English
新闻公告
More
化学进展 2017, Vol. 29 Issue (1): 162-178 DOI: 10.7536/PC161002 前一篇   后一篇

• 综述 •

木质素氧化还原解聚研究现状

沈晓骏, 黄攀丽, 文甲龙, 孙润仓*   

  1. 北京林业大学 林木生物质化学北京市重点实验室 北京 100083
  • 收稿日期:2016-10-02 修回日期:2016-12-19 出版日期:2017-01-05 发布日期:2017-01-10
  • 通讯作者: 孙润仓 E-mail:rcsun3@bjfu.edu.cn
  • 基金资助:
    中央高校基本科研基金项目(No.2015ZCQ-CL-02),国家自然科学基金重点项目(No.31430092)和国家林业局公益行业专项面上项目(No.201404617)资助

Research Status of Lignin Oxidative and Reductive Depolymerization

Xiaojun Shen, Panli Huang, Jialong Wen, Runcang Sun*   

  1. Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
  • Received:2016-10-02 Revised:2016-12-19 Online:2017-01-05 Published:2017-01-10
  • Supported by:
    The work was supported by the Fundamental Research Funds for the Central Universities (No.2015ZCQ-CL-02), the State Key Program of National Natural Science Foundation of China(No.31430092), and the State Forestry Administration (No.201404617).
木质素是自然界中含量巨大的天然酚类聚合物,其总量仅次于纤维素。由于其结构复杂性,仅有不到2%的木质素用于工业生产,因此实现木质素的高效综合利用是目前该领域的难题,而木质素的氧化还原转化为芳香化合物是目前一个重要且有前景的手段:木质素氧化解聚能显著降低其主要化学键键能,促进木质素转化为香草醛、紫丁香醛和高香草醛等高度官能化的单体;而木质素还原解聚可将其结构中含氧官能团脱除,转化为低氧/无氧木质素生物油,可作为高热值生物燃油,且在反应中能显著抑制缩合反应的进行。本文简要介绍了木质素的结构单元以及联接方式,同时从反应条件和催化剂等方面全面综述了国内外木质素氧化还原解聚的最新研究进展,并对其反应机理进行了详细探讨。在此基础上,针对当前木质素解聚过程中的难题提出了未来该领域的研究重点和方向。
Lignin is a natural phenolic polymer and the second most abundant component next to cellulose in almost all plant biomass. However, only 2% of lignin is applied to industrial production due to the complexity of lignin structure. Therefore, the importance of comprehensive utilization of lignin should be addressed. It is a very important and promising approach for oxidative and reductive depolymerization of lignin polymer into aromatic compounds in lignin valorization. Oxidative depolymerization of lignin can significantly reduce the bond energy of main chemical bonds in lignin, which promotes the conversion of lignin into highly functionalized lignin monomer, such as vanillin, syringaldehyde, homovanillin.The reductive depolymerization can remove the oxygen-containing functional groups of the lignin and facilitate the transformation of lignin into low-oxygen and oxygen-free bio-oil, which can be applied to high caloric value bio-fuel. Besides, condensation reaction is conspicuously suppressed during reductive depolymerization. A brief introduction of the lignin structure unit, connecting and the recent progress in oxidative and reductive depolymerization of lignin are reviewed intensively. In addition, the catalytic mechanism for the depolymerization of lignin is also discussed. Furthermore, forthcoming research emphasis and directions of lignin depolymerization are proposed at the end of the review based on existing problems in this area.

Contents
1 Introduction
2 Lignin structure
3 Lignin catalytic depolymerization
4 Reductive depolymerization
4.1 Hydrogenolysis
4.2 Hydrodeoxygenation
4.3 Hydrogenation
4.4 Integrated hydrogen-processing
5 Oxidation Oxidatine depolymerization
5.1 Organometallic catalysis
5.2 Metal-free organocatalysis
5.3 Base catalysis
5.4 Polyoxometalates catalysis
5.5 Electrocatalytic oxidation
5.6 Photocatalytic oxidation
6 Conclusion and outlook

中图分类号: 

()
[1] Li C, Zhao X, Wang A, Huber G W, Zhang T. Chemical Reviews, 2015, 115(21):11559.
[2] Alvira P, Tomas-Pejo E, Ballesteros M, Negro M J. Bioresour Technol, 2010, 101(13):4851.
[3] Klein A P, Beach E S, Emerson J W, Zimmerman J B. Journal of Agricultural and Food Chemistry, 2010, 58(18):10045.
[4] Xu C, Arancon R A, Labidi J, Luque R. Chem Soc Rev, 2014, 43(22):7485.
[5] 龙金星(Long J X), 徐莹(Xu Y), 王铁军(Wang T J), 张兴华(Zhang X H), 张琦(Zhang Q), 马隆龙(Ma L L), 李宇萍(Li Y P). 新能源进展(Journal of Circuits and Systems), 2014, 2(2):83.
[6] Kamm B, Gruber P R, Kamm M. Biorefineries-Industrial Processes and Products. Wiley, 2006.
[7] Calvo-Flores F G, Dobado J A. ChemSusChem, 2010, 3(11):1227.
[8] Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz P F, Marita J M, Hatfield R D, Ralph S A, Christensen J H. Phytochemistry Reviews, 2004, 3(1/2):29.
[9] Sakakibara A. Wood Science and Technology, 1980, 14(2):89.
[10] Ralph J, Lu F. Organic & Biomolecular Chemistry, 2004, 2(19):2714.
[11] Lu F, Ralph J. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels, Amsterdam:Elsevier, 2010. 169.
[12] Vanholme R, Morreel K, Ralph J, Boerjan W. Current Opinion in Plant Biology, 2008, 11(3):278.
[13] Mansfield S D, Kim H, Lu F, Ralph J. Nature Protocols, 2012, 7(9):1579.
[14] Li S H, Liu S, Colmenares J C, Xu Y J. Green Chemistry, 2016,18(3):594.
[15] Zakzeski J, Bruijnincx P C, Jongerius A L, Weckhuysen B M. Chemical Reviews, 2010, 110(6):3552.
[16] Dorrestijn E, Laarhoven L J J, Arends I W C E, Mulder P. Journal of Analytical and Applied Pyrolysis, 2000, 54(1/2):153.
[17] Chakar F S, Ragauskas A J. Industrial Crops and Products, 2004, 20(2):131.
[18] Rodrigues Pinto P C, Borges Da Silva E A, Rodrigues A R E D. Industrial & Engineering Chemistry Research, 2010, 50(2):741.
[19] Zhang A, Lu F, Sun R, Ralph J. Planta, 2009, 229(5):1099.
[20] Yaghoubi K, Pazouki M, Shojaosadati S A. Bioresource Technology, 2008, 99(10):4321.
[21] Ghampson I T, Sepúlveda C, Garcia R, Fierro J G, Escalona N, Desisto W J. Applied Catalysis A:General, 2012, 435:51.
[22] Barta K, Warner G R, Beach E S, Anastas P T. Green Chem, 2014, 16(1):191.
[23] Warner G, Hansen T S, Riisager A, Beach E S, Barta K, Anastas P T. Bioresource Technology, 2014, 161:78.
[24] Song Q, Wang F, Xu J. Chem Commun (Camb), 2012, 48(56):7019.
[25] Kloekhorst A, Heeres H J. ACS Sustainable Chemistry & Engineering, 2015, 3(9):1905.
[26] Sergeev A G, Hartwig J F. Science, 2011, 332(6028):439.
[27] Sergeev A G, Webb J D, Hartwig J F. Journal of the American Chemical Society, 2012, 134(50):20226.
[28] Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, Xu J. Energy & Environmental Science, 2013, 6(3):994.
[29] Yakovlev V, Khromova S, Sherstyuk O, Dundich V, Ermakov, D, Novopashina V, Lebedev M, Bulavchenko O, Parmon, V. Catalysis Today, 2009, 144(3):362.
[30] Xu W, Miller S J, Agrawal P K, Jones C W. ChemSusChem, 2012, 5(4):667.
[31] Ferrini P, Rinaldi R. Angewandte Chemie-International Edition, 2014, 53(33):8634.
[32] Toledano A, Serrano L, Pineda A, Romero A A, Luque R, Labidi J. Applied Catalysis B:Environmental, 2014, 145:43.
[33] Torr K M, Van De Pas D J, Cazeils E, Suckling I D. Bioresource Technology, 2011, 102(16):7608.
[34] Ye Y, Zhang Y, Fan J, Chang J. Bioresour Technol, 2012, 118:648.
[35] Deuss P J, Scott M, Tran F, Westwood N J, De Vries J G, Barta K. Journal of the American Chemical Society, 2015, 137(23):7456.
[36] Van Den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn S F, Renders T, De Meester B, Huijgen W J J, Dehaen W, Courtin C M, Lagrain B, Boerjan W, Sels B F. Energy & Environmental Science, 2015, 8(6):1748.
[37] Schutyser W, Van Den Bosch S, Renders T, De Boe T, Koelewijn S F, Dewaele A, Ennaert T, Verkinderen O, Goderis B, Courtin C M, Sels B F. Green Chemistry, 2015, 17(11):5035.
[38] Wang H, Ruan H, Pei H, Wang H, Chen X, Tucker M P, Cort J R, Yang B. Green Chemistry, 2015, 17(12):5131.
[39] Nichols J M, Bishop L M, Bergman R G, Ellman J A. Journal of the American Chemical Society, 2010, 132(36):12554.
[40] Barta K, Ford P C. Accounts of Chemical Research, 2014, 47(5):1503.
[41] Wu A, Patrick B O, Chung E, James B R. Dalton Transactions, 2012, 41(36):11093.
[42] Huo W, Li W, Zhang M, Fan, W, Chang, H. M, Jameel, H. Catalysis Letters, 2014, 144(7):1159.
[43] Prasomsri T, Shetty M, Murugappan K, Roman-Leshkov Y. Energy & Environmental Science, 2014, 7(8):2660.
[44] Lee W S, Wang Z, Wu R J, Bhan A. Journal of Catalysis, 2014, 319:44.
[45] Ghampson I T, Sepúlveda C, Garcia R, Radovic L R, Fierro J G, Desisto W J, Escalona N. Applied Catalysis A:General, 2012, 439:111.
[46] Ma R, Hao W, Ma X, Tian Y, Li Y. Angew Chem Int Ed Engl, 2014, 53(28):7310.
[47] Ding L N, Wang A Q, Zheng M Y, Zhang T. ChemSusChem, 2010, 3(7):818.
[48] Guanhong Z, Zheng M, Aiqin W, Zhang T. Chinese Journal of Catalysis, 2010, 31(8):928.
[49] Zhao H, Li D, Bui P, Oyama S. Applied Catalysis A:General, 2011, 391(1):305.
[50] Ma X, Tian Y, Hao W, Ma R, Li Y. Applied Catalysis A:General, 2014, 481:64.
[41] De Rogatis L, Montini T, Cognigni A, Olivi L, Fornasiero P. Catalysis Today, 2009, 145(1):176.
[52] Lee J H, Lee E G, Joo O S, Jung K D. Applied Catalysis A:General, 2004, 269(1):1.
[53] Bykova M, Ermakov D Y, Kaichev V, Bulavchenko O, Saraev A, Lebedev M Y, Yakovlev V. Applied Catalysis B:Environmental, 2012, 113:296.
[54] Nimmanwudipong T, Runnebaum R C, Block D E, Gates B C. Energy & Fuels, 2011, 25(8):3417.
[55] Xu X, Li Y, Gong Y, Zhang P, Li H, Wang Y. Journal of the American Chemical Society, 2012, 134(41):16987.
[56] Parsell T H, Owen B C, Klein I, Jarrell T M, Marcum C L, Haupert L J, Amundson L M, Kenttämaa H I, Ribeiro F, Miller J T. Chemical Science, 2013, 4(2):806.
[57] Lin Y C, Li C L, Wan H P, Lee H T, Liu C F. Energy & Fuels, 2011, 25(3):890.
[58] González-Borja M, Resasco D E. Energy & Fuels, 2011, 25(9):4155.
[59] Feng B, Kobayashi H, Ohta H, Fukuoka A. Journal of Molecular Catalysis A:Chemical, 2014, 388:41.
[60] Ohta H, Feng B, Kobayashi H, Hara K, Fukuoka A. Catalysis Today, 2014, 234:139.
[61] Jongerius A L, Jastrzebski R, Bruijnincx P C, Weckhuysen B M. Journal of Catalysis, 2012, 285(1):315.
[62] Bui V N, Laurenti D, Delichère P, Geantet C. Applied Catalysis B:Environmental, 2011, 101(3):246.
[63] Romero Y, Richard F, Brunet S. Applied Catalysis B:Environmental, 2010, 98(3):213.
[64] Bui V N, Laurenti D, Afanasiev P, Geantet C. Applied Catalysis B:Environmental, 2011, 101(3):239.
[65] Romero Y, Richard F, Renème Y, Brunet S. Applied Catalysis A:General, 2009, 353(1):46.
[66] Popov A, Kondratieva E, Gilson J-P, Mariey L, Travert A, Maugé F. Catalysis Today, 2011, 172(1):132.
[67] Desnoyer A N, Fartel B, Macleod K C, Patrick B O, Smith K M. Organometallics, 2012, 31(21):7625.
[68] Wang W, Yang Y, Luo H, Peng H, He B, Liu W. Catalysis Communications, 2011, 12(14):1275.
[69] Wang W Y, Yang Y Q, Luo H A, Liu W Y. Catalysis Communications, 2010, 11(9):803.
[70] Zhao C, Kou Y, Lemonidou A A, Li X B, Lercher J A. Angew.Chem., Int.Ed., 2009, 48:3987.
[71] Chen Z, He J, Lemonidou A A, Li X, Lercher J A. Journal of Catalysis, 2011, 280(1):8.
[72] Güvenatam B, Kur?un O, Heeres E H, Pidko E A, Hensen E J. Catalysis Today, 2014, 233:83.
[73] Zhang W, Chen J, Liu R, Wang S, Chen L, Li K. ACS Sustainable Chemistry & Engineering, 2014, 2(4):683.
[74] Zhao C. ChemCatChem, 2012, 4(1):64.
[75] Zhu X, Lobban L L, Mallinson R G, Resasco D E. Journal of Catalysis, 2011, 281(1):21.
[76] Laskar D D, Tucker M P, Chen X, Helms G L, Yang B. Green Chemistry, 2014, 16(2):897.
[77] Huang Y B, Yang Z, Dai J J, Guo Q X, Fu Y. RSC Advances, 2012, 2(30):11211.
[78] Gallezot P, Richard D. Catalysis Reviews, 1998, 40(1/2):81.
[79] Liu W J, Zhang X S, Yanchao Q, Hong J, Yu H Q. Green Chemistry, 2012, 14(8):2226.
[80] Vispute T P, Zhang H, Sanna A, Xiao R, Huber G W. Science, 2010, 330(6008):1222.
[81] Nimmanwudipong T, Runnebaum R C, Ebeler S E, Block D E, Gates B C. Catalysis Letters, 2012, 142(2):151.
[82] Anderson J A, Athawale A, Imrie F E, Kenna F M M C, Cue A M C, Molyneux D, Power K, Shand M, Wells R P K. Journal of Catalysis, 2010, 270(1):9.
[83] Pérez Y, Fajardo M, Corma A. Catalysis Communications, 2011, 12(12):1071.
[84] Xu G, Guo J, Zhang Y, Fu Y, Chen J, Ma L, Guo Q. ChemCatChem, 2015, 7(16):2485.
[85] Li Z L, Garedew M, Lam C H, Jackson J E, Miller D J, Saffron C M. Green Chemistry, 2012, 14(9):2540.
[86] Lam C H, Lowe C B, Li Z, Longe K N, Rayburn J T, Caldwell M A, Houdek C E, Maguire J B, Saffron C M, Miller D J. Green Chemistry, 2014, 17(1):601.
[87] Zhao C, Camaioni D M, Lercher J A. Journal of Catalysis, 2012, 288(2):92.
[88] Runnebaum R C, Nimmanwudipong T, Block D E, Gates B C. Catalysis Science & Technology, 2011, 2(1):113.
[89] Runnebaum R C, Nimmanwudipong T, Limbo R R, Block D E, Gates B C. Catalysis Letters, 2012, 142(1):7.
[90] Runnebaum R C, Lobolapidus R J, Nimmanwudipong T, Block D E, Gates B C. Energy Fuels, 2011, 25(10):4776.
[91] Marker T, Roberts M, Linck M, Felix L, Ortiz-Toral P, Wangerow J, Tan E, Gephart J, Shonnard D. Office of Scientific & Technical Information Technical Reports, 2013.
[92] Shen X J, Wang B, Pan Li H, Wen J L, Sun R C. RSC Advances, 2016, 6(51):45315.
[93] Ma R, Xu Y, Zhang X. ChemSusChem, 2015, 8(1):24.
[94] Crestini C, Pro P, Neri V, Saladino R. Bioorganic & Medicinal Chemistry, 2005, 13(7):2569.
[95] Crestini C, Crucianelli M, Orlandi M, Saladino R. Catalysis Today, 2010, 156(1):8.
[96] Crestini C, Caponi M C, Argyropoulos D S, Saladino R. Bioorganic & Medicinal Chemistry, 2006, 14(15):5292.
[97] Harms R G, Markovits I I E, Drees M, Cokoja M, Kühn D F E. Chemsuschem, 2014, 7(2):429.
[98] Haikarainen A, Pajunen A, Mutikainen I. Journal of the Chemical Society Dalton Transactions, 2001, 42(7):991.
[99] Zhou X F, Quin J X, Wang S R. Drewno, 2011, 54:15.
[100] Zoia L, Canevali C, Orlandi M, Sipila J, Morazzoni F, Tolppa E L. Bioresources, 2008, 3(1):21.
[101] Zhou X F. Journal of Applied Polymer Science, 2014, 131(18):40809.
[102] Zakzeski J, Bruijnincx P C A, Weckhuysen B M. Working Papers, 2011, 13(3):671.
[103] Sippola V, Krause O, Vuorinen T. Journal of Wood Chemistry & Technology, 2004, 24(4):323.
[104] Badamali S K, Luque R, Clark J H, Breeden S W. Catalysis Communications, 2009, 10(6):1010.
[105] Biannic B, Bozell J J. Organic Letters, 2013, 15(11):2730.
[106] Lange H, Decina S, Crestini C. European Polymer Journal, 2013, 49(6):1151.
[107] Zhou X F. Environmental Progress & Sustainable Energy, 2015, 34(4):1120.
[108] Bugg T D, Ahmad M, Hardiman E M, Rahmanpour R. Natural Product Reports, 2011, 28(12):1883.
[109] Herrmann W A, Fischer R W. Journal of the American Chemical Society, 1995, 117(11):3223.
[110] Shimada M, Habe T, Higuchi T, Okamoto T, Panijpan B. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 1987, 41(5):277.
[111] Jiang Q, Sheng W, Guo X, Tang J, Guo C. Journal of Molecular Catalysis A:Chemical, 2013, 373:121.
[112] Venkatasubbaiah K, Zhu X, Kays E, Hardcastle K I, Jones C W. ACS Catalysis, 2011, 1(5):489.
[113] Kumar A, Jain N, Chauhan S. Synlett, 2007, 9(3):0411.
[114] Zucca P, Sollai F, Garau A, Rescigno A, Sanjust E. Journal of Molecular Catalysis A Chemical, 2009, 306(1-2):89.
[115] Crestini C, Pastorini A, Tagliatesta P. European Journal of Inorganic Chemistry, 2004, 2004(22):4477.
[116] Crestini C, Saladino R, Tagliatesta P, Boschi T. Bioorganic & Medicinal Chemistry, 1999, 7(9):1897.
[117] Artaud I, Ben-Aziza K, Mansuy D. The Journal of Organic Chemistry, 1993, 58(12):3373.
[118] Adam W, Saha-Möller C R, Ganeshpure P A. Chemical Reviews, 2001, 101(11):3499.
[119] Rahimi A, Azarpira A, Kim H, Ralph J, Stahl S S. Journal of the American Chemical Society, 2013, 135(17):6415.
[120] Sedai B, DíAz-Urrutia C, Baker R T, Wu R, Silks L P, Hanson S K. ACS Catalysis, 2013, 3(12):3111.
[121] Sedai B, DíAz-Urrutia C, Baker R T, Wu R, Silks L P, Hanson S K. ACS Catalysis, 2011, 1(7):794.
[122] Rahimi A, Ulbrich A, Coon J J, Stahl S S. Nature, 2014, 515(7526):249.
[123] Kim H G, Park Y. Industrial & Engineering Chemistry Research, 2013, 52(30):10059.
[124] Tarabanko V, Hendogina Y V, Petuhov D, Pervishina E. Reaction Kinetics and Catalysis Letters, 2000, 69(2):361.
[125] Deng H, Lin L, Sun Y, Pang C, Zhuang J, Ouyang P, Li Z, Liu S. Catalysis Letters, 2008, 126(1/2):106.
[126] Yang M, Xu A, Du H, Sun C, Li C. Journal of Hazardous Materials, 2007, 139(1):86.
[127] Deng H, Lin L, Sun Y, Pang C, Zhuang J, Ouyang P, Li J, Liu S. Energy & Fuels, 2009, 23(1):19.
[128] Kim Y S, Chang H M, Kadla J F. Holzforschung, 2008, 62(1):38.
[129] Weinstock I A, Atalla R H, Reiner R S, Moen M A, Hammel K E, Houtman C J, Hill C L, Harrup M K. Journal of Molecular Catalysis A:Chemical, 1997, 116(1):59.
[130] Argyropoulos D S. Oxidative Delignification Chemistry. American Chemical Society, 2001.
[131] Voitl T, Nagel M V, Von Rohr P R. Holzforschung, 2010, 64(1):13.
[132] Sonnen D M, Reiner R S, Atalla R H, Weinstock I A. Industrial & Engineering Chemistry Research, 1997, 36(10):4134.
[133] Yokoyama T, Chang H-M, Reiner R S, Atalla R H, Weinstock I A, Kadla J F. Holzforschung, 2004, 58(2):116.
[134] Weinstock I A, Hammel K E, Moen M A, Landucci L L, Ralph S, Sullivan C E, Reiner R S. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 1998, 52(3):311.
[135] Evtuguin D V, Daniel A I, Silvestre A J, Amado F M, Neto C P. Journal of Molecular Catalysis A:Chemical, 2000, 154(1):217.
[136] Sik Kim Y, Chang H M, Kadla J F. Journal of Wood Chemistry and Technology, 2007, 27(3/4):225.
[137] Ruuttunen K, Vuorinen T. Industrial & Engineering Chemistry Research, 2005, 44(12):4284.
[138] Bujanovic B, Ralph S, Reiner R, Hirth K, Atalla R. Materials, 2010, 3(3):1888.
[139] Bailey A, Brooks H. Journal of the American Chemical Society, 1946, 68(3):445.
[140] Tolba R, Tian M, Wen J, Jiang Z-H, Chen A. Journal of Electroanalytical Chemistry, 2010, 649(1):9.
[141] Shiraishi T, Takano T, Kamitakahara H, Nakatsubo F. Holzforschung, 2012, 66(3):311.
[142] Zhang Y M, Peng Y, Yin X L, Liu Z H, Li G. Journal of Chemical Technology and Biotechnology, 2014, 89(12):1954.
[143] Reichert E, Wintringer R, Volmer D A, Hempelmann R. Physical Chemistry Chemical Physics, 2012, 14(15):5214.
[144] Kobayakawa K, Sato Y, Nakamura S, Fujishima A. Bulletin of the Chemical Society of Japan, 1989, 62(11):3433.
[145] U?urlu M, Karao?lu M. Chemical Engineering Journal, 2011, 166(3):859.
[146] Ma Y S, Chang C N, Chiang Y P, Sung H F, Chao A C. Chemosphere, 2008, 71(5):998.
[147] Rangel R, Mercado G, Bartolo-Pérez P, García R. Science of Advanced Materials, 2012, 4(5-6):573.
[148] Portjanskaja E, Preis S. International Journal of Photoenergy, 2007, 2007:76730.
[149] Li W, Zhang M, Du Z, Ma Q, Jameel H, Chang H M. BioResources, 2015, 10(1):1245.
[150] Du Z, Li W, Xu Z, Wu H, Jameel H, Chang H M, Ma L L. Journal of Wood Chemistry and Technology, 2016, 36(5):365.
[151] Kamwilaisak K, Wright P C. Energy & Fuels, 2012, 26(4):2400.
[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[3] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[6] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[7] 陈祥云, 袁冰, 于凤丽, 解从霞, 于世涛. 木质素:一种有潜力的生物质基催化剂来源[J]. 化学进展, 2021, 33(2): 303-317.
[8] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[9] 马晓振, 罗清, 秦冬冬, 陈景, 朱锦, 颜宁. 木质素基生物质聚氨酯[J]. 化学进展, 2020, 32(5): 617-626.
[10] 秦国富, 刘一寰, 尹帆, 胡欣, 朱宁, 郭凯. 开环聚合接枝改性木质素[J]. 化学进展, 2020, 32(10): 1547-1556.
[11] 翟景琳, 胡欣, 刘成扣, 朱宁, 郭凯. 原子转移自由基聚合接枝改性木质素[J]. 化学进展, 2019, 31(9): 1293-1302.
[12] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[13] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[14] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[15] 纪娜, 宋静静, 刁新勇, 宋春风, 刘庆岭*, 郑明远*. 硫化物催化木质素及其模型化合物转化制备高附加值化学品[J]. 化学进展, 2017, 29(5): 563-578.
阅读次数
全文


摘要

木质素氧化还原解聚研究现状