English
新闻公告
More
化学进展 2016, Vol. 28 Issue (7): 1054-1061 DOI: 10.7536/PC160217 前一篇   后一篇

• 综述与评论 •

刺激响应聚合物在金纳米粒子催化体系中的应用

王昀, 冯岸超, 袁金颖*   

  1. 清华大学化学系 有机光电子与分子工程教育部重点实验室 北京 100084
  • 收稿日期:2016-02-01 修回日期:2016-04-01 出版日期:2016-07-15 发布日期:2016-05-17
  • 通讯作者: 袁金颖 E-mail:yuanjy@mail.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21374053)资助

Application of Stimuli-Responsive Polymer in Catalyst Systems of Gold Nanoparticles

Wang Yun, Feng Anchao, Yuan Jinying*   

  1. Key Lab of Organic Optoelectronic & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2016-02-01 Revised:2016-04-01 Online:2016-07-15 Published:2016-05-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21374053).
刺激响应聚合物是近几年来研究的热点之一,这类聚合物能够感受外界刺激而发生响应,产生物理或化学性质的变化。金纳米粒子由于量子效应,具有良好的催化性质,因此有广阔的应用前景。但是在实际的应用中却常常面临易于团聚的问题,因此时常需要将其负载于载体之上。将刺激响应聚合物引入金纳米粒子催化体系之中,一方面可以发挥普通载体所能起到的分散作用,防止金纳米粒子团聚,另一方面也可实现可控催化,可以通过外界条件的改变来调控金纳米粒子的催化性能。本文综述了该体系近期的研究进展,从体系的构建方式、刺激响应类型等方面进行了论述,并对该体系的研究与应用进行了总结与展望。
Stimuli-responsive polymer has attracted much attention in recent years. This kind of polymer can respond to external stimuli and switch their properties. Gold nanoparticles have excellent catalytic properties which means a bright application prospect. However, gold nanoparticles are easy to aggregate in the application, and it will result in a remarkable decrease of catalytic property. So different carriers are usually required to immobilize gold nanoparticles. The introduction of the stimuli-responsive polymer into the catalyst systems of gold nanoparticles is a way to prevent the aggregation similar to other normal carriers, and at the same time a fascinating approach to controllable catalyst. This paper reviews recent research progress on this kind of catalyst systems, followed by the discussion of their fabrication, sensitivity and applications. Moreover, the development potential of this field is also discussed.

Contents
1 Introduction
2 Fabrication of stimuli-responsive polymer & gold nanoparticles catalyst systems
2.1 Au-S bond
2.2 Supramolecular system
2.3 In-situ reduction
2.4 Indirect methods
3 Sensitivity and applications of stimuli-responsive polymer & gold nanoparticles catalyst systems
3.1 Thermoresponsive catalyst system
3.2 pH-responsive catalyst system
3.3 CO2-responsive catalyst system
3.4 Glucose-responsive catalyst system
4 Conclusion

中图分类号: 

()
[1] Tsitsilianis C. Soft Matter, 2010, 6:2372.
[2] Stuart M A C, Huck W T S, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat. Mater., 2010, 9:101.
[3] Capadona J R, Shanmuganathan K, Tyler D J, Rowan S J, Weder C. Science, 2008, 319:1370.
[4] Yan Q, Yuan J Y, Yuan W Z, Zhou M, Yin Y W, Pan C Y. Chem. Commun., 2008, 46:6188.
[5] Liu X Y, Cheng F, Liu Y, Liu H J, Chen Y. J. Mater. Chem., 2010, 20:360.
[6] Li Y T, Lokitz B S, McCormick C L. Angew. Chem. Int. Ed., 2006, 45:5792.
[7] Lu Y, Proch S, Schrinner M, Drechsler M, Kempeb R, Ballauff M. J. Mater. Chem., 2009, 19:3955.
[8] Chiang Y T, Lo C L. Biomaterials, 2014, 35:5414.
[9] Lynn D M, Amiji M M, Langer R. Angew. Chem. Int. Ed., 2001, 40:1707.
[10] Li D X, He Q, Cui Y, Li J B. Chem. Mater., 2007, 19:412.
[11] Rodríguez-Hernández J, Lecommandoux S. J. Am. Chem. Soc., 2005, 127:2026.
[12] Du J Z, Tang Y Q, Lewis A L, Armes S P. J. Am. Chem. Soc., 2005, 127:17982.
[13] Yan Q, Zhou R, Fu C K, Zhang H J, Yin Y W, Yuan J Y. Angew. Chem. Int. Ed., 2011, 123:5025.
[14] Yan Q, Wang J B, Yin Y W, Yuan J Y. Angew. Chem. Int. Ed., 2013, 52:5070.
[15] Yan Q, Zhang H J, Zhao Y. ACS Macro Lett., 2014, 3:472.
[16] Feng A C, Zhan C B, Yan Q, Liu B W, Yuan J Y. Chem. Commun., 2014, 50:8958.
[17] Liu H B, Guo Z R, He S, Yin H Y, Fei C H, Feng Y J. Polym. Chem., 2014, 5:4756.
[18] Yan Q, Zhao Y. Angew. Chem., 2013, 125:10132.
[19] Peng L, Feng A C, Zhang H J, Wang H, Jian C M, Liu B W, Gao W P, Yuan J Y. Polym. Chem., 2014, 5:1751.
[20] Yan Q, Feng A C, Zhang H J, Yin Y W, Yuan J Y. Polym. Chem., 2013, 4:1216.
[21] Yan Q, Yuan J Y, Cai Z N, Xin Y, Kang Y, Yin Y W. J. Am. Chem. Soc., 2010, 132:9268.
[22] Du P, Liu J H, Chen G S, Jiang M. Langmuir, 2011, 27:9602.
[23] Yan Q, Hu J, Zhou R, Ju Y, Yin Y W, Yuan J Y. Chem. Commun., 2012, 48:1913.
[24] Liu X K, Jiang M. Angew. Chem., 2006, 118:3930.
[25] Hribar K C, Lee M H, Lee D, Burdick J A. ACS Nano, 2011, 5:2948.
[26] Zhang H J, Xin Y, Yan Q, Zhou L L, Peng L, Yuan J Y. Macromol. Rapid Commun., 2012, 33:1952.
[27] Klaikherd A, Nagamani C, Thayumanavan S. J. Am. Chem. Soc., 2009, 131:4830.
[28] Pietsch C, Hoogenboom R, Schubert U S. Angew. Chem. Int. Ed., 2009, 48:5653.
[29] Zou H, Yuan W Z. J. Mater. Chem. B, 2015, 3:260.
[30] Qiu Y, Park K. Adv. Drug Delive. Rev., 2001, 53:321.
[31] Schmaljohann D. Adv. Drug Delive. Rev., 2006, 58:1655.
[32] Bajpai A K, Shukla S K, Bhanu S, Kankane S. Prog. Polym. Sci., 2008, 33:1088.
[33] Ganta S, Devalapally H, Shahiwala A, Amiji M. J. Control. Release, 2008, 126:187.
[34] Gupta P, Vermani K, Garg S. Drug Discov. Today, 2002, 7:569.
[35] Kim E, Kim D, Jung H, Lee J, Paul S, Selvapalam N, Yang Y, Lim N, Park C G, Kim K. Angew. Chem. Int. Ed., 2010, 49:4405.
[36] Kumar S, Tong X, Dory Y L, Lepage M, Zhao Y. Chem. Commun., 2013, 49:90.
[37] Kuroki H, Tokarev I, Nykypanchuk D, Zhulina E, Minko S. Adv. Funct. Mater., 2013, 23:4593.
[38] Nakahata M, Takashima Y, Yamaguchi H, Harada A. Nat. Commun., 2012, 3:187.
[39] 江龙(Jiang L), 王清叶(Wang Q Y), 崔文娟(Cui W J). 化学进展(Progress in Chemistry), 2013, 25(10):1631.
[40] 罗春华(Luo C H), 董秋静(Dong Q J), 郑朝晖(Zheng Z H), 丁小斌(Ding X B), 彭宇行(Peng Y X). 化学进展(Progress in Chemistry), 2009, 21(12):2674.
[41] Zhu M J, Wang L Q, Exarhos G J, Li A D Q. J. Am. Chem. Soc., 2004, 126:2656.
[42] Chen A, Qi J J, Zhao Q S, Li Y, Zhang G L, Zhang F B, Fan X B. RSC Adv., 2013, 3:8973.
[43] Lv W P, Wang Y, Feng W Q, Qi J J, Zhang G L, Zhang F B, Fan X B. J. Mater. Chem., 2011, 21:6173.
[44] Li D X, He Q, Cui Y, Li J B. Chem. Mater., 2007, 19:412.
[45] Liu G Q, Wang D A, Zhou F, Liu W M. Small, 2015, 11:2807.
[46] Luo C H, Zuo F, Zheng Z H, Cheng X, Ding X B, Peng Y X. Macromol. Rapid Commun., 2008, 29:149.
[47] Liu B, Zhang D W, Wang J B, Chen C, Yang X L, Li C X. J. Phys. Chem. C, 2013, 117:6363.
[48] Chen Z, Cui Z M, Cao C Y, He W D, Jiang L, Song W G. Langmuir, 2012, 28:13452.
[49] Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X H, Ballauff M, Lu Y. Angew. Chem. Int. Ed., 2012, 51:2229.
[50] Ge J P, Huynh T, Hu Y X, Yin Y D. Nano Lett., 2008, 8:931.
[51] Chen J, Xiao P, Gu J C, Han D, Zhang J W, Sun A H, Wang W Q, Chen T. Chem. Commun., 2014, 50:1212.
[52] Xiao C F, Chen S M, Zhang L Y, Zhou S Q, Wu W T. Chem. Commun., 2012, 48:11751.
[53] 冯岸超(Feng A C), 闫强(Yan Q), 袁金颖(Yuan J Y). 化学进展(Progress in Chemistry), 2012, 24(10):1995.
[54] Zhang J M, Han D H, Zhang H J, Chaker M, Zhao Y, Ma D L. Chem. Commun., 2012, 48:11510.
[55] Wu Q S, Cheng H, Chang A P, Xu W T, Lu F, Wu W T. Chem. Commun., 2015, 51:16068.
[1] 刘森阳, 彭了, 袁金颖, 朱晓夏. 基于胆汁酸的刺激响应聚合物[J]. 化学进展, 2016, 28(8): 1121-1130.
[2] 李延春, 李洋. 金纳米粒子和聚合物复合体系分子设计与组装过程的计算机模拟[J]. 化学进展, 2015, 27(7): 848-852.
[3] 董旭, 刘晓云, 查刘生. 载金或银纳米粒子智能杂化微凝胶的合成、性能及其应用[J]. 化学进展, 2013, 25(12): 2038-2052.
[4] 冯岸超, 闫强, 袁金颖*. CO2刺激响应聚合物[J]. 化学进展, 2012, (10): 1995-2003.
[5] 罗春华 董秋静 郑朝晖 丁小斌 彭宇行. 智能聚合物包覆的金纳米粒子*[J]. 化学进展, 2009, 21(12): 2674-2681.