English
新闻公告
More
化学进展 2022, Vol. 34 Issue (10): 2283-2301 DOI: 10.7536/PC220132 前一篇   后一篇

• 综述与评论 •

Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究

白文己, 石宇冰, 母伟花*(), 李江平, 于嘉玮   

  1. 云南师范大学化学化工学院 昆明 650500
  • 收稿日期:2022-01-31 修回日期:2022-07-04 出版日期:2022-10-24 发布日期:2022-09-19
  • 通讯作者: 母伟花
  • 作者简介:

    母伟花 女,博士,教授,1999~2008年就读于北京师范大学化学学院,先后获学士学位和博士学位,师从方德彩教授,现任职于云南师范大学化学化工学院。自2003年起,开始从事计算化学与理论化学相关研究,累计主持国家自然科学基金两项。重点通过密度泛函理论计算,探讨过渡金属催化反应的微观机理、化学选择性、区域选择性和立体选择性问题。

  • 基金资助:
    国家自然科学基金(21763033); 云南省万人计划“青年拔尖人才”专项资助

Computational Study on Cs2CO3-Assisted Palladium-Catalyzed X—H(X=C,O,N, B) Functionalization Reactions

Bai Wenji, Shi Yubing, Mu Weihua(), Li Jiangping, Yu Jiawei   

  1. Faculty of Chemistry and Chemical Engineering, Yunnan Normal University,Kunming 650500, China
  • Received:2022-01-31 Revised:2022-07-04 Online:2022-10-24 Published:2022-09-19
  • Contact: Mu Weihua
  • Supported by:
    National Natural Science Foundation of China(21763033); Top young talents of Yunnan ten thousand people plan

钯催化X—H (X=C、O、N、B)官能团化反应是重要的有机合成策略,能以芳基卤化物、烯类或炔类等小分子化合物为底物,以原子经济的方式构建C—C和C—X (X=O、N、B)键。其中,Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应因具有反应性好、产率高、底物适用范围广等优点,成为近年来有机合成领域的关注热点之一,在构建含C—C和C—X键的多环天然产物骨架方面起着重要作用。采用DFT理论研究Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应,能帮助人们从微观层面了解该类反应的实质,进而为设计新的实验合成路线提供启示。本文对近十年来Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的最新理论研究进展进行分类和总结,对反应的微观机理以及Cs2CO3在反应中的作用机制进行了深入探讨,并对该领域的现存问题和发展前景进行了总结与展望。

Palladium-catalyzed X—H (X=C, O, N, B) functionalization reaction is an important organic synthesis strategy, which can build C—C and C—X (X=O, N, B) bonds in an atomically economical way by employing small molecules such as aryl halides, alkenes or alkynes as substrates. Due to its high yield, good reactivity and wide substrate compatibility, Cs2CO3-assisted palladium-catalyzed X—H (X=C, O, N, B) functionalization reaction has become one of the hot spots in the field of organic synthesis in recent years, and has played a crucial role in constructing C—C and C—X bonds in polycyclic natural product skeletons. Based on previous experimental results, density functional theory (DFT) has been employed to study the Cs2CO3-assisted palladium-catalyzed X—H (X=C,O,N,B) functionalization reaction in detail, so as to help people understand the essence of this type of reaction at microscopic level, and provide inspiration for designing new experimental synthetic routes. Herein, the latest density functional theory research results on Cs2CO3-assisted palladium-catalyzed X—H (X=C,O,N,B) functionalization reactions have been summarized, with corresponding computational results about microcosmic reaction mechanism and role of Cs2CO3 additive emphasized. The present issues and prospects of future development in this field are also summarized and forecast in the end.

()
图式1 钯催化芳基C(sp2)—H活化的四种可能反应机制对应的过渡态结构[9,76]
Scheme 1 Transition state structures corresponding to four possible reaction mechanisms of palladium-catalyzed aryl C(sp2)—H activation[9,76]
图式2 Cs2CO3辅助钯催化邻甲基碘苯、苯甲酸酐与丙烯酸乙酯的三组分交叉偶联反应机理[70]
Scheme 2 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed three-component cross-coupling of o-methyl iodobenzene, benzoic anhydride with ethyl acrylate[70]
图式3 Cs2CO3辅助钯催化丙烯酰胺螺环化的反应机理(a)及其芳基C(sp2)—H活化的势能剖面图(b)[58]
Scheme 3 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed spirocyclization of acrylamide, and (b) potential energy profiles for aryl C(sp2)—H activation[58]
图式4 Cs2CO3辅助钯催化4-甲氧基溴苯与多氟代烃羰基偶联的反应机理(a)及其芳基C(sp2)—H活化的势能剖面图(b)[71]
Scheme 4 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed carbonylative couplings of 4-methoxybromobenzene with polyfluorohydrocarbon, and (b) potential energy profiles for aryl C(sp2)—H activation[71]
图式5 Cs2CO3辅助钯催化碘苯、降冰片烯与二叔丁基二氮杂环丙啶酮发生Heck反应的机理(a)及其芳基C(sp2)—H活化的势能剖面图(b)[63]
Scheme 5 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed Heck reaction of iodobenzene, norbornene with di-tert-butyldiaziridione, and (b) potential energy profiles for aryl C(sp2)—H activation[63]
图式6 Cs2CO3辅助钯催化2-氯联苯偶联的反应机理[72]
Scheme 6 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed coupling of 2-Chlorobiphenyl[72]
图式7 Cs2CO3辅助钯催化苯基三异丙基甲硅烷基乙炔基醚与新戊酸肉桂酯双C—H裂解的环化反应机理(a)及其芳基C(sp2)—H活化的势能剖面图(b)[78]
Scheme 7 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed double C—H cracking and cyclization of phenyl triisopropylsilyl ethynyl ether with cinnamyl pivalate, and (b) potential energy profiles for aryl C(sp2)—H activation[78]
图式8 Cs2CO3辅助钯催化N-芳基-1,2,3-三唑芳基化偶联的反应机理[86]
Scheme 8 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed arylation coupling of N-aryl-1,2,3-triazole[86]
图式9 Cs2CO3辅助钯催化芳基重氮酯与邻溴苯甲醛分子间酰化的反应势能剖面图[65]
Scheme 9 Potential energy profiles for Cs2CO3-assisted palladium-catalyzed intermolecular acylation of aryldiazoesters with o-bromobenzaldehydes[65]
图式10 Cs2CO3辅助钯催化吡啶与对-三氟甲基卤代芳基化合物偶联的反应机理(a)及其C(sp2)—H活化的势能剖面图(b)[87]
Scheme 10 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed coupling of pyridine with p-trifluoromethyl haloaryl compound, and (b) potential energy profiles for C(sp2)—H activation[87]
图式11 Cs2CO3辅助钯催化甲苯磺酰基保护的二芳基甲基胺羰基化的反应机理[89]
Scheme 11 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed carbonylation of tosyl-protected diarylmethyl-amine[89]
图式12 Cs2CO3辅助钯催化4-甲氧基碘苯与3-芳基丙酰胺的偶联反应机理[92]
Scheme 12 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed coupling of 4-methoxy iodobenzene with 3-arylpropanamides[92]
图式13 Cs2CO3辅助钯催化(Z)-2-溴乙烯基苯与endo-N-(对苯甲基)-降冰片烯琥珀酰亚胺[2+1]环加成的反应机理及其烷基C(sp3)—H活化的势能剖面图[93]
Scheme 13 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed [2+1] cycloaddition of (Z)-2-bromovinylbenzene with endo-N-(p-tolyl)-norbornene succinimide, and potential energy profiles for alkyl C(sp3)—H activation[93]
图式14 Cs2CO3辅助钯催化3-苯基丙酰胺分子内酰胺化的反应机理(a)及氧化剂R26和R27的还原消除能垒(b)[94]
Scheme 14 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed intramolecular amidation of 3-phenylpropanamide, and (b) reduction elimination barriers of oxidant R26 and R27[94]
图式15 Cs2CO3辅助钯催化邻甲基萘氨基甲酰氯酰胺化的反应机理(a)及其烷基C(sp3)—H活化的势能剖面图(b)[95]
Scheme 15 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed amidation of o-methylnaphthalene carbamoyl chloride, and (b) potential energy profiles for alkyl C(sp3)—H activation[95]
图式16 Cs2CO3辅助钯催化N-异丙基氨基甲酸酯区域选择性C(sp3)—H活化的反应机理[96]
Scheme 16 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed regioselective C(sp3)—H activation of N-isopropyl carbamate[96]
图式17 Cs2CO3辅助钯催化γ,δ-不饱和肟酯螺环化的反应机理(a)及其C(sp3)—H活化的势能剖面图(b)[97]
Scheme 17 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed spirocyclization of γ,δ-unsaturated oxime ester, and (b) potential energy profiles for C(sp3)—H activation[97]
图式18 Cs2CO3辅助钯/铜共催化苯乙炔与碘苯Sonogashira交叉偶联的反应机理(a)及其铜催化过程的势能剖面图(b)[98]
Scheme 18 (a) Reaction mechanism for Cs2CO3-assisted Pd/Cu co-catalyzed Sonogashira cross-coupling of phenylacetylene with iodobenzene, and (b) potential energy profiles for Cu-catalyzed cycle[98]
图式19 Cs2CO3辅助钯催化γ-(2-碘代苯胺基)酮分子内偶联的反应机理[103]
Scheme 19 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed intramolecular coupling of γ-(2-iodoanilino)ketone[103]
图式20 Cs2CO3辅助钯催化溴苯与4-甲基-4-羟基-2-戊酮交叉偶联的反应机理(a)及其O—H活化反应的势能剖面图(b)[104]
Scheme 20 (a) Reaction mechanism for Cs2CO3-assisted palladium-catalyzed cross-coupling of bromobenzene with 4-methyl-4-hydroxy-2-pentanone, and (b) potential energy profiles for O—H activation[104]
图式21 Cs2CO3辅助钯催化1-溴-2-(1-苯基乙烯基)苯与1-苯基环丁醇的交叉偶联反应(a)及其O—H活化和C—C裂解的势能剖面图(b)[88]
Scheme 21 (a) Reaction for Cs2CO3-assisted palladium-catalyzed cross-coupling of 1-bromo-2-(1-phenylvinyl) benzene with 1-phenylcyclobutanol, and (b) potential energy profiles for O—H activation and C—C cleavage[88]
图式22 Cs2CO3辅助钯催化邻碘苯胺、N-苯甲酰氧基胺与降冰片二烯的交叉偶联反应(a)及其C—H和N—H活化的势能剖面图(b, R=叔丁氧羰基; c, R=叔丁基)[59]
Scheme 22 (a) Cs2CO3-assisted palladium-catalyzed cross-coupling of o-iodoaniline, N-benzoyloxyamine with norbornadiene, and potential energy profiles for C—H with N—H activation (b, R= Boc; c, R= t-butyl)[59]
图式23 Cs2CO3辅助钯催化不对称B—H活化合成手性笼状邻碳硼烷的反应机理(为清晰可见,除关键部位的氢原子外,其余氢原子已全部省略)[60]
Scheme 23 Reaction mechanism for Cs2CO3-assisted palladium-catalyzed asymmetric B—H activation to synthesize chiral caged o-carborane (For clarity, all hydrogen atoms except for the key ones have been omitted)[60]
[1]
Nakamura I, Yamamoto Y. Chem. Rev., 2004, 104(5): 2127.

pmid: 15137788
[2]
Trowbridge A, Walton S M, Gaunt M J. Chem. Rev., 2020, 120(5): 2613.

doi: 10.1021/acs.chemrev.9b00462     pmid: 32064858
[3]
Gong H, Yang Y W, Kuang C X. Prog. Chem., 2014, 26(4): 592.
龚浩, 杨义文, 匡春香. 化学进展, 2014, 26(4): 592.).
[4]
Patil N T, Yamamoto Y. Chem. Rev., 2008, 108(8): 3395.

doi: 10.1021/cr050041j     URL    
[5]
Xiong Q, Chen H H, Zhang T, Shan C H, Bai R P, Lan Y. Asian J. Org. Chem., 2019, 8(8): 1194.

doi: 10.1002/ajoc.201900314    
[6]
Xie H J, Sun Q, Ren G R, Cao Z X. J. Org. Chem., 2014, 79(24): 11911.

doi: 10.1021/jo501618k     URL    
[7]
Wang K, Lu Y, Hu F D, Yang J H, Zhang Y, Wang Z X, Wang J B. Organometallics, 2018, 37(1): 1.

doi: 10.1021/acs.organomet.7b00657     URL    
[8]
Xu Z Y, Zhang S Q, Liu J R, Chen P P, Li X, Yu H Z, Hong X, Fu Y. Organometallics, 2018, 37(4): 592.

doi: 10.1021/acs.organomet.7b00903     URL    
[9]
Shan C H, Zhu L, Qu L B, Bai R P, Lan Y. Chem. Soc. Rev., 2018, 47(20): 7552.

doi: 10.1039/C8CS00036K     URL    
[10]
Shen J H, Cheng G L, Cui X L. Prog. Chem., 2012, 24(7): 1324.
沈金海, 程国林, 崔秀灵. 化学进展, 2012, 24(7): 1324.).
[11]
Testa C, Roger J, Fleurat-Lessard P, Hierso J C. Eur. J. Org. Chem., 2019, 2019(2/3): 233.

doi: 10.1002/ejoc.201801138     URL    
[12]
Yang Y F, Hong X, Yu J Q, Houk K N. Acc. Chem. Res., 2017, 50(11): 2853.

doi: 10.1021/acs.accounts.7b00440     URL    
[13]
Leskinen M V, Madarász Á, Yip K T, Vuorinen A, Pápai I, Neuvonen A J, Pihko P M. J. Am. Chem. Soc., 2014, 136(17): 6453.

doi: 10.1021/ja501681y     pmid: 24684203
[14]
Chen X, Engle K, Wang D H, Yu J Q. Angew. Chem. Int. Ed., 2009, 48(28): 5094.

doi: 10.1002/anie.200806273     URL    
[15]
Yan H M, Tian Y, Li N, Chang R, Zhang Z X, Zhang X Y, Yang W J, Guo Z, Li Y R. RSC Adv., 2018, 8(53): 30186.

doi: 10.1039/C8RA06077K     URL    
[16]
Kefalidis C E, Davi M, Holstein P M, Clot E, Baudoin O. J. Org. Chem., 2014, 79(24): 11903.

doi: 10.1021/jo501610x     pmid: 25188526
[17]
Liu J B, Tian Y Y, Zhang X, Wang L L, Chen D Z. Dalton Trans., 2018, 47(14): 4893.

doi: 10.1039/C8DT00015H     URL    
[18]
Ackermann L. Chem. Rev., 2011, 111(3): 1315.

doi: 10.1021/cr100412j     pmid: 21391562
[19]
Baudoin O. Chem. Soc. Rev., 2011, 40(10): 4902.

doi: 10.1039/c1cs15058h     URL    
[20]
Hu X X, Liu J B, Wang L L, Huang F, Sun C Z, Chen D Z. Org. Chem. Front., 2018, 5(10): 1670.

doi: 10.1039/C8QO00094H     URL    
[21]
Feng W H, Wang T Y, Liu D Z, Wang X T, Dang Y F. ACS Catal., 2019, 9(8): 6672.

doi: 10.1021/acscatal.9b01412     URL    
[22]
Wang C P, Naren N A, Zheng P F, Dong G B. J. Am. Chem. Soc., 2020, 142(19): 8962.

doi: 10.1021/jacs.0c02654     URL    
[23]
Cao X Q, Zhang Y G. Green Chem., 2016, 18(9): 2638.

doi: 10.1039/C6GC00163G     URL    
[24]
Zuo Z J, Wang J, Liu J J, Wang Y Y, Luan X J. Angew. Chem. Int. Ed., 2020, 59(2): 653.

doi: 10.1002/anie.201909557     URL    
[25]
Szpera R, Isenegger P G, Ghosez M, Straathof N J W, Cookson R, Blakemore D C, Richardson P, Gouverneur V. Org. Lett., 2020, 22(16): 6573.

doi: 10.1021/acs.orglett.0c02347     URL    
[26]
Tan B J, Bai L, Ding P, Liu J J, Wang Y Y, Luan X J. Angew. Chem. Int. Ed., 2019, 58(5): 1474.

doi: 10.1002/anie.201813202     URL    
[27]
Cella J A, Bacon S W. J. Org. Chem., 1984, 49(6): 1122.

doi: 10.1021/jo00180a033     URL    
[28]
Ouyang K B, Xi Z F. Acta Chim. Sinica., 2013, 71(1): 13.

doi: 10.6023/A12110984     URL    
欧阳昆冰, 席振峰. 化学学报, 2013, 71(1): 13.).
[29]
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev., 2019, 119(4): 2192.

doi: 10.1021/acs.chemrev.8b00507    
[30]
Vogiatzis K D, Polynski M V, Kirkland J K, Townsend J, Hashemi A, Liu C, Pidko E A. Chem. Rev., 2019, 119(4): 2453.

doi: 10.1021/acs.chemrev.8b00361     URL    
[31]
Zhu L, Jiang Y Y, Fan X, Liu P, Ling B P, Bi S W. Organometallics, 2018, 37(14): 2222.

doi: 10.1021/acs.organomet.8b00185     URL    
[32]
Simmons E M, Hartwig J F. Angew. Chem. Int. Ed., 2012, 51(13): 3066.

doi: 10.1002/anie.201107334     pmid: 22392731
[33]
Niu P P, Liu P Y, Meng Y N, Yu F, He Y P. J. Org. Chem., 2021, 86(3): 3096.

doi: 10.1021/acs.joc.0c02872     URL    
[34]
Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys., 2010, 132(15): 154104.

doi: 10.1063/1.3382344     URL    
[35]
Grimme S. J. Comput. Chem., 2006, 27(15): 1787.

doi: 10.1002/jcc.20495     URL    
[36]
Chai J D, Head-Gordon M. Phys. Chem. Chem. Phys., 2008, 10(44): 6615.

doi: 10.1039/b810189b     URL    
[37]
Zhao Y, Truhlar D G. Theor. Chem. Acc., 2008, 120(1/3): 215.

doi: 10.1007/s00214-007-0310-x     URL    
[38]
Jacobsen H, Cavallo L. ChemPhysChem, 2012, 13(2): 562.

doi: 10.1002/cphc.201100705     pmid: 22213579
[39]
Cramer C J, Truhlar D G. Phys. Chem. Chem. Phys., 2009, 11(46): 10757.

doi: 10.1039/b907148b     URL    
[40]
Xie H J, Fan T, Lei Q F, Fang W J. Sci. China Chem., 2016, 59(11): 1432.

doi: 10.1007/s11426-016-0018-2     URL    
[41]
Newton C G, Wang S G, Oliveira C C, Cramer N. Chem. Rev., 2017, 117(13): 8908.

doi: 10.1021/acs.chemrev.6b00692     URL    
[42]
Favier I, Pla D, GÓmez M. Chem. Rev., 2020, 120(2): 1146.

doi: 10.1021/acs.chemrev.9b00204     URL    
[43]
Wang Z H, Fu Y J, Zhang Q Y, Liu H, Wang J. J. Org. Chem., 2020, 85(12): 7683.

doi: 10.1021/acs.joc.0c00115     URL    
[44]
Veerakumar P, Thanasekaran P, Lu K L, Lin K C, Rajagopal S. ACS Sustainable Chem. Eng., 2017, 5(10): 8475.

doi: 10.1021/acssuschemeng.7b00922     URL    
[45]
Shen C R, Wei Z H, Jiao H J, Wu X F. Chem. Eur. J., 2017, 23(54): 13262.

doi: 10.1002/chem.201703190     URL    
[46]
Cheng J Z, Liu L L, Liao G F, Shen Z Q, Tan Z R, Xing Y Q, Li X X, Yang K, Chen L, Liu S Y. J. Mater. Chem. A, 2020, 8(12): 5890.

doi: 10.1039/C9TA13514F     URL    
[47]
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia M F, Wencel-Delord J, Besset T, Maes B U W, Schnürch M. Chem. Soc. Rev., 2018, 47(17): 6603.

doi: 10.1039/c8cs00201k     pmid: 30033454
[48]
Sauermann N, Meyer T H, Tian C, Ackermann L. J. Am. Chem. Soc., 2017, 139(51): 18452.

doi: 10.1021/jacs.7b11025     pmid: 29149561
[49]
Gensch T, James M J, Dalton T, Glorius F. Angew. Chem. Int. Ed., 2018, 57(9): 2296.

doi: 10.1002/anie.201710377     URL    
[50]
Shi H, Herron A N, Shao Y, Shao Q, Yu J Q. Nature, 2018, 558(7711): 581.

doi: 10.1038/s41586-018-0220-1     URL    
[51]
Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew. Chem. Int. Ed., 2019, 58(37): 12803.

doi: 10.1002/anie.201904214     URL    
[52]
He J, Wasa M, Chan K S L, Shao Q, Yu J Q. Chem. Rev., 2017, 117(13): 8754.

doi: 10.1021/acs.chemrev.6b00622     URL    
[53]
Deng R X, Huang Y Z, Ma X N, Li G C, Zhu R, Wang B, Kang Y B, Gu Z H. J. Am. Chem. Soc., 2014, 136(12): 4472.

doi: 10.1021/ja500699x     URL    
[54]
Liu L T, Zhang A A, Wang Y F, Zhang F Q, Zuo Z Z, Zhao W X, Feng C L, Ma W J. Org. Lett., 2015, 17(9): 2046.

doi: 10.1021/acs.orglett.5b00122     URL    
[55]
Yang L, Neuburger M, Baudoin O. Angew. Chem. Int. Ed., 2018, 57(5): 1394.

doi: 10.1002/anie.201712061     pmid: 29231274
[56]
Scheipers I, Mück-Lichtenfeld C, Studer A. Angew. Chem. Int. Ed., 2019, 58(20): 6545.

doi: 10.1002/anie.201901848     pmid: 30866139
[57]
Zhang Y C, Geng H Q, Wu X F. Angew. Chem. Int. Ed., 2021, 60(45): 24292.

doi: 10.1002/anie.202111206     URL    
[58]
Franzoni I, Yoon H, García-LÓpez J A, Poblador-Bahamonde A I, Lautens M. Chem. Sci., 2018, 9(6): 1496.

doi: 10.1039/c7sc04709f     pmid: 29675193
[59]
Zhang B S, Li Y K, Zhang Z, An Y, Wen Y H, Gou X Y, Quan S Q, Wang X G, Liang Y M. J. Am. Chem. Soc., 2019, 141(24): 9731.

doi: 10.1021/jacs.9b05009     URL    
[60]
Cheng R F, Li B W, Wu J, Zhang J, Qiu Z Z, Tang W J, You S L, Tang Y, Xie Z W. J. Am. Chem. Soc., 2018, 140(13): 4508.

doi: 10.1021/jacs.8b01754     URL    
[61]
Xu H Y, Muto K, Yamaguchi J, Zhao C Y, Itami K, Musaev D G. J. Am. Chem. Soc., 2014, 136(42): 14834.

doi: 10.1021/ja5071174     URL    
[62]
Guo Z W, Li M, Mou X Q, He G, Xue X S, Chen G. Org. Lett., 2018, 20(6): 1684.

doi: 10.1021/acs.orglett.8b00530     URL    
[63]
Li B W, Wang M Y, Fang S, Liu J Y. Organometallics, 2019, 38(9): 2189.

doi: 10.1021/acs.organomet.9b00168     URL    
[64]
Xu L P, Roque J B, Sarpong R, Musaev D G. J. Am. Chem. Soc., 2020, 142(50): 21140.

doi: 10.1021/jacs.0c10220     URL    
[65]
Yu Y H, Lu Q Q, Chen G, Li C S, Huang X L. Angew. Chem. Int. Ed., 2018, 57(1): 319.

doi: 10.1002/anie.201710317     URL    
[66]
Hagui W, Doucet H, SoulÉ J F. Chem, 2019, 5(8): 2006.

doi: 10.1016/j.chempr.2019.06.005     URL    
[67]
Yao Q J, Xie P P, Wu Y J, Feng Y L, Teng M Y, Hong X, Shi B F. J. Am. Chem. Soc., 2020, 142(42): 18266.

doi: 10.1021/jacs.0c09400     URL    
[68]
Zhang X P, Ding Q Q, Wang J J, Yang J Y, Fan X S, Zhang G S. Green Chem., 2021, 23(1): 526.

doi: 10.1039/D0GC03254A     URL    
[69]
Ruiz-Castillo P, Buchwald S L. Chem. Rev., 2016, 116(19): 12564.

pmid: 27689804
[70]
Liang Y J, Jiang Y Y, Liu Y X, Bi S W. Org. Biomol. Chem., 2017, 15(29): 6147.

doi: 10.1039/C7OB01021D     URL    
[71]
Mondal T, Dutta S, De S, Koley D. J. Org. Chem., 2019, 84(1): 257.

doi: 10.1021/acs.joc.8b02630     pmid: 30525639
[72]
Xu L P, Haines B E, Ajitha M J, Murakami K, Itami K, Musaev D G. ACS Catal., 2020, 10(5): 3059.

doi: 10.1021/acscatal.9b05328     URL    
[73]
Ackermann L, Vicente R, Potukuchi H K, Pirovano V. Org. Lett., 2010, 12(21): 5032.

doi: 10.1021/ol102187e     pmid: 20929268
[74]
Sharma A, Hazarika H, Sarmah M, Das B, Gogoi P. J. Org. Chem., 2020, 85(17): 11382.

doi: 10.1021/acs.joc.0c01475     URL    
[75]
Chouhan G G, Alper H. J. Org. Chem., 2009, 74(16): 6181.

doi: 10.1021/jo9010574     pmid: 19606884
[76]
Ke Z F, Cundari T R. Organometallics, 2010, 29(4): 821.

doi: 10.1021/om900895t     URL    
[77]
Zhou P X, Ye Y Y, Liu C, Zhao L B, Hou J Y, Chen D Q, Tang Q, Wang A Q, Zhang J Y, Huang Q X, Xu P F, Liang Y M. ACS Catal., 2015, 5(8): 4927.

doi: 10.1021/acscatal.5b00516     URL    
[78]
Gimferrer M, D’Alterio M C, Talarico G, Minami Y, Hiyama T, Poater A. J. Org. Chem., 2020, 85(19): 12262.

doi: 10.1021/acs.joc.0c01503     pmid: 32786640
[79]
Unoh Y, Satoh T, Hirano K, Miura M. ACS Catal., 2015, 5(11): 6634.

doi: 10.1021/acscatal.5b01896     URL    
[80]
Dong Z, Ren Z, Thompson S J, Xu Y, Dong G B. Chem. Rev., 2017, 117(13): 9333.

doi: 10.1021/acs.chemrev.6b00574     pmid: 28125210
[81]
Xi Y M, Ma S J, Hartwig J F. Nature, 2020, 588(7837): 254.

doi: 10.1038/s41586-020-2919-z     URL    
[82]
Xu H, Wang D J, Chen Y R, Wan W, Deng H M, Ma K S, Wu S X, Hao J, Jiang H Z. Org. Chem. Front., 2017, 4(7): 1239.

doi: 10.1039/C7QO00119C     URL    
[83]
Xu Q, Zheng B H, Zhou X X, Pan L, Liu Q, Li Y F. Org. Lett., 2020, 22(5): 1692.

doi: 10.1021/acs.orglett.9b04201     URL    
[84]
Chen Z Y, Ye C Q, Zhu H, Zeng X P, Yuan J J. Chem. Eur. J., 2014, 20(15): 4237.

doi: 10.1002/chem.201400084     URL    
[85]
Sasano K, Takaya J, Iwasawa N. J. Am. Chem. Soc., 2013, 135(30): 10954.

doi: 10.1021/ja405503y     pmid: 23865901
[86]
Yamajala K D B, Banerjee S, Patil M. J. Org. Chem., 2015, 80(6): 3003.

doi: 10.1021/jo5026145     pmid: 25710598
[87]
Salamanca V, Toledo A, AlbÉniz A C. J. Am. Chem. Soc., 2018, 140(51): 17851.

doi: 10.1021/jacs.8b10680     pmid: 30521317
[88]
Wang Q N, Chen R J, Lou J, Zhang D H, Zhou Y G, Yu Z K. ACS Catal., 2019, 9(12): 11669.

doi: 10.1021/acscatal.9b04161     URL    
[89]
Bai X F, Mu Q C, Xu Z, Yang K F, Li L, Zheng Z J, Xia C G, Xu L W. ACS Catal., 2019, 9(2): 1431.

doi: 10.1021/acscatal.8b04725     URL    
[90]
Dai Z Y, Nong Z S, Song S, Wang P S. Org. Lett., 2021, 23(8): 3157.

doi: 10.1021/acs.orglett.1c00801     URL    
[91]
Kuwano R, Yokogi M, Ken S K, Masaoka S, Miura T, Won S. Org. Process Res. Dev., 2019, 23(8): 1568.

doi: 10.1021/acs.oprd.9b00210     URL    
[92]
Tong H R, Zheng S J, Li X H, Deng Z Q, Wang H, He G, Peng Q, Chen G. ACS Catal., 2018, 8(12): 11502.

doi: 10.1021/acscatal.8b03654     URL    
[93]
Ying F, Zhang Y T, Xiang C Y, Song Z J, Xie H J, Bao W L. Front. Chem., 2019, 7: 169.

doi: 10.3389/fchem.2019.00169     URL    
[94]
Tong H R, Zheng W R, Lv X Y, He G, Liu P, Chen G. ACS Catal., 2020, 10(1): 114.

doi: 10.1021/acscatal.9b04768     URL    
[95]
Zhang Q, Yu H Z, Fu Y. Organometallics, 2013, 32(15): 4165.

doi: 10.1021/om400370v     URL    
[96]
Katayev D, Larionov E, Nakanishi M, Besnard C, Kündig E P. Chem. Eur. J., 2014, 20(46): 15021.

doi: 10.1002/chem.201403985     URL    
[97]
Wei W X, Li Y K, Wen Y T, Li M, Li X S, Wang C T, Liu H C, Xia Y, Zhang B S, Jiao R Q, Liang Y M. J. Am. Chem. Soc., 2021, 143(20): 7868.

doi: 10.1021/jacs.1c04114     pmid: 33974798
[98]
Wang X B, Song Y M, Qu J P, Luo Y. Organometallics, 2017, 36(5): 1042.

doi: 10.1021/acs.organomet.7b00010     URL    
[99]
Shi J L, Wang T, Huang Y S, Zhang X H, Wu Y D, Cai Q. Org. Lett., 2015, 17(4): 840.

doi: 10.1021/ol5036613     URL    
[100]
Liu J C, Peng H, Yang Y J, Jiang H F, Yin B L. J. Org. Chem., 2016, 81(20): 9695.

doi: 10.1021/acs.joc.6b01774     URL    
[101]
Wang B, He D, Ren B G, Yao T L. Chem. Commun., 2020, 56(6): 900.

doi: 10.1039/C9CC08438J     URL    
[102]
Yao T L, Wang B, He D, Zhang X F, Li X, Fang R. Org. Lett., 2020, 22(17): 6784.

doi: 10.1021/acs.orglett.0c02297     URL    
[103]
Fernández I, SolÉ D, Sierra M A. J. Org. Chem., 2011, 76(6): 1592.

doi: 10.1021/jo1020954     pmid: 21284378
[104]
Zhang S L, Yu Z L. J. Org. Chem., 2016, 81(1): 57.

doi: 10.1021/acs.joc.5b02098     URL    
[105]
Hu L X, Gui W J, Liu Z C, Jiang B S. RSC Adv., 2014, 4(72): 38258.

doi: 10.1039/C4RA05670A     URL    
[106]
Jiang B S, Hu L X, Gui W J. RSC Adv., 2014, 4(27): 13850.

doi: 10.1039/C4RA00821A     URL    
[107]
Aljaar N, Al-Noaimi M, Conrad J, Beifuss U. J. Org. Chem., 2021, 86(2): 1408.

doi: 10.1021/acs.joc.0c01923     URL    
[108]
Chen X, Sun P, Mo B C, Chen C X, Peng J S. J. Org. Chem., 2021, 86(1): 352.

doi: 10.1021/acs.joc.0c02126     pmid: 33251795
[109]
Ahmadi F, Goli H R, Balmohammadi Y, Bazgir A. J. Org. Chem., 2021, 86(1): 146.

doi: 10.1021/acs.joc.0c01860     URL    
[110]
Quan Y J, Xie Z W. J. Am. Chem. Soc., 2015, 137(10): 3502.

doi: 10.1021/jacs.5b01169     URL    
[111]
Spokoyny A M, Lewis C D, Teverovskiy G, Buchwald S L. Organometallics, 2012, 31(24): 8478.

doi: 10.1021/om301116x     URL    
[112]
Mu W H, Liu W Z, Cheng R J, Dou L J, Liu P, Hao Q. Catalysts, 2019, 9(6): 548.

doi: 10.3390/catal9060548     URL    
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[4] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[5] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[6] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[7] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[8] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[9] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[10] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[11] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[12] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[13] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[14] 冯勇, 李谕, 应光国. 基于过硫酸盐活化的微界面电子转移氧化技术[J]. 化学进展, 2021, 33(11): 2138-2149.
[15] 顾凯丽, 李浩贞, 张晋华, 李锦祥. 硫化零价铁去除水中污染物的效能及交互机制[J]. 化学进展, 2021, 33(10): 1812-1822.