine P P, Klosin J, McDougal N T. Organometallics, 2012, 31:6244.
[28] Fontaine P P, Ueligger S, Klosin J, Hazari A, Daller J, Hou J. Organometallics, 2015, 34:1354.
[29] Sun W H, Liu S F, Zhang W J, Zeng Y N, Wang D, Liang T L. Organometallics, 2010, 29:732.
[30] Huang W, Zhang W J, Sun W H, Wang L, Redshaw C. Catal. Sci. Technol., 2012, 2:2090.
[31] Yuan S F, Bai S D, Liu D S, Sun W H. Organometallics, 2010, 29:2132.
[32] Yuan S F, Wei X H, Tong H B, Zhang L P, Liu D S, Sun W H. Organometallics, 2010, 29:2085.
[33] Duan X E, Xing Q F, Dong Z M, Chao J B, Bai S D. Chinese J. Polym. Sci., 2016, 34:390.
[34] Tong H B, Li M, Bai S D, Yuan S F, Chao J B, Huang S P, Liu D S. Dalton Trans., 2011, 40:4236.
[35] Bai S D, Guan F, Hu M, Yuan S F, Guo J P, Liu D. S. Dalton Trans., 2011, 40:7686.
[36] Duan X E, Yuan S F, Tong H B, Bai S D, Wei X H, Liu D S. Dalton Trans., 2012, 41:9460.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[7] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[8] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[9] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[10] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[11] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[12] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[13] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[14] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[15] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.