English
新闻公告
More
化学进展 2017, Vol. 29 Issue (8): 846-858 DOI: 10.7536/PC170543 前一篇   后一篇

• 综述 •

基于银系半导体材料的全固态Z型光催化体系

葛明1,2*, 李振路1   

  1. 1. 华北理工大学化学工程学院 唐山 063210;
    2. 河北省环境光电催化材料重点实验室 唐山 063210
  • 收稿日期:2017-05-18 修回日期:2017-06-20 出版日期:2017-08-15 发布日期:2017-07-24
  • 通讯作者: 葛明,E-mail:geminggena@163.com E-mail:geminggena@163.com
  • 基金资助:
    河北省教育厅青年基金项目(No.QN2017115,QN2014045)和国家自然科学基金项目(No.51504079)资助

All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials

Ming Ge1,2*, Zhenlu Li1   

  1. 1. College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China;
    2. Hebei Key Laboratory of Photocatalytic and Electrocatalytic Materials for Environment, Tangshan 063210, China
  • Received:2017-05-18 Revised:2017-06-20 Online:2017-08-15 Published:2017-07-24
  • Supported by:
    The work was supported by the Youth Foundation of Hebei Education Department (No. QN2017115, QN2014045) and the National Natural Science Foundation of China (No. 51504079).
基于半导体材料的光催化技术有望利用清洁太阳能治理环境污染和缓解能源短缺问题。近年来,一些窄带隙银系半导体材料在可见光照射下具有优异的氧化还原能力,成为光催化材料研究领域的热点之一。然而,单一银系光催化材料成本高、稳定性差从而限制其实际应用,因此,复合光催化材料得到广泛关注。最近,模拟植物光合作用过程而建立起来的全固态Z型光催化体系不仅增强银系材料光催化活性,同时又提高其稳定性和降低使用成本。本文首先阐述了Z型光催化体系的由来和反应机制,详细论述了目前基于银系半导体材料的全固态Z型光催化体系的构建、应用及反应机理。在此基础上,指出了这些体系在研究中存在的一些问题,并对其研究前景进行了展望。
Photocatalytic technology based on semiconductor materials is expected to use clean solar energy to control the environmental pollution and ease the energy shortages.In recent years, some silver-containing semiconductor materials with narrow band gap exhibit excellent oxidation and reduction ability under visible light irradiation, hence, silver-containing photocatalysts have become one of the focuses in the field of photocatalytic materials. Single silver-containing photocatalytic materials have high cost and poor stability, which limit their practical applications. As a result, the composite photocatalytic materials have been widely studied. Recently, simulating the photosynthesis process of green plants, all-solid-state Z-scheme photocatalytic systems are established, which can enhance the stability and reduce the cost of silver-containing photocatalytic materials as well as improve their photocatalytic performances. In this paper, we firstly describes the derivation and reaction mechanism about the all-solid-state Z-scheme photocatalytic systems, and then reviews the construction, application and reaction mechanism of silver-containing semiconductor materials-based all-solid-state Z-scheme photocatalytic systems so far.At last, we point out some existing problems about these silver-containing semiconductor materials-based Z-scheme photocatalytic systems, and their research prospects are also proposed.
Contents
1 Introduction
2 The derivation and reaction mechanism of all-solid-state Z-scheme photocatalytic systems
3 The research findings of silver-containing semiconductor materials-based Z-scheme
photocatalytic systems
3.1 AgX-based Z-scheme photocatalytic systems
3.2 Ag3PO4-based Z-scheme photocatalytic systems
3.3 Ag2CO3-based Z-scheme photocatalytic systems
3.4 Ag2MO4-based Z-scheme photocatalytic system
4 Conclusion

中图分类号: 

()
[1] 王鹏远(Wang P Y), 郭昌胜(Guo C S), 高建峰(Gao J F), 徐建(Xu J). 化学进展(Prog. Chem.), 2017, 29:241.
[2] 张圆正(Zhang Y Z), 谢利利(Xie L L), 周怡静(Zhou Y J), 殷立峰(Yin L F). 化学进展(Prog. Chem.), 2016, 28:1528.
[3] Chong M N, Jin B, Chow C W K, Saint C. Water Res., 2010, 44:2997.
[4] Dong H, Zeng G M, Tang L, Fan C Z, Zhang C, He X X, He Y. Water Res., 2015, 79:128.
[5] Chen C C, Ma W H, Zhao J C. Chem. Soc. Rev., 2010, 39:4206.
[6] He R A, Cao S W, Zhou P, Yu J G. Chinese J. Catal., 2014, 35:989.
[7] 李二军(Li E J), 陈浪(Chen L), 章强(Zhang Q), 李文华(Li W H), 尹双凤(Yin S F). 化学进展(Prog. Chem.), 2010, 22:2282.
[8] 周丽(Zhou L), 邓慧萍(Deng H P), 张为(Zhang W). 化学进展(Prog. Chem.), 2015, 27:349.
[9] Li G P, Wang Y X, Mao L Q. RSC Adv., 2014, 4:53649.
[10] Ge M, Zhu N, Zhao Y P, Li J, Liu L. Ind. Eng. Chem. Res., 2012, 51:5167.
[11] Ge M, Tan M M, Cui G H. Acta Phys. -Chim. Sin., 2014, 30:2107.
[12] Jia C, Xie X W, Ge M, Zhao Y Q, Zhang H, Li Z L, Cui G H. Mater. Sci. Semicond. Proc., 2015, 36:71.
[13] Ge M, Hu Z. Ceram. Int., 2016,42:6510.
[14] Ge M, Chen Y, Liu M, Li M. J. Environ. Chem. Eng., 2015, 3:2809.
[15] Li H J, Zhou Y, Tu W G, Ye J H, Zou Z G. Adv. Funct. Mater., 2015, 25:998.
[16] Wang Y J, Wang Q S, Zhan X Y, Wang F M, Safdar M, He J. Nanoscale, 2013, 5:8326.
[17] Xiu Z L, Bo H, Wu Y Z, Hao X P. Appl. Surf. Sci., 2014, 289:394.
[18] Zhou P, Yu J G, Jaroniec M. Adv. Mater., 2014, 26:4920.
[19] Li H, Tu W G, Zhou Y, Zou Z G. Adv. Sci., 2016, 3:1500389.
[20] Tachibana Y, Vayssieres L, Durrant J R. Nature Photon., 2012, 6:511.
[21] 李平(Li P), 李海金(Li H J), 涂文广(Tu W G), 周勇(Zhou Y), 邹志刚(Zou Z G). 物理学报(Acta Phys. Sin.), 2015, 64:094209.
[22] Wang X F, Li S F, Ma Y Q, Yu H G, Yu J G. J. Phys. Chem. C, 2011, 115:14648.
[23] Hou J G, Wang Z, Yang C, Zhou W L, Jiao S Q, Zhu H M. J. Phys. Chem. C, 2013, 117:5132.
[24] Hou J G, Yang C, Wang Z, Ji Q H, Li Y T, Huang G C, Jiao S Q, Zhu H M. Appl. Catal. B:Environ., 2013, 142/143:579.
[25] Zhang J, Niu C G, Ke J, Zhou L F, Zeng G M. Catal. Commun., 2015, 59:30.
[26] Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H. J. Am. Chem. Soc., 2011, 133:6490.
[27] Li H Y, Sun Y J, Cai B, Gan S Y, Han D X, Niu L, Wu T S. Appl. Catal. B:Environ., 2015, 170/171:206.
[28] Ye L Q, Liu J Y, Gong C Q, Tian L H, Peng T Y, Zan L. ACS Catal., 2012, 2:1677.
[29] Yang Y X, Guo W, Guo Y N, Zhao Y H, Yuan X, Guo Y H. J. Hazard. Mater., 2014, 271:150.
[30] Xie R Y, Zhang L P, Xu H, Zhong Y, Sui X F, Mao Z P. J. Mol. Catal. A:Chem., 2015, 406:194.
[31] He J, Shao D W, Zheng L C, Zheng L J, Feng D Q, Xu J P, Zhang X H, Wang W C, Wang W H, Lu F, Dong H, Cheng Y H, Liu H, Zheng R K. Appl. Catal. B:Environ., 2017, 203:917.
[32] Putri L K, Ong W J, Chang W S, Chai S P. Appl. Surf. Sci., 2015, 358:2.
[33] Wan Y J, Liang C Y, Xia Y, Huang W, Li Z L. Appl. Surf. Sci., 2017, 396:48.
[34] Wang D, Yu Y, Zhang Z P, Fang H Y, Chen J M, He Z Q, Song S. Environ. Sci. Pollut. Res., 2016, 23:18369.
[35] Wang T Y, Quan W, Jiang D L, Chen L L, Li D, Meng S C, Chen M. Chem. Eng. J., 2016, 300:280.
[36] Chen Z H, Wang W L, Zhang Z G, Fang X M. J. Phys. Chem. C, 2013, 117:19346.
[37] Cui M, Yu J X, Lin H J, Wu Y, Zhao L H, He Y M. Appl. Surf. Sci., 2016, 387:912.
[38] Lin H L, Cao J, Luo B D, Xu B Y, Chen S F. Catal. Commun., 2012, 21:91.
[39] Yi Z G, Ye J H, Kikugawa N, Kako T, Ouyang S X, Stuart-Williams H, Yang H, Cao J Y, Luo W J, Li Z S, Liu Y, Withers R L. Nat. Mater., 2010, 9:559.
[40] Martin D J, Liu G G, Moniz S J A, Bi Y P, Beale A M, Ye J H, Tang J W. Chem. Soc. Rev., 2015, 44:7808.
[41] Chen X J, Dai Y Z, Wang X Y. J. Alloys Compd., 2015, 649:910.
[42] Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 2016, 116:7159.
[43] Chen X X, Huang X T, Yi Z G. Chem. Eur. J., 2014, 20:17590.
[44] Meng S G, Ning X F, Zhang T, Chen S F, Fu X L. Phys. Chem. Chem. Phys., 2015, 17:11577.
[45] Katsumata H, Sakai T, Suzuki T, Kaneco S. Ind. Eng. Chem. Res., 2014, 53:8018.
[46] Zhou L, Zhang W, Chen L, Deng H P. J. Colloid Interface Sci., 2017, 487:410.
[47] Tang C N, Liu E Z, Fan J, Hu X Y, Ma Y N, Wan J. RSC Adv., 2015, 5:91979.
[48] Yang X F, Chen Z P, Xu J S, Tang H, Chen K M, Jiang Y. ACS Appl. Mater. Inter., 2015, 7:15285.
[49] He Y M, Zhang L H, Teng B T, Fan M H. Environ. Sci. Technol., 2015, 49:649.
[50] Luo J, Zhou X S, Ma L, Xu L M, Xu X Y, Du Z H, Zhang J Q. Mater. Res. Bull., 2016, 81:16.
[51] Lu J S, Wang Y J, Liu F L, Zhang L, Chai S N. Appl. Surf. Sci., 2017, 393:180.
[52] Wang Z L, lv J L, Dai K, Lu L H, Liang C H, Geng L. Mater. Lett., 2016, 169:250.
[53] Wan J, Du X, Liu E Z, Hu Y, Fan J, Hu X J. Catal., 2017, 345:281.
[54] Shi W L, Guo F, Yuan S L. Appl. Catal. B:Environ., 2017, 209:720.
[55] Zhu C S, Zhang L, Jiang B, Zheng J T, Hu P, Li S J, Wu M B, Wu W T. Appl. Surf. Sci., 2016, 377:99.
[56] Chen X X, Li R, Pan X Y, Huang X T, Yi Z G. Chem. Eng. J., 2017, 320:644.
[57] Chen F, Yang Q, Li X M, Zeng G M, Wang D B, Niu C G, Zhao J W, An H X, Xie T, Deng Y C. Appl. Catal. B:Environ., 2017, 200:330.
[58] Cai T, Liu Y T, Wang L L, Zhang S Q, Zeng Y X, Yuan J L, Ma J H, Dong W Y, Liu C B, Luo S L. Appl. Catal. B:Environ., 2017, 208:1.
[59] Cui C, Wang Y P, Liang D Y, Cui W, Hu H H, Lu B Q, Xu S, Li X Y, Wang C, Yang Y. Appl. Catal. B:Environ., 2014, 158/159:150.
[60] Tang H, Fu Y H, Chang S F, Xie S Y, Tang G G. Chinese J. Catal., 2017, 38:337.
[61] Shi L, Liang L, Wang F X, Liu M S, Sun J L. J. Mater. Sci., 2015, 50:1718.
[62] Li J J, Xie Y L, Zhong Y J, Hu Y. J. Mater. Chem. A, 2015, 3:5474.
[63] Xiang Z, Zhong J B, Huang S T, Li J Z, Chen J F, Wang T, Li M J, Wang P. Mater. Sci. Semicon. Proc., 2016, 52:62.
[64] Song S Q, Meng A Y, Jiang S J, Cheng B, Jiang C J. Appl. Surf. Sci., 2017, 396:1368.
[65] Xu D F, Cheng B, Cao S W, Yu J G. Appl. Catal. B:Environ., 2015, 164:380.
[66] Yeh T F, Chan F F, Hsieh C T, Teng H. J. Phys. Chem. C, 2011, 115:22587.
[67] Deng Y C, Tang L, Zeng G M, Wang J J, Zhou Y Y, Wang J J, Tang J, Liu Y N, Peng B, Chen F. J. Mol. Catal. A:Chem., 2016, 421:209.
[68] Luo J, Zhou X S, Ma L, Xu X Y. Appl. Surf. Sci., 2016, 390:357.
[69] Zhu B C, Xia P F, Li Y, Ho W, Yu J G. Appl. Surf. Sci., 2017, 391:175.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[3] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[4] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[5] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[6] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[7] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[8] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[9] 易享炎, 黄菲, JonathanB.Baell, 黄和, 于杨. 可见光催化C(sp 3)-C(sp 3)键的构筑[J]. 化学进展, 2019, 31(4): 505-515.
[10] 安俊健, 王梦玲, 黄梦璇, 王鹏, 张光彦. 纳米铁酸铋及其改性物的环境催化性能[J]. 化学进展, 2018, 30(9): 1298-1307.
[11] 丁星, 杨祥龙, 熊中亮, 陈浩, 张礼知. 铋系光催化剂去除环境污染物[J]. 化学进展, 2017, 29(9): 1115-1126.
[12] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[13] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[14] 赵艳霞, 何圣贵. 异核氧化物团簇与小分子的反应研究[J]. 化学进展, 2016, 28(4): 401-414.
[15] 花东龙, 庄晓煜, 童东绅, 俞卫华, 周春晖. 催化甘油脱水氧化连串反应制丙烯酸[J]. 化学进展, 2016, 28(2/3): 375-390.