English
新闻公告
More
化学进展 2020, Vol. 32 Issue (6): 836-850 DOI: 10.7536/PC190924 前一篇   后一篇

• 综述与评论 •

金属-二氧化碳电池的发展:机理及关键材料

徐昌藩1, 房鑫1, 湛菁1,**(), 陈佳希1, 梁风2,**()   

  1. 1. 中南大学冶金与环境学院 难冶有色金属资源高效利用国家工程实验室 长沙 410083
    2. 昆明理工大学冶金与能源工程学院 昆明 650093
  • 收稿日期:2019-09-20 修回日期:2019-12-12 出版日期:2020-06-05 发布日期:2020-04-13
  • 通讯作者: 湛菁, 梁风
  • 作者简介:
    ** Corresponding author e-mail: (Jing Zhan); (Feng Liang)
  • 基金资助:
    国家自然科学基金项目(51704136); 国家自然科学基金项目(11765010); 国家自然科学基金项目(51974378); 湖南省战略性新兴产业科技攻关与重大科技成果转化项目(2018GK4001); 中南大学中央高校基本科研业务费专项资金(2019zzts502)

Progress for Metal-CO2 Batteries: Mechanism and Advanced Materials

Changfan Xu1, Xin Fang1, Jing Zhan1,**(), Jiaxi Chen1, Feng Liang2,**()   

  1. 1. School of Metallurgy and Environment, National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous Metals, Central South University, Changsha 410083, China
    2. Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received:2019-09-20 Revised:2019-12-12 Online:2020-06-05 Published:2020-04-13
  • Contact: Jing Zhan, Feng Liang
  • Supported by:
    the National Natural Science Foundation of China(51704136); the National Natural Science Foundation of China(11765010); the National Natural Science Foundation of China(51974378); the Scientific and Technological Breakthrough and Major Achievements Transformation of Strategic Emerging Industries of Hunan Province(2018GK4001); the Fundamental Research Funds for the Central Universities of Central South University(2019zzts502)

金属-二氧化碳(Me-CO2)电池结合了先进储能和有效固定CO2的双重特性,被视为下一代能源转换和储存以及CO2捕获和利用器件的潜在候选者。然而,目前Me-CO2电池面临如倍率性能差、高极化率、CO2转换效率低、循环寿命短等一系列的挑战。为了便于了解Me-CO2电池的最新研究并促进其发展,本文系统地总结、比较和讨论了基于金属(锂、钠、铝、锌、钾)阳极的Me-CO2电池的发展,包括电池放电/充电机制、阴极材料/电催化剂、电解质、金属电极等,着重阐明了电极和电解质等功能材料对电极反应稳定性和速率的影响,展望了合理构建电池材料的前景和方向,为Me-CO2电池的发展提供指导。

Metal-carbon dioxide(Me-CO2) batteries can not only fix carbon dioxide effectively, but also serve as clean energy storage devices, which are considered as potential candidates for the next generation of energy conversion and storage, as well as carbon dioxide capture and utilization. However, due to the slow electrochemical reaction of the cathode, the instability of the electrolyte, and the difficult reversible conversion of the discharge product, the current Me-CO2 batteries are impeded by low capacity and rate capability, high polarizability, low energy conversion efficiency, and short cycle life. In this paper, we provide insights on the current main research progress of Me-CO2 batteries based on metal(lithium, sodium, aluminum, zinc, potassium) anodes, including discharge/charging mechanism, CO2 electrode and electrocatalysts, electrolyte materials and metal electrodes, etc. Considerable emphasis is placed on the effects of function material on the stability and rate of electrode reaction. In addition, the prospects and directions for the rational construction of materials are prospected to improve the electrochemical performance of Me-CO2 batteries and provide guidance for the development of Me-CO2 batteries.

Contents

1 Introduction
2 Mechanism for metal-CO2 batteries

2.1 Li-CO2 batteries

2.2 Na-CO2 batteries

2.3 Al-CO2 batteries

2.4 Zn-CO2 batteries

2.5 K-CO2 batteries

3 CO2 electrode/catalysts

3.1 Carbon/heteroatom doped carbon catalysts

3.2 Precious catalysts

3.2 Non-Precious catalysts

4 Electrolytes

4.1 Non-aqueous electrolytes

4.2 Quasi-solid/solid electrolytes

4.3 Hybrid electrolytes

5 Metal anode
6 Conclusion and outlook
()
表1 Li2CO3分解的可能反应路径及相应反应的可逆电势[19]
Table 1 Possible reactions of the decomposition of Li2CO3 and the reversible potential of the corresponding reactions[19]
图1 可逆Me-CO2电池示意图
Fig. 1 Schematic illustration of a reversible Me-CO2 battery
图2 (a)具有BN-hG阴极的Li-CO2电池的示意图。(b)完全放电/充电曲线,不同电流密度下的(c)放电终止电压和(d)极化曲线,(e)长期循环性能[38]
Fig. 2 (a) The schematic representation of Li-CO2 battery with a BN-hG cathode.(b) Full discharge/charge curves,(c) discharge end voltage and (d) polarization curves at different current densities,(e) long-term cycling performance[38]
图3 (a)不使用Ru催化剂的Li-CO2电池充电过程的反应机理示意图,(b)使用Ru催化剂的Li-CO2电池可能的充电机理和(c) Li-CO2电池的放电过程[22];以NPG@Pd或NPG作为阴极的Al-CO2电池的(d)放电-充电电压曲线和(e) 电流密度为333 mA·g-1循环性能[30]
Fig. 3 Schematic diagram of the (a) reaction mechanism of the charging process of the Li-CO2 battery without the Ru catalyst, (b) possible charging mechanism of the Li-CO2 battery with the Ru catalyst and (c) discharging process of the Li-CO2 battery[22];(d) Discharge-charge voltage profiles and (e) Cyclability of two Al-CO2 batteries with NPG@Pd or NPG as cathodes, in which the current density was fixed at 333 mA·g-1[30]
图4 NiPG催化阴极用于可充电水系Zn-CO2电池。(a) CO2还原反应的LSV曲线,(b)不同电流密度下的CO和H2的法拉第效率,(c)恒流放电和充电电压,(d)循环曲线[53]
Fig. 4 Rechargeable aqueous Zn-CO2 batteries with NiPG catalyst cathode.(a) The LSV curves for CO2 reduction reaction.(b) CO and H2 Faradaic efficiency at several discharge currents.(c) Galvanostatic discharge and charge potentials at 1.5 and 0.5 mA, respectively.(d) Galvanostatic discharge-charge cycling curves with 0.5 mA of discharge and 0.25 mA of charge[53]
图5 (a)电解质溶剂介电常数对Li-O2/CO2电池反应途径的影响[37];(b)稀释的LiTFSI-DMSO电解质中最终放电产物(Li2CO3)形成机理的示意图;(c)在超浓缩LiTFSI-DMSO电解质中最终放电产物(C2O62-)形成机理的示意图[14]
Fig. 5 (a) The effect of dielectric constant of electrolyte solvent on the reaction pathway of Li-O2/CO2 battery[37];(b) Schematic illustrations of the formation mechanism of final discharge product(Li2CO3) in dilute LiTFSI-DMSO electrolyte;(c) Schematic illustrations of the formation mechanism of final discharge product(C2O62-) in super-concentrated LiTFSI-DMSO electrolyte[14]
图6 (a)以N-SWCNH为催化剂的混合Na-CO2电池示意图;(b) 充放电电压曲线;(c) 放电容量曲线;(d) 循环性能曲线;(e) 混合Na-CO2电池在放电和充电过程中的原位Raman表征;(f)放电、充电后CO2电极的非原位XRD图[76]
Fig. 6 (a) Schematic illustration of the proposed hybrid Na-CO2 battery with N-SWCNH as a catalyst.(b) Discharge-charge voltage curves,(c) discharge capacities curves,(d) the cycling performance of hybrid Na-CO2 battery with N-SWCNH as catalyst at a current density of 0.1 mA·cm-2,(e) In-situ Raman characterization of the hybrid Na-CO2 battery during discharge and recharge,(f) Ex-situ XRD pattern of the CO2 electrode after discharge and charge[76]
图7 rGO-Na阳极的设计和表征:(A~C)SEM图像和相应实物照片,GO(A),rGO(B)和rGO-Na阳极表面(C);(D)GO和rGO的FTIR;(E, F) XPS光谱;(G)XRD;(H) rGO-Na和纯Na 电池的电镀/剥离的循环伏安图,扫描速度为0.5 V·s-1;(I) rGO-Na和纯Na阳极在Ar气氛中的准固态Na-CO2电池的快速放电/充电曲线,速率:0.3 mA·cm-2; 电压范围:1~4 V,插图:450次循环后rGO-Na和纯Na阳极表面的SEM图像[71]
Fig. 7 Design and characterization of rGO-Na anode(A~C) SEM images with corresponding inset photographs of GO foam(A), rGO foam reduced by molten Na(B), and rGO-Na anode surface(C).(D) FTIR of GO foam and rGO foam. a.u., arbitrary units. XPS spectra of O 1 s(E) and C 1 s(F) of GO foam and rGO foam.(G) XRD of rGO and rGO-Na anode.(H) Cyclic voltammograms of Na+ plating/stripping in a rGO-Na or Na/CPE/stainless steel cell with a sweep speed of 0.5 V·s-1.(I) Fast discharge/charge profiles of quasi-solid state Na-CO2 batteries in Ar atmosphere using rGO-Na and pure Na anodes. Rate, 0.3 mA·cm-2; voltage range, 1 to 4 V. Inset: SEM images of rGO-Na and pure Na anode surfaces after 450 cycles[71]
表 2 金属-二氧化碳电池及其性能总结
Table 2 Summary of Metal-CO2 batteries and their performances
Battery type Cathode Electrolyte Full discharge capacity
(mAh·g-1)
Cyclability/
cycles
Voltage
gap/V
ref
Li-CO2/O2 (1∶1) Ketjen Black 1 M LiTFSI/EC:DEC(3∶7 v/v) 6750(0.1 mA·cm-2) - - 13
Li-CO2 Ketjen Black 1 M LiTFSI/EC:DEC(3∶7 v/v) 66(0.2 mA·cm-2) - - 13
Li-CO2/O2(2∶1) Ketjen Black LiCF3SO3/TEGDME(1∶4) 1808(30 mA·g-1) 10(30 mA·g-1) ~1.6 16
Li-CO2 Ketjen Black LiCF3SO3/TEGDME(1∶4) 1032(30 mA·g-1) 7(30 mA·g-1) ~1.6 16
Li-CO2 Ketjen black 1 M LiTFSI/TEGDME+LiBr 11 500(50 mA·g-1) 38(50 mA·g-1) ~1.4 83
Li-CO2 Super P 1 M LiTFSI/([bmim][Tf2N]) ~0(0.05 mA·cm-1) - - 15
Li-CO2 Super P LiCF3SO3/TEGDME(1∶4) 6062(100 mA·g-1) 20(100 mA·g-1) ~2 22
Li-CO2 high surface area carbon 1 M LiTFSI/([bmim][Tf2N]) ~750(0.05 mA·cm-1) - - 15
Li-CO2 CNTs Composite polymer electrolyte 993.2 mAh(2.5 mA) 100(100 mA·g-1) ~2.1 73
Li-CO2 CNTs Gel Polymer Electrolyte 8536(50 mA·g-1) 60(100 mA·g-1) ~1.65 72
Li-CO2 CNTs Polymer electrolyte 12 000(100 mA·g-1) 60(100 mA·g-1) ~1.65 84
Li-CO2 CNTs 1 M LiTFSI/TEGDME 8379(50 mA·g-1) 29(50 mA·g-1) ~1.5 17
Li-CO2 CNT 1 M LiCF3SO3/TEGDME ~2850 μAh/20 uA - ~1.4 18
Li-CO2 Graphene 1 M LiTFSI/TEGDME 14 722(50 mA·g-1) 20(50 mA·g-1) ~1.23 17
Li-CO2 pencil-trace Bi-CoPc-GPE 27 196(100 mA·g-1) 120(200 mA·g-1) 1.14 85
Li-CO2 B,N-hG 1 M LiTFSI/TEGDME 14 996(300 mA·g-1) 200(1.0 A g-1) ~1.0 38
Li-CO2 CQD/hG 1 M LiTFSI+0.3 M LiNO3/DMSO 12 300(500 mA·g-1) 235(1.0 A g-1) ~1.02 42
Li-CO2 Ru@super P LiCF3SO3/TEGDME(1∶4) 8229(100 mA·g-1) 70(100 mA·g-1) ~1.71 22
Li-CO2/2% O2 Ru@GNSs 0.1 M LiClO4/DMSO 4742(0.08 mA·cm-2) 67(0.16 mA·cm-2) ~1.3 43
Li-CO2 Ru-Cu-G 1 M LiTFSI/TEGDME 13 698(200 mA·g-1) 100(100 mA·g-1) ~0.88 86
Li-CO2 RuO2/LDO 1 M LiTFSI/TEGDME 5455(100 mA·g-1) 60(166 mA·g-1) ~0.6 44
Li-CO2 /O2 (4∶1) Ru/N-CNT 1 M LITFSI/TEGDME 10 200(100 mA·g-1) 184(100 mA·g-1) ~1.2 87
Li-CO2 /O2 (2∶1) Ru/N-CNT 1 M LITFSI/TEGDME 12 000(100 mA·g-1) 190(100 mA·g-1) ~1.2 87
Li-CO2 Ru/N-CNT 1 M LITFSI/TEGDME 9300(100 mA·g-1) 150(100 mA·g-1) ~1.8 87
Li-CO2 Ru/ACNF 1 M LITFSI/TEGDME 11 495(200 mA·g-1) 50(100 mA·g-1) ~1.43 88
Li-CO2 Ru nanosheet 1 M LiTFSI/TEGDME 9502(100 mA·g-1) 100(200 mA·g-1) ~1.2 89
Li-CO2 RuP2-NPCF 1 M LiTFSI/TEGDME 11 951(100 mA·g-1) 200(200 mA·g-1) ~1.77 21
Li-CO2 CNT@RuO2 LiCF3SO3/TEGDME(1∶4) 2187(50 mA·g-1) 30(50 mA·g-1) ~1.4 90
Li-CO2 Ir-NSs-CNFs 1 M LITFSI/TEGDME 7666.7(166.7 mA·g-1) 400(500 mA·g-1) ~1.05 48
Li-CO2 IrO2/δ-MnO2 1 M LiClO4/TEGDME 6604(100 mA·g-1) 378(400 mA·g-1) ~1.3 47
Li-CO2/O2 (1∶1) Au NPs LiTFSI/DMSO(1∶3) 753(400 mA·g-1) 100(100 mA·g-1) ~0.6 14
Li-CO2 Ru/CNT flexible wood 1 M LiTFSI/TEGDME 11 mAh·cm-2 200(100 mA·g-1) ~1.5 66
Li-CO2 Ir/CNFs 1 M LiTFSI/TEGDME 21 528(50 mA·g-1) 45(50 mA·g-1) ~1.4 67
Li-CO2 Mn2(dobdc) 1 M LiTFSI/TEGDME 18 022(50 mA·g-1) 50(200 mA·g-1) ~1.35 20
Li-CO2 Mn(HCOO)2 1 M LiTFSI/TEGDME 15 510(50 mA·g-1) 50(200 mA·g-1) ~1.4 20
Li-CO2 MnCO3 1 M LiTFSI/TEGDME 11 110(50 mA·g-1) 25(200 mA·g-1) ~1.7 20
Li-CO2 MnO@NC-G 1 M LITFSI/TEGDME 25 021(50 mA·g-1) 206(0.1 A g-1) ~0.88 56
Li-CO2 Porous Mn2O3 0.5 M LiClO4/TEGDME 9434(50 mA·g-1) 45(50 mA·g-1) ~1.4 91
Li-CO2 NiO-CNT 1 M LiTFSI/TEGDME 9000(50 mA·g-1) 42(50 mA·g-1) ~1.4 64
Li-CO2 NiO nanofibers 1 M LiCF3SO3/TEGDME 11 288(100 mA·g-1) 134(100 mA·g-1) ~1.6 92
Li-CO2 Ni-NG 1 M LiTFSI/TEGDME 17 625(100 mA·g-1) 100(100 mA·g-1) ~1.6 50
Li-CO2 Ni/r-GO 1 M LiTFSI/TEGDME 8991(0.1 mA·cm-2) 100(100 mA·g-1) ~1.05 65
Li-CO2 NiFe@NC/PPC 1 M LiCF3SO3/TEGDME 6.8 mAh·cm-2(0.05 mA·cm-2) 109(0.05 mA·cm-2) ~1.85 93
Li-CO2 Cu-NG 1 M LiTFSI/TEGDME 14 864(200 mA·g-1) 50(200 mA·g-1) ~1.3 55
Li-CO2 CoPPc 1 M LITFSI/TEGDME 13.6 mAh·cm-2
(0.05 mA·cm-2)
50(0.05 mA·cm-2) ~1.3 94
Li-CO2 Mo2C/CNT 1 M LiCF3SO3/TEGDME 1150 μAh/20 μA 40(20 μA) ~0.9 18
Li-CO2 CC@Mo2C NPs Gel polymer electrolyte(GPE) 3415 μAh·cm-2(50 μA·cm-2) 40(20 μA·cm-2) ~0.65 54
Li-CO2 /trace O2 MFCN 1 M LiTFSI/TEGDME 8827(100 mA·g-1) 90(100 mA·g-1) ~1.04 95
Li-CO2 N-CNTs@Ti 1 M LiTFSI/TEGDME 9292.3(50 mA·g-1) 25(50 mA·g-1) ~1.51 96
Li-CO2 TiO2-NP/CNT/CNF 1 M LiTFSI/DMSO 1950 μAh·cm-2 20(0.05 mA·cm-2) ~1.4 97
Li-CO2 i-Ru4Cu1/CNFs 1 M LiTFSI/DMSO 15 753(300 mA·g-1) 110(500 mA·g-1) ~ 1.45 98
Li-CO2 Co0.2Mn0.8O2/CC 1 M LiTFSI/TEGDME 8203(100 mA·g-1) 500(100 mA·g-1) ~0.73 99
Li-CO2 MoS2 nanoflakes 0.1 M LiTFSI/EMIM-BF4/DMSO 60 000(100 mA·g-1) 500(500 mA·g-1) ~0.7 100
Li-CO2 ZnS QDs/N-rGO 1 M LiTFSI/TEGDME 10 310(100 mA·g-1) 190(400 mA·g-1) 1.21 101
Li-CO2 B-NCNT 1 M LiTFSI/TEGDME 23 328(50 mA·g-1) 360(1000 mA·g-1) 1.21~1.96 102
Li-CO2 COFs 1 M LiTFSI/TEGDME 27 348(200 mA·g-1) 200(1000 mA·g-1) 1.24 103
Li-CO2 adjacent Co/GO 1 M LiTFSI/TEGDME 17 358(100 mA·g-1) 100(100 mA·g-1) ~1.8 104
Li-CO2 Graphene@COF 1 M LiTFSI/TEGDME 27 833(75 mA·g-1) 56(500 mA·g-1) ~1.08 105
Li-CO2 MoS2-NS 1 M LiTFSI/DMSO 846 μAh·cm-2 50(0.05 mA·cm-2) ~1.0 106
Na-CO2 Super P 1 M NaClO4/TEGDME 173 mAh·g-1 - - 25
Na-CO2/O2 (3∶2) Super P 1 M NaClO4/TEGDME 2882(70 mA·g-1) - - 25
Na-CO2 Super P 0.75 M NaCF3SO3/IL 183 mAh·g-1 - - 25
Na-CO2/O2 (2∶3) Super P 0.75 M NaCF3SO3/IL 3500(70 mA·g-1) - - 25
Na-CO2/O2 (1∶1) porous carbon SiO2-IL-TFSI/PC-NaTFSI - 20(200 mA·g-1) ~2.2 26
Na-CO2 a-MWCNTs 1 M NaClO4/TEGDME 60 000(1000 mA·g-1) 200(1.0 A g-1) 0.6 27
Na-CO2 Na2CO3/CNTs 1 M NaClO4/TEGDME 350 mAh·g-1 100(0.05 mA·cm-2) ~1.7 28
Na-CO2 t-MCNT Composite polymer electrolyte 5000(50 mA·g-1) 400(500 mA·g-1) ~1.75 71
Na-CO2 CMO@CF 1 M NaClO4/TEGDME 8448(200 mA·g-1) 75 ~1.77 58
Na-CO2 CO@CF 1 M NaClO4/TEGDME 7427(200 mA·g-1) ~46 ~1.90 58
Na-CO2 MO@CF 1 M NaClO4/TEGDME 6634(200 mA·g-1) ~44 ~1.85 58
Na-CO2 MWCNTs SN-based electrolyte 7624(50 mA·g-1) 100(200 mA·g-1) ~2.08 107
Na-CO2 Ru@KB 1 M NaClO4/TEGDME 11 537(100 mA·g-1) 130(200 mA·g-1) ~2.0 108
Al-CO2/O2(4∶1) Ketjenblack ([EMIm]Cl/AlCl3 13 000(70 mA·g-1) - - 29
Al-CO2 NPG@Pd AlCl3/([EMim]Cl 26 739.9(333 mA·g-1) 30(333 mA·g-1) 0.091 30
Aqueous Zn-CO2 3D porous Pd double-electrolyte - 100(0.56 mA·cm-2) ~0.19 31
Aqueous Zn-CO2 Ir@Au double-electrolyte - 90(5 mA·cm-2) ~2.2 32
[1]
Shakun J D, Clark P U, He F, Marcott S A, Mix A C, Liu Z, Ottobliesner B, Schmittner A, Bard E . Nature, 2012,484: 49. https://www.ncbi.nlm.nih.gov/pubmed/22481357

doi: 10.1038/nature10915     URL     pmid: 22481357
[2]
Yang W, Dastafkan K, Chen J, Zhao C . Advanced Materials Technologies, 2018,3: 1700377.
[3]
Zhao F, Bae J W, Zhou X Y, Guo Y H, Yu G H . Advanced Materials, 2018,30: 1801796.
[4]
Long C, Li X, Guo J, Shi Y N, Liu S Q, Tang Z Y . Small Methods, 2019,3: 1800369.
[5]
Zhu D D, Liu J L, Qiao S Z . Advanced Materials, 2016,28: 3423. https://www.ncbi.nlm.nih.gov/pubmed/26996295

URL     pmid: 26996295
[6]
Leung D Y C, Caramanna G, Marotovaler M M . Renewable & Sustainable Energy Reviews, 2014,39: 426.
[7]
常世磊( Chang S L), 梁风(Liang F), 姚耀春(Yao Y C), 马文会(Ma W H), 杨斌(Yang B), 戴永年(Dai Y N) . 化学学报( Acta Chimica Sinica), 2018,76: 515.
[8]
Khurram A, He M, Gallant B M . Joule, 2018,2: 2649. https://linkinghub.elsevier.com/retrieve/pii/S2542435118304057

doi: 10.1016/j.joule.2018.09.002     URL    
[9]
Cai F, Hu Z, Chou S L . Advanced Sustainable Systems, 2018,2: 1800060. http://doi.wiley.com/10.1002/adsu.v2.8-9

doi: 10.1002/adsu.v2.8-9     URL    
[10]
Mu X, Pan H, He P, Zhou H . Advanced Materials, 2019: 1903790.
[11]
Xie J, Wang Y . Accounts of Chemical Research, 2019,52: 1721. https://www.ncbi.nlm.nih.gov/pubmed/31120728

URL     pmid: 31120728
[12]
Xiao X, Shang W, Yu W, Ma Y, Tan P, Chen B, Kong W, Xu H, Ni M . International Journal of Energy Research, 2019,1.
[13]
Takechi K, Shiga T, Asaoka T . Chemical Communications, 2011,47: 3463. https://www.ncbi.nlm.nih.gov/pubmed/21305097

URL     pmid: 21305097
[14]
Qiao Y, Yi J, Guo S, Sun Y, Wu S, Liu X, Yang S, He P, Zhou H . Energy & Environmental Science, 2018,11: 1211.
[15]
Xu S, Das S K, Archer L A . RSC Advances, 2013,3: 6656. e9dd3c7d-473a-4238-8c2c-4d6606d1b1ffhttp://dx.doi.org/10.1039/c3ra40394g

doi: 10.1039/c3ra40394g     URL    
[16]
Liu Y, Wang R, Lyu Y, Li H, Chen L . Energy & Environmental Science, 2014,7: 677.
[17]
Zhang Z, Zhang Q, Chen Y, Bao J, Zhou X, Xie Z, Wei J, Zhou Z . Angewandte Chemie International Edition, 2015,54: 6550. https://www.ncbi.nlm.nih.gov/pubmed/25968053

doi: 10.1002/anie.201501214     URL     pmid: 25968053
[18]
Hou Y, Wang J, Liu L, Liu Y, Chou S, Shi D, Liu H, Wu Y, Zhang W, Chen J . Advanced Functional Materials, 2017,27: 1700564. http://doi.wiley.com/10.1002/adfm.v27.27

doi: 10.1002/adfm.v27.27     URL    
[19]
Yang S, He P, Zhou H . Energy and Environmental Science, 2016,9: 1650.
[20]
Li S, Dong Y, Zhou J, Liu Y, Wang J, Gao X, Han Y, Qi P, Wang B . Energy & Environmental Science, 2018,11: 1318.
[21]
Guo Z, Li J, Qi H, Sun X, Li H, Tamirat A G, Liu J, Wang Y, Wang L . Small, 2018,15: 1803246. https://onlinelibrary.wiley.com/toc/16136829/15/29

doi: 10.1002/smll.v15.29     URL    
[22]
Yang S, Qiao Y, He P, Liu Y, Cheng Z, Zhu J J, Zhou H . Energy & Environmental Science, 2017,10: 972.
[23]
Qiao Y, Yi J, Wu S, Liu Y, Yang S, He P, Zhou H . Joule, 2017,1: 3590.
[24]
Mahne N, Renfrew S E , McCloskey B D, Freunberger S A. Angewandte Chemie International Edition, 2018,57: 5529. https://www.ncbi.nlm.nih.gov/pubmed/29543372

doi: 10.1002/anie.201802277     URL     pmid: 29543372
[25]
Das S K, Xu S, Archer L A . Electrochemistry Communications, 2013,27: 59. https://linkinghub.elsevier.com/retrieve/pii/S1388248112004742

doi: 10.1016/j.elecom.2012.10.036     URL    
[26]
Xu S, Lu Y, Wang H, Abru H D, Archer L A . Journal of Materials Chemistry A, 2014,2: 17723. 656092c9-ff05-4f7b-a056-4afce365eb2ehttp://dx.doi.org/10.1039/c4ta04130e

doi: 10.1039/c4ta04130e     URL    
[27]
Hu X, Sun J, Li Z, Zhao Q, Chen C, Chen J . Angewandte Chemie, 2016,55: 6482. https://www.ncbi.nlm.nih.gov/pubmed/27089434

URL     pmid: 27089434
[28]
Sun J, Lu Y, Yang H, Han M, Shao L, Chen J . Research, 2018,2018: 6914626.
[29]
Al Sadat W I, Archer L A . Science Advances, 2016,2: e1600968. https://www.ncbi.nlm.nih.gov/pubmed/27453949

doi: 10.1126/sciadv.1600968     URL     pmid: 27453949
[30]
Ma W, Liu X, Li C, Yin H, Xi W, Liu R, He G, Zhao X, Luo J, Ding Y . Advanced Materials, 2018,30: 1801152.
[31]
Xie J, Wang X, Lv J, Huang Y, Wu M, Wang Y B, Yao J . Angewandte Chemie, 2018,130: 17242.
[32]
Wang X, Xie J, Ghausi M A, Lv J, Huang Y, Wu M, Wang Y, Yao J . Advanced Materials, 2019,31: 1807807.
[33]
Zhang L, Tang Y, Liu Q, Yang T, Du C, Jia P, Wang Z, Tang Y, Li Y, Shen T D . Nano Energy, 2018,53: 544.
[34]
Hu A, Shu C, Xu C, Liang R, Li J, Zheng R, Li M, Long J . Journal of Materials Chemistry A, 2019,7: 21605.
[35]
Chang Z, Xu J, Zhang X . Advanced Energy Materials, 2017,7: 1700875.
[36]
Zhang P, Zhao Y, Zhang X . Chemical Society Reviews, 2018,47: 2921. http://xlink.rsc.org/?DOI=C8CS00009C

doi: 10.1039/C8CS00009C     URL    
[37]
Lim H K, Lim H D, Park K Y, Seo D H, Gwon H, Hong J, Goddard W A, Kim H, Kang K . Journal of the American Chemical Society, 2013,135: 9733. https://www.ncbi.nlm.nih.gov/pubmed/23758262

doi: 10.1021/ja4016765     URL     pmid: 23758262
[38]
Qie L, Lin Y, Connell J W, Xu J, Dai L M . Angewandte Chemie International Edition, 2017,56: 6970. https://www.ncbi.nlm.nih.gov/pubmed/28510337

URL     pmid: 28510337
[39]
Zhang X, Zhang Q, Zhang Z, Chen Y, Xie Z, Wei J, Zhou Z . Chemical Communications, 2015,51: 14636. https://www.ncbi.nlm.nih.gov/pubmed/26290015

doi: 10.1039/c5cc05767a     URL     pmid: 26290015
[40]
Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z, Storr K, Balicas L . Nature materials, 2010,9: 430. https://www.ncbi.nlm.nih.gov/pubmed/20190771

doi: 10.1038/nmat2711     URL     pmid: 20190771
[41]
Banhart F, Kotakoski J, Krasheninnikov A V . ACS Nano, 2010,5: 26. https://www.ncbi.nlm.nih.gov/pubmed/21090760

doi: 10.1021/nn102598m     URL     pmid: 21090760
[42]
Jin Y, Hu C, Dai Q, Xiao Y, Lin Y, Connell J W, Chen F, Dai L . Advanced Functional Materials, 2018,28: 1804630.
[43]
Wang L, Dai W, Ma L, Gong L, Lyu Z, Zhou Y, Liu J, Lin M, Lai M, Peng Z . ACS Omega, 2017,2: 9280. https://www.ncbi.nlm.nih.gov/pubmed/31457440

URL     pmid: 31457440
[44]
Xu S M, Ren Z C, Liu X, Liang X, Wang K X, Chen J S . Energy Storage Materials, 2018,15: 291. https://linkinghub.elsevier.com/retrieve/pii/S2405829718301995

doi: 10.1016/j.ensm.2018.05.015     URL    
[45]
Song S, Xu W, Zheng J, Luo L, Engelhard M H, Bowden M E, Liu B, Wang C M, Zhang J G . Nano letters, 2017,17: 1417. https://www.ncbi.nlm.nih.gov/pubmed/28186765

doi: 10.1021/acs.nanolett.6b04371     URL     pmid: 28186765
[46]
Bie S Y, Du M L, He W X, Zhang H G, Yu Z T, Liu J G, Liu M, Yan W W, Zhou L, Zou Z G . ACS Applied Materials & Interfaces, 2019,11: 5146. https://www.ncbi.nlm.nih.gov/pubmed/30640419

doi: 10.1021/acsami.8b20573     URL     pmid: 30640419
[47]
Mao Y, Tang C, Tang Z, Xie J, Chen Z, Tu J, Cao G, Zhao X . Energy Storage Materials, 2018,18: 405.
[48]
Xing Y, Yang Y, Li D, Luo M, Chen N, Ye Y, Qian J, Li L, Yang D, Wu F . Advanced Materials, 2018,30: 1803124.
[49]
Wu Y Q, Qiu X C, Liang F, Zhang Q K, Koo A, Dai Y N, Lei Y, Sun X L . Applied Catalysis B -Environmental, 2019,241: 407.
[50]
Zhang Z, Wang X G, Zhang X, Xie Z, Chen Y N, Ma L, Peng Z, Zhou Z . Advanced Science, 2018,5: 1700567. https://www.ncbi.nlm.nih.gov/pubmed/29619304

URL     pmid: 29619304
[51]
Wang R, Yu X Q, Bai J M, Li H, Huang X J, Chen L Q, Yang X Q . Journal of Power Sources, 2012,218: 113.
[52]
Hong M, Choi H C, Byon H R . Chemistry of Materials, 2015,27: 2234.
[53]
Yang R, Xie J F, Liu Q, Huang Y Y, Lv J Q, Ghausi M A, Wang X Y, Peng Z, Wu M X, Wang Y B . Journal of Materials Chemistry A, 2019,7: 2575.
[54]
Zhou J, Li X, Yang C, Li Y, Guo K, Cheng J, Yuan D, Song C, Lu J, Wang B . Advanced Materials, 2018,31: 1804439. https://onlinelibrary.wiley.com/toc/15214095/31/3

doi: 10.1002/adma.v31.3     URL    
[55]
Zhang Z, Zhang Z, Liu P, Xie Y, Cao K, Zhou Z . Journal of Materials Chemistry A, 2018,6: 3218.
[56]
Li S, Liu Y, Zhou J, Hong S, Dong Y, Wang J, Gao X, Qi P, Han Y, Wang B . Energy & Environmental Science, 2019,12: 1046.
[57]
Kang Y, Zou D, Zhang J Y, Liang F, Hayashi K, Wang H, Xue D F, Chen K F, Adair K R, Sun X L . Electrochimica Acta, 2017,244: 222. https://linkinghub.elsevier.com/retrieve/pii/S0013468617310964

doi: 10.1016/j.electacta.2017.05.100     URL    
[58]
Fang C, Luo J, Jin C, Yuan H, Sheng O, Huang H, Gan Y, Xia Y, Liang C, Zhang J . ACS Applied Materials & Interfaces, 2018,10: 17240. https://www.ncbi.nlm.nih.gov/pubmed/29701452

doi: 10.1021/acsami.8b04034     URL     pmid: 29701452
[59]
Xie J, Liu Q, Huang Y, Wu M, Wang Y B . Journal of Materials Chemistry A, 2018,6: 13952.
[60]
Bryantsev V S, Giordani V, Walker W, Blanco M, Zecevic S, Sasaki K, Uddin J, Addison D, Chase G V . The Journal of Physical Chemistry A, 2011,115: 12399. https://pubs.acs.org/doi/10.1021/jp2073914

doi: 10.1021/jp2073914     URL    
[61]
McCloskey B D, Speidel A, Scheffler R, Miller D, Viswanathan V, Hummelshøj J, Nørskov J, Luntz A . The Journal of Physical Chemistry Letters, 2012,3: 997. https://www.ncbi.nlm.nih.gov/pubmed/26286562

URL     pmid: 26286562
[62]
Yin W, Grimaud A, Lepoivre F, Yang C, Tarascon J M . The Journal of Physical Chemistry Letters, 2016,8: 214. https://www.ncbi.nlm.nih.gov/pubmed/27960058

URL     pmid: 27960058
[63]
Aurbach D , McCloskey B D, Nazar L F, Bruce P G. Nature Energy, 2016,1: 16128.
[64]
Zhang X, Wang C, Li H, Wang X G, Chen Y N, Xie Z, Zhou Z . Journal of Materials Chemistry A, 2018,6: 2792.
[65]
Qiao Y, Liu Y, Chen C, Xie H, Yao Y, He S, Ping W, Liu B, Hu L . Advanced Functional Materials, 2018,28: 1805899.
[66]
Xu S, Chen C, Kuang Y, Song J, Gan W, Liu B, Hitz E M, Connell J W, Lin Y, Hu L . Energy & Environmental Science, 2018,11: 3231
[67]
Wang C, Zhang Q, Zhang X, Wang X G, Xie Z, Zhou Z . Small, 2018,14: 1800641. http://doi.wiley.com/10.1002/smll.v14.28

doi: 10.1002/smll.v14.28     URL    
[68]
Kang Y, Liang F, Hayashi K . Electrochimica Acta, 2016,218: 119.
[69]
Wang X G, Wang C, Xie Z, Zhang X, Chen Y, Wu D, Zhou Z . ChemElectroChem, 2017,4: 2145.
[70]
Yin W, Grimaud A, Azcarate I, Yang C, Tarascon J M . The Journal of Physical Chemistry C, 2018,122: 6546.
[71]
Hu X, Li Z, Zhao Y, Sun J, Zhao Q, Wang J, Tao Z, Chen J . Science Advances, 2017,3: e1602396. https://www.ncbi.nlm.nih.gov/pubmed/28164158

doi: 10.1126/sciadv.1602396     URL     pmid: 28164158
[72]
Li C, Guo Z, Yang B, Liu Y, Wang Y, Xia Y . Angewandte Chemie International Edition, 2017,56: 9126. https://www.ncbi.nlm.nih.gov/pubmed/28612470

doi: 10.1002/anie.201705017     URL     pmid: 28612470
[73]
Hu X, Li Z, Chen J . Angewandte Chemie, 2017,129: 5879.
[74]
Wang X, Zhang X, Lu Y, Yan Z, Tao Z, Jia D, Chen J . ChemElectroChem, 2018,5: 3628.
[75]
Kim C, Kim J, Joo S, Bu Y, Liu M, Cho J, Kim G . Science, 2018,9: 278.
[76]
Xu C, Zhang K, Zhang D, Chang S, Liang F, Yan P, Yao Y, Qu T, Zhan J, Ma W . Nano Energy, 2019: 104318.
[77]
Zhang D, Ye K, Yao Y C, Liang F, Qu T, Ma W H, Yang B, Dai Y N, Watanabe T . Carbon, 2019,142: 278.
[78]
Kang Y, Su F, Zhang Q, Liang F, Adair K R, Chen K, Xue D, Hayashi K, Cao S C, Yadegari H . ACS Applied Materials & Interfaces, 2018,10: 23748. https://www.ncbi.nlm.nih.gov/pubmed/29932623

doi: 10.1021/acsami.8b04278     URL     pmid: 29932623
[79]
Asadi M, Sayahpour B, Abbasi P, Ngo A T, Karis K, Jokisaari J R, Liu C, Narayanan B, Gerard M, Yasaei-Khojin P . Nature, 2018,555: 502. https://www.ncbi.nlm.nih.gov/pubmed/29565358

doi: 10.1038/nature25984     URL     pmid: 29565358
[80]
Liang F, Qiu X C, Zhang Q K, Kang Y, Koo A, Hayashi K, Chen K F, Xue D F, Hui K N, Yadegari H, Sun X L . Nano Energy, 2018,49: 574. https://linkinghub.elsevier.com/retrieve/pii/S2211285518303045

doi: 10.1016/j.nanoen.2018.04.074     URL    
[81]
Qiu F, Ren S, Mu X, Liu Y, Zhang X, He P, Zhou H . Energy Storage Materials, 2020,26: 443.
[82]
Li L, Chang Z W, Zhang X B . Advanced Sustainable Systems, 2017,1: 1700036.
[83]
Wang X G, Wang C, Xie Z, Zhang X, Chen Y, Wu D, Zhou Z . ChemElectroChem, 2017,4: 2145.
[84]
Mushtaq M, Guo X W, Bi J P, Wang Z X, Yu H J . Rare Metals, 2018,37: 520.
[85]
Li J, Zhao H, Qi H, Sun X, Song X, Guo Z, Tamirat A G, Liu J, Wang L, Feng S . Advanced Functional Materials, 2019,29: 1806863.
[86]
Zhang Z, Yang C, Wu S, Wang A, Zhao L, Zhai D, Ren B, Cao K, Zhou Z . Advanced Energy Materials, 2018: 1802805.
[87]
Zhang P F, Lu Y Q, Wu Y J, Yin Z W, Li J T, Zhou Y, Hong Y H, Li Y Y, Huang L, Sun S G . Chemical Engineering Journal, 2019,363: 224.
[88]
Qiao Y, Xu S, Liu Y, Dai J, Xie H, Yao Y, Mu X, Chen C, Kline D J, Hitz E M, Liu B, Song J, He P, Zachariah M R, Hu L . Energy & Environmental Science, 2019,12: 1100.
[89]
Zhao H, Li D, Li H, Tamirat A G, Song X, Zhang Z, Wang Y, Guo Z, Wang L, Feng S . Electrochimica Acta, 2019,299: 592.
[90]
Bie S, Du M, He W, Zhang H, Yu Z, Liu J, Liu M, Yan W, Zhou L, Zou Z . ACS Applied Materials & Interfaces, 2019,11: 5146. https://www.ncbi.nlm.nih.gov/pubmed/30640419

URL     pmid: 30640419
[91]
Ma W, Lu S, Lei X, Liu X, Ding Y . Journal of Materials Chemistry A, 2018,6: 20829.
[92]
Lu S, Shang Y, Ma S, Lu Y, Liu Q C, Li Z J . Electrochimica Acta, 2019,319: 958.
[93]
Liang H, Zhang Y, Chen F, Jing S, Yin S, Tsiakaras P . Applied Catalysis B: Environmental, 2019,244: 559.
[94]
Chen J, Zou K, Ding P, Deng J, Zha C, Hu Y, Zhao X, Wu J, Fan J, Li Y . Advanced Materials, 2019,31: 1805484.
[95]
Zhu Q, Xu S, Cai Z, Harris M M, Wang K, Chen J . Energy Storage Materials, 2017,7: 209.
[96]
Li Y, Zhou J, Zhang T, Wang T, Li X, Jia Y, Cheng J, Guan Q, Liu E, Peng H . Advanced Functional Materials, 2019,29: 1808117.
[97]
Pipes R, Bhargav A, Manthiram A . ACS Applied Materials & Interfaces, 2018,10: 37119. https://www.ncbi.nlm.nih.gov/pubmed/30299075

URL     pmid: 30299075
[98]
Jin Y, Chen F, Wang J, Johnston R L . Chemical Engineering Journal, 2019,375: 121978.
[99]
Ge B, Sun Y, Guo J, Yan X, Fernandez C, Peng Q . Small, 2019: 1902220.
[100]
Ahmadiparidari A, Warburton R E, Majidi L, Asadi M, Chamaani A, Jokisaari J R, Rastegar S, Hemmat Z, Sayahpour B, Assary R S . Advanced Materials, 2019,31: 1902518. https://onlinelibrary.wiley.com/toc/15214095/31/40

doi: 10.1002/adma.v31.40     URL    
[101]
Wang H, Xie K, You Y, Hou Q, Zhang K, Li N, Yu W, Loh K P, Shen C, Wei B . Advanced Energy Materials, 2019: 1901806.
[102]
Li X, Zhou J, Zhang J, Li M, Bi X, Liu T, He T, Cheng J, Zhang F, Li Y . Advanced Materials, 2019,31: 1903852.
[103]
Li X, Wang H, Chen Z, Xu H S, Yu W, Liu C, Wang X, Zhang K, Xie K, Loh K P . Advanced Materials, 2019,1905879.
[104]
Zhang B W, Jiao Y, Chao D L, Ye C, Wang Y X, Davey K, Liu H K, Dou S X, Qiao S Z . Advanced Functional Materials, 2019,1904206.
[105]
Huang S, Chen D, Meng C, Wang S, Ren S, Han D, Xiao M, Sun L, Meng Y . Small, 2019,1904830.
[106]
Pipes R, He J, Bhargav A, Manthiram A . ACS Applied Energy Materials, 2019,2: 8685. https://pubs.acs.org/doi/10.1021/acsaem.9b01653

doi: 10.1021/acsaem.9b01653     URL    
[107]
Lu Y, Cai Y, Zhang Q, Liu L, Niu Z, Chen J . Chemical Science, 2019,10: 4306. https://www.ncbi.nlm.nih.gov/pubmed/31057757

doi: 10.1039/c8sc05178j     URL     pmid: 31057757
[108]
Guo L, Li B, Thirumal V, Song J . Chemical Communications, 2019,55: 7946. https://www.ncbi.nlm.nih.gov/pubmed/31219113

doi: 10.1039/c9cc02737h     URL     pmid: 31219113
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[3] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[4] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[5] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[6] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[7] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[8] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[9] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[10] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[11] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[12] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[13] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[14] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[15] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.