English
新闻公告
More
化学进展 2016, Vol. 28 Issue (7): 1062-1069 DOI: 10.7536/PC160135 前一篇   后一篇

• 综述与评论 •

巯基-环氧点击化学及其在高分子材料中的应用

姚臻, 戴博恩, 于云飞, 曹堃*   

  1. 浙江大学化学工程与生物工程学院 化学工程联合国家重点实验室 杭州 310027
  • 收稿日期:2016-01-01 修回日期:2016-03-01 出版日期:2016-07-15 发布日期:2016-05-17
  • 通讯作者: 曹堃 E-mail:kcao@che.zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51473146)资助

Thiol-Epoxy Click Chemistry and Its Applications in Macromolecular Materials

Yao Zhen, Dai Boen, Yu Yunfei, Cao Kun*   

  1. State Key Laboratory of Chemical Engineering, College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2016-01-01 Revised:2016-03-01 Online:2016-07-15 Published:2016-05-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51473146).
巯基-环氧反应作为一类典型的“点击化学”具有反应速度快、选择性高且反应条件温和等优点,近年来备受关注。本文首先阐述了巯基-环氧反应的碱催化机理,并评述了碱性催化剂、取代基团以及溶剂等因素对于巯基-环氧反应速率的影响。归纳认为,无机碱如氢氧化锂以及有机碱如四丁基氟化铵具有较高催化活性,并比较了无机碱和有机碱催化剂的优缺点;与供电子基团连接的巯基化合物以及与吸电子基团连接的环氧化合物具有较高的反应活性,位阻效应也对其有影响;在无溶剂的本体条件下反应活性较高。同时,重点介绍了巯基-环氧反应在高分子材料领域中应用的最新进展,并将其分为在溶剂中合成结构可控的高分子(包括线型或复杂结构高分子的合成和高分子或表面的修饰改性)以及本体条件下制备性能优良且具有应用价值的高分子网络两大类进行讨论。最后,简要展望了其发展前景。
As one kind of "click chemistry", thiol-epoxy reaction has drawn intensive attention in recent years due to its outstanding advantages, such as fast reaction rate, high selectivity, and mild reaction conditions. This review illustrates the base-catalyzed mechanism of thiol-epoxy reaction in details. The influences of base catalysts, substituent groups and solvents on the thiol-epoxy reaction rate are summarized. The inorganic base such as lithium hydrate and organic base such as tetrabutylammonium fluoride are excellent catalytic activity. The advantages and disadvantages of inorganic and organic base catalysts are compared as well. Thiols with electron-donating groups and epoxy with electron-withdrawing groups are more active, which are also influenced by steric effect. The reactions in bulk system usually have higher yield than the reactions in solution. Moreover, the applications of thiol-epoxy reaction in macromolecular materials are also demonstrated and classified into two types according to their different focuses: one is synthesis of structure-controllable macromolecules in the solvents, including the synthesis of macromolecules with linear or complicated structures and the modifications of macromolecules or surfaces; and the other one is preparation of crosslinking polymeric networks with excellent properties and practical potential in the bulk condition. Furthermore, the trends of thiol-epoxy reaction are prospected in brief.

Contents
1 Introduction
2 Mechanism of thiol-epoxy reaction
2.1 Base-catalyzed mechanism
2.2 Influence of base catalysts
2.3 Influence of substituent groups
2.4 Influence of solvent
3 Application of thiol-epoxy reaction in polymer science
3.1 Polymer with special structures in solvent
3.2 Crosslinking networks with high performances in bulk condition
4 Conclusion

中图分类号: 

()
[1] Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40:2004.
[2] Hoyle C E, Lowe A B, Bowman C N. Chem. Soc. Rev., 2010, 39:1355.
[3] 杨正龙(Yang Z L),陈秋云(Chen Q Y),周丹(Zhou D),卜弋龙(Bu Y L). 化学进展(Progress in Chemistry), 2012, 24(2/3):395.
[4] Roush W R, Brown B B. J. Org. Chem., 1992, 57:3380.
[5] Kim M J, Choi Y K. J. Org. Chem., 1992, 57:1605.
[6] Meffre P, Vo-Quang L, Vo-Quang Y, Le Goffic F. Tetrahedron Lett., 1990, 31:2291.
[7] Guivisdalsky P N, Bittman R. J. Am. Chem. Soc., 1989, 111:3077.
[8] Ko S Y, Masamune H, Sharpless K B. J. Org. Chem., 1987, 52:667.
[9] Shaw K J, Luly J R, Rapoport H. J. Org. Chem., 1985, 50:4515.
[10] Maurer P J, Knudsen C G, Palkowitz A D, Rapoport H. J. Org. Chem., 1985, 50:325.
[11] Meldal M. Macromol. Rapid Commun., 2008, 29:1016.
[12] Hein J E, Fokin V V. Chem. Soc. Rev., 2010, 39:1302.
[13] Liang L, Astruc D. Coord. Chem. Rev., 2011, 255:2933.
[14] Moses J E, Moorhouse A D. Chem. Soc. Rev., 2007, 36:1249.
[15] 李娟(Li J),段明(Duan M),张烈辉(Zhang L H),蒋晓慧(Jiang X H). 化学进展(Progress in Chemistry), 2007, 19(11):1754.
[16] 邱素艳(Qiu S Y),高森(Gao S),林振宇(Lin Z Y),陈国南(Chen G N). 化学进展(Progress in Chemistry),2011, 23(4):637.
[17] Tasdelen M A. Polym. Chem., 2011, 2:2133.
[18] Liu Y, Chuo T. Polym. Chem., 2013, 4:2194.
[19] Gandini A. Prog. Polym. Sci., 2013, 38:1.
[20] 杨哲(Yang Z),魏宏亮(Wei H L),楚晖娟(Chu H J),朱靖(Zhu J),李志成(Li Z C). 高分子通报(Polymer Bulletin), 2010(1):41.
[21] 李金辉(Li J H),张国平(Zhang G P),孙蓉(Sun R),汪正平(Wang Z P). 高分子通报(Polymer Bulletin), 2014(3):8.
[22] Nair D P, Podgórski M, Chatani S, Gong T, Xi W, Fenoli C R, Bowman C N. Chem. Mater., 2014, 26:724.
[23] Hoyle C E, Lee T Y, Roper T. J. Polym. Sci., Part A:Polym. Chem., 2004, 42:5301.
[24] Hoyle C E, Bowman C N. Angew. Chem. Int. Ed., 2010, 49:1540.
[25] 付长清(Fu C Q),程传杰(Cheng C J),申亮(Shen L),陈义旺(Chen Y W). 高分子通报(Polymer Bulletin), 2012(1):29.
[26] 徐源鸿(Xu Y H),熊兴泉(Xiong X Q),蔡雷(Cai Lei),唐忠科(Tang Z K),叶章基(Ye Z J). 化学进展(Progress in Chemistry), 2012, 24(2/3):385.
[27] Theato P. Multi-Component and Sequential Reactions in Polymer Synthesis. Berlin:Springer-Verlag, 2015. 87.
[28] Gadwal I, Stuparu M C, Khan A. Polym. Chem., 2015, 6:1393.
[29] Azizi N, Khajeh-Amiri A, Ghafuri H, Bolourtchian M. Phosphorus, Sulfur Silicon Relat. Elem., 2010, 185:1550.
[30] De S, Stelzer C, Khan A. Polym. Chem., 2012, 3:2342.
[31] De S, Khan A. Chem. Commun., 2012, 48:3130.
[32] Brändle A, Khan A. Polym. Chem., 2012, 3:3224.
[33] Gadwal I, Binder S, Stuparu M C, Khan A. Macromolecules, 2014, 47:5070.
[34] Gadwal I, Rao J, Baettig J, Khan A. Macromolecules, 2014, 47:35.
[35] Binder S, Gadwal I, Bielmann A, Khan A. J. Polym. Sci., Part A:Polym. Chem., 2014, 52:2040.
[36] Gadwal I, Khan A. RSC Adv., 2015, 5:43961.
[37] Fringuelli F, Pizzo F, Tortoioli S, Vaccaro L. Tetrahedron Lett., 2003, 44:6785.
[38] Albanese D, Landini D, Penso M. Synthesis, 1994:34.
[39] Fringuelli F, Pizzo F, Vittoriani C, Vaccaro L. Eur. J. Org. Chem., 2006, 2006:1231.
[40] Li S, Han J, Gao C. Polym. Chem., 2013, 4:1774.
[41] Loureiro R M, Amarelo T C, Abuin S P, Soulé E R, Williams R J. Thermochim. Acta, 2015, 616:79.
[42] Jin K, Heath W H, Torkelson J M. Polymer, 2015, 81:70.
[43] Zhang Q, Anastasaki A, Li G, Haddleton A J, Wilson P, Haddleton D M. Polym. Chem., 2014, 5:3876.
[44] Gadwal I, Khan A. Polym. Chem., 2013, 4:2440.
[45] Rahane S B, Hensarling R M, Sparks B J, Stafford C M, Patton D L. J. Mater. Chem., 2012, 22:932.
[46] Yang W J, Neoh K, Kang E, Teo S L, Rittschof D. Polym. Chem., 2013, 4:3105.
[47] Chen J, Yu C, Shi Z, Yu S, Lu Z, Jiang W, Zhang M, He W, Zhou Y, Yan D. Angew. Chem. Int. Ed., 2015, 54:3621.
[48] Cengiz N, Rao J, Sanyal A, Khan A. Chem. Commun., 2013, 49:11191.
[49] Ware T, Simon D, Hearon K, Kang T H, Maitland D J, Voit W. Macromol. Biosci., 2013, 13:1640.
[50] Katogi S, Yusa M. J. Polym. Sci., Part A:Polym. Chem., 2002, 40:4045.
[51] Sangermano M, Vitale A, Dietliker K. Polymer, 2014, 55:1628.
[52] Guzmán D, Ramis X, Fernández-Francos X, Serra A. Eur. Polym. J., 2014, 59:377.
[53] Flores M, Tomuta A M, Fernández-Francos X, Ramis X, Sangermano M, Serra A. Polymer, 2013, 54:5473.
[54] Guzmán D, Ramis X, Fernández-Francos X, Serra A. RSC Adv., 2015, 5:101623.
[55] Guzmán D, Ramis X, Fernández-Francos X, Serra A. Polymers, 2015, 7:680.
[56] Lin H, Ou J, Liu Z, Wang H, Dong J, Zou H. Anal. Chem., 2015, 87:3476.
[57] Lin H, Chen L, Ou J, Liu Z, Wang H, Dong J, Zou H. J. Chromatogr. A, 2015, 1416:74.
[58] Zhu D Y, Cao G S, Qiu W L, Rong M Z, Zhang M Q. Polymer, 2015, 69:1.
[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[3] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[4] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[5] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[6] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[7] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[8] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[9] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[10] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[11] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[12] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[13] 王灯旭, 曹金风, 韩栋栋, 李文思, 冯圣玉. 有机硅合成新方法[J]. 化学进展, 2019, 31(1): 110-120.
[14] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[15] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.