English
新闻公告
More
化学进展 2019, Vol. 31 Issue (10): 1425-1439 DOI: 10.7536/PC190409 前一篇   后一篇

• •

光化学反应在生物材料表面修饰中的应用

刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑**()   

  1. 浙江大学高分子科学与工程学系 高分子合成与功能构造教育部重点实验室 杭州 310027
  • 收稿日期:2019-04-08 出版日期:2019-10-15 发布日期:2019-08-05
  • 通讯作者: 计剑
  • 基金资助:
    国家重点研发计划重点专项(2017YFB0702500)

Photochemical Surface Modification of Biomedical Materials

Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji**()   

  1. Key Laboratory of Macromolecular Synthesis and Functionalization,Ministry of Education,Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2019-04-08 Online:2019-10-15 Published:2019-08-05
  • Contact: Jian Ji
  • About author:
  • Supported by:
    National Key Research and Development Program of China(2017YFB0702500)

生物医用材料的表界面设计在组织工程、生物医疗器械、生物传感与检测、生物芯片等领域越来越重要,深入理解材料性质,尤其是表界面性质,对生物材料研发具有一定指导作用。在生物材料表界面修饰的各种方法中,光化学修饰方法简单高效,且具有时空可控性和非侵入性等优点,已成为生物材料表界面修饰中的热点研究领域之一。本综述在介绍近年来发展的生物材料表面光化学修饰方法的基础上,集中介绍其在组织再生材料(仿细胞外基质界面、硬度调控薄膜凝胶、图案化和梯度表面、光响应动态表面)、微液滴阵列表面、高通量生物芯片等领域的应用,并进一步展望了光化学表面修饰在生物医用界面研究中的关键挑战和发展方向。

The surface design of biomedical materials is becoming more and more important in the fields of tissue engineering, biomedical devices, biosensing and detection, and biochips. In-depth understanding of the properties of materials, especially the surface properties, has a certain guiding role in the development of biomedical materials. Among various methods of surface modification based on biomaterials, photochemical modification is very simple and efficient, and has the advantages of spatiotemporal controllability and non-invasiveness. Based on this, in recent years, photochemical modification has become one of the hot research fields in the interface modification of biomaterials. This review first simply introduces the recent development of photochemical modification methods on biochemical surface, then mainly focuses on tissue regeneration materials(extracellular matrix biomimetic surfaces, stiffness-controllable hydrogel films, patterning and gradient surfaces, photo-responsive smart surfaces), 2D droplet microarrays surfaces, high-throughput biochip and other applications. Finally, this article points out the current shortcomings of photochemical surface modification and the future development trend of this field is also proposed.

()
图1 巯基-烯烃在光引发剂和紫外光条件下的反应机理[13]
Fig. 1 Reaction mechanism of thiol-ene reaction under photoinitiator and ultraviolet light[13]
图2 (A)光引发的叠氮-炔烃环加成反应[27]; (B)无催化剂的叠氮-炔烃环加成反应[31]
Fig. 2 (A) Photoinduced CuAAC click reactions[27]; (B) Photoactivated copper-free azide-alkyne cycloaddition reaction[31]
图3 (A)四唑-烯烃反应机理;(B)将四唑分子分别引入到硅片和纤维素膜表面,再进行后修饰[36]
Fig. 3 (A)Tetrazole-olefin reaction mechanism;(B)Introduction of tetrazole molecules onto the silicon wafer and the cellulose film followed by post-modification[36]
图4 二苯甲酮在表面上进行光接枝聚合的机理[4]
Fig. 4 Proposed mechanism of photografting polymerization on a surface derived from benzophenone[4]
图5 (A)铱作为光氧化还原催化剂的光控表面活性聚合反应;(B)图案化聚合物刷和(C)聚合物接枝梯度表面[47]
Fig. 5 (A) Photo-controlled surface-active polymerization reaction using Ir-based photoredox catalyst;(B) Patterned polymer brush and(C) polymer gradient surface[47]
图6 邻硝基苄基光不稳定反应。(A,B)两种形式的光引发肟化反应;(C)光激活RGD多肽促使细胞黏附[58]
Fig. 6 O-nitrobenzyl photolabile reaction. (A,B) Two forms of oxime ligation reactions;(C) Light-triggered activation of cell adhesion activity of caged RGD peptide[58]
图7 润滑油灌注图案化的多孔表面制备微液滴阵列[70,73]
Fig. 7 The patterned lubricant-infused porous surfaces for creating droplet microarrays by liquid sliding[70,73]
图8 (A)改变光照时间制备硬度梯度凝胶的示意图;(B)无掩模光刻方法制备“星空“硬度图案[93]
Fig. 8 (A) Schematic diagram of preparing gradient hardness gel by changing the illumination time;(B) Maskless lithography method for preparing “the Starry Night” hardness pattern[93]
图9 基于聚电解质涂层内多孔结构的形成及消失实现功能客体在膜内的区域化包埋过程[107]
Fig. 9 The embedding process of functional objects in the patterned film based on the formation and disappearance of the porous structure in the polyelectrolyte coating[107]
图10 (A)制备动态图案和梯度化表面的流程;(B)电化学和光化学方法共同在表面固定配体[110]; (C)细胞在RGD梯度表面的黏附和迁移图片[111]
Fig. 10 (A) Flow diagram for preparing dynamic patterns and gradient surfaces;(B)Combined electroactive and photochemical strategy for chemoselective immobilization of ligands[110];(C) Representative images for cell attachment and migration on RGD defined gradients[111]
图11 使用UCNPs吸收近红外光控制细胞在涂层的黏附[116]
Fig. 11 The using of UCNPs to absorb near-infrared light for controlling cell adhesion on the surface[116]
图12 微液滴阵列细胞筛选平台[132]。(A) 不同尺寸大小的超亲水和超疏水区域设计;(B)微液滴阵列照片;(C)微液滴阵列用于细胞筛选的工作流程图(比例尺1 mm)
Fig. 12 Droplet-microarray(DMA) cell screening platform[132].(A) Different sizes of the super-hydrophilic spots and super-hydrophobic borders;(B) Photographs of droplet microarrays;(C)Schematic diagram of cell screening using a DMA platform(scale=1 mm)
图13 (A)硬度-配体浓度正交高通量凝胶制备原理图;(B)正交梯度凝胶表面U373-MG细胞miR18a表达情况分布;(C)巨噬细胞分泌的外源可溶性因子对U373-MG细胞miR18a表达影响[144]
Fig. 13 (A)Preparation schematic of matrix stiffness and fibronectin density orthogonal high-throughput gel;(B) The distribution of miR18a expression in U373-MG cells on orthogonal gradient gel;(C) The effect of exogenous macrophage-derived soluble factors on ECM-sensitive regulation of miR18a[144]
[1]
Li Y, Xiao Y, Liu C . Chem. Rev., 2017,117(5):4376.
[2]
Hetemi D, Pinson J . Chem. Soc. Rev., 2017,46(19):5701.
[3]
Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot J E . Chem. Rev., 2014,114(21):10976.
[4]
Chen M, Zhong M, Johnson J A . Chem. Rev., 2016,116(17):10167.
[5]
Kaur G, Singh G, Singh J . Materials today chemistry, 2018,8:56.
[6]
Junkers T . Eur. Polym. J., 2015,62:273.
[7]
McBride M K, Gong T, Nair D P, Bowman C N . Polymer, 2014,55(23):5880.
[8]
徐源鸿(Xu H Y), 熊兴泉(Xiong X Q), 蔡雷(Cai L), 唐忠科(Tang Z K), 叶章基(Ye Z J) . 化学进展 (Progress in Chemistry), 2012,24(203):385.
[9]
Resetco C, Hendriks B, Badi N, Du Prez F . Mater. Horiz., 2017,4(6):1041.
[10]
Tan K Y, Ramstedt M, Colak B, Huck W T S, Gautrot J E . Polym. Chem., 2016,7(4):979.
[11]
Hoyle C E, Bowman C N . Angew. Chem. Int. Ed. Engl., 2010,49(9):1540.
[12]
Lowe A B, Hoyle C E, Bowman C N . J. Mater. Chem., 2010,20(23):4745.
[13]
Lowe A B . Polym. Chem., 2010,1(1):17.
[14]
Hoyle C E, Lee T Y, Roper T . J. Polym. Sci., Part A: Polym. Chem., 2004,42(21):5301.
[15]
Cramer N B, Scott J P, Bowman C N . Macromolecules, 2002,35(14):5361.
[16]
Northrop B H, Coffey R N . J. Am. Chem. Soc., 2012,134(33):13804.
[17]
Bhairamadgi N S, Gangarapu S, Caipa Campos M A, Paulusse J M, van Rijn C J, Zuilhof H . Langmuir, 2013,29(14):4535.
[18]
Wendeln C, Rinnen S, Schulz C, Arlinghaus H F, Ravoo B J . Langmuir, 2010,26(20):15966.
[19]
Feng W, Li L, Du X, Welle A, Levkin P A . Adv. Mater., 2016,28(16):3202.
[20]
Owusu-Nkwantabisah S, Robbins M, Wang D Y . Appl. Surf. Sci., 2018,450:164.
[21]
Khan M, Yang J, Shi C, Lv J, Feng Y, Zhang W . Acta Biomater., 2015,20:69.
[22]
Alonso R, Jimenez-Meneses P, Garcia-Ruperez J, Banuls M J, Maquieira A . Chem. Commun., 2018,54(48):6144.
[23]
Meng X, Hu J, Chao Z, Liu Y, Ju H, Cheng Q . ACS Appl. Mater. Interfaces, 2018,10(1):1324.
[24]
Buhl M, Vonhoren B, Ravoo B J . Bioconjugate Chem., 2015,26(6):1017.
[25]
Escorihuela J, Bañuls M J, Puchades R, Maquieira A . Chem. Commun., 2012,48(15):2116.
[26]
Jonkheijm P, Weinrich D, Kohn M, Engelkamp H, Christianen P C, Kuhlmann J, Maan J C, Nusse D, Schroeder H, Wacker R, Breinbauer R, Niemeyer C M, Waldmann H . Angew. Chem. Int. Ed. Engl., 2008,47(23):4421.
[27]
Tasdelen M A, Yagci Y . Angew. Chem. Int. Ed. Engl., 2013,52(23):5930.
[28]
Tasdelen M A, Yilmaz G, Iskin B, Yagci Y . Macromolecules, 2011,45(1):56.
[29]
Adzima B J, Tao Y, Kloxin C J, DeForest C A, Anseth K S, Bowman C N . Nat. Chem., 2011,3(3):256.
[30]
Baskin J M, Prescher J A, Laughlin S T, Agard N J, Chang P V, Miller I A, Lo A, Codelli J A, Bertozzi C R . Proc. Natl. Acad. Sci. U. S. A., 2007,104(43):16793.
[31]
Orski S V, Poloukhtine A A, Arumugam S, Mao L, Popik V V, Locklin J . J. Am. Chem. Soc., 2010,132(32):11024.
[32]
Manova R, van Beek T A, Zuilhof H . Angew. Chem. Int. Ed. Engl., 2011,50(24):5428.
[33]
Laradji A M, McNitt C D, Yadavalli N S, Popik V V, Minko S . Macromolecules, 2016,49(20):7625.
[34]
Song W, Wang Y, Qu J, Lin Q . J. Am. Chem. Soc., 2008,130(30):9654.
[35]
Song W, Wang Y, Qu J, Madden M M, Lin Q . Angew. Chem. Int. Ed. Engl., 2008,47(15):2832.
[36]
Dietrich M, Delaittre G, Blinco J P, Inglis A J, Bruns M, Barner-Kowollik C . Adv. Funct. Mater., 2012,22(2):304.
[37]
Tischer T, Rodriguez-Emmenegger C, Trouillet V, Welle A, Schueler V, Mueller J O, Goldmann A S, Brynda E, Barner-Kowollik C . Adv. Mater., 2014,26(24):4087.
[38]
Blasco E, Pinol M, Oriol L, Schmidt B V K J, Welle A, Trouillet V, Bruns M, Barner-Kowollik C . Adv. Funct. Mater., 2013,23(32):4011.
[39]
Wang C, Zieger M M, Schenzel A, Wegener M, Willenbacher J, Barner-Kowollik C, Bowman C N . Adv. Funct. Mater., 2017,27(7):1605317.
[40]
Hoenders D, Guo J Q, Goldmann A S, Barner-Kowollik C, Walther A . Mater. Horiz., 2018,5(3):560.
[41]
Deng J P, Wang L F, Liu L Y, Yang W T . Prog. Polym. Sci., 2009,34(2):156.
[42]
刘莲英(Liu L Y), 邓建平(Deng J P), 杨万泰(Yang W T), . 中国科学:B辑 (Science in China(Series B:Chemistry)), 2009,39(7):569.
[43]
Xing C M, Deng J P, Yang W T . Macromol. Chem. Phys., 2005,206(11):1106.
[44]
Sugiura S, Edahiro J, Sumaru K, Kanamori T . Colloids Surf., B, 2008,63(2):301.
[45]
Zhao H Y, Feng Y K, Guo J T . J. Appl. Polym. Sci., 2011,119(6):3717.
[46]
Feng Y K, Yang D Z, Behl M, Lendlein A, Zhao H Y, Guo J T . Macromol. Symp., 2011,309/310(1):6.
[47]
Poelma J E, Fors B P, Meyers G F, Kramer J W, Hawker C J . Angew. Chem. Int. Ed. Engl., 2013,52(27):6844.
[48]
Pan X C, Tasdelen M A, Laun J, Junkers T, Yagci Y, Matyjaszewski K . Prog. Polym. Sci., 2016,62:73.
[49]
Chen H, Zhao C, Li R, Ma Y, Liu L, Yang W . Macromol. Chem. Phys., 2014,215(14):1378.
[50]
Fors B P, Hawker C J . Angew. Chem. Int. Ed. Engl., 2012,51(35):8850.
[51]
Pester C W, Narupai B, Mattson K M, Bothman D P, Klinger D, Lee K W, Discekici E H, Hawker C J . Adv. Mater., 2016,28(42):9292.
[52]
Klan P, Solomek T, Bochet C G, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J . Chem. Rev., 2013,113(1):119.
[53]
Il’ichev Y V, Schworer M A, Wirz J . J. Am. Chem. Soc., 2004,126(14):4581.
[54]
Ariyasu S, Hanaya K, Watanabe E, Suzuki T, Horie K, Hayase M, Abe R, Aoki S . Langmuir, 2012,28(36):13118.
[55]
Petersen S, Alonso J M, Specht A, Duodu P, Goeldner M, del Campo A . Angew. Chem. Int. Ed. Engl., 2008,47(17):3192.
[56]
Pauloehrl T, Delaittre G, Bruns M, Meissler M, Borner H G, Bastmeyer M, Barner-Kowollik C . Angew. Chem. Int. Ed. Engl., 2012,51(36):9181.
[57]
Park S, Yousaf M N . Langmuir, 2008,24(12):6201.
[58]
Lee T T, Garcia J R, Paez J I, Singh A, Phelps E A, Weis S, Shafiq Z, Shekaran A, Del Campo A, Garcia A J . Nat. Mater., 2015,14(3):352.
[59]
Kloxin A M, Kasko A M, Salinas C N, Anseth K S . Science, 2009,324(5923):59.
[60]
Kamimura M, Scheideler O, Shimizu Y, Yamamoto S, Yamaguchi K, Nakanishi J . Phys. Chem. Chem. Phys., 2015,17(21):14159.
[61]
Wegner S V, Senturk O I, Spatz J P . Sci. Rep., 2015,5:18309.
[62]
Rosales A M, Vega S L, DelRio F W, Burdick J A, Anseth K S . Angew. Chem. Int. Ed. Engl., 2017,56(40):12132.
[63]
Liu L H, Yan M . Acc. Chem. Res., 2010,43(11):1434.
[64]
Norberg O, Deng L, Aastrup T, Yan M, Ramstrom O . Anal. Chem., 2011,83(3):1000.
[65]
Viel P, Walter J, Bellon S, Berthelot T . Langmuir, 2013,29(6):2075.
[66]
Tong Q, Wang X, Wang H, Kubo T, Yan M . Anal. Chem., 2012,84(7):3049.
[67]
Park J, Jayawardena H S, Chen X, Jayawardana K W, Sundhoro M, Ada E, Yan M . Chem. Commun., 2015,51(14):2882.
[68]
McVerry B T, Wong M C, Marsh K L, Temple J A, Marambio-Jones C, Hoek E M, Kaner R B . Macromol. Rapid Commun., 2014,35(17):1528.
[69]
Zorn G, Liu L H, Arnadottir L, Wang H, Gamble L J, Castner D G, Yan M . J. Phys. Chem. C, Nanomater. Interfaces, 2014,118(1):376.
[70]
Chen X C, Huang W P, Ren K F, Ji J . ACS Nano, 2018,12(8):8686.
[71]
Chen X C, Ren K F, Chen J Y, Wang J, Zhang H, Ji J . Phys. Chem. Chem. Phys., 2016,18(45):31168.
[72]
Chen X C, Ren K F, Zhang J H, Li D D, Zhao E, Zhao Z J, Xu Z K, Ji J . Adv. Funct. Mater., 2015,25(48):7470.
[73]
Huang W P, Chen X C, Hu M, Hu D F, Wang J, Li H Y, Ren K F, Ji J . Chem. Mater., 2019,31(3):834.
[74]
Chen L N, Yan C, Zheng Z J . Mater. Today, 2018,21(1):38.
[75]
Giol E D, Van Vlierberghe S, Unger R E, Schaubroeck D, Ottevaere H, Thienpont H, Kirkpatrick C J, Dubruel P . Macromol. Biosci., 2018,18(7):1800125.
[76]
Wang H, Zhang Y, Yuan X, Chen Y, Yan M . Bioconjugate Chem., 2011,22(1):26.
[77]
Sharma S, Floren M, Ding Y, Stenmark K R, Tan W, Bryant S J . Biomaterials, 2017,143:17.
[78]
Sterner O, Giazzon M, Zurcher S, Tosatti S, Liley M, Spencer N D . ACS Appl. Mater. Interfaces, 2014,6(21):18683.
[79]
Banks J M, Mozdzen L C, Harley B A, Bailey R C . Biomaterials, 2014,35(32):8951.
[80]
Costa P, Gautrot J E, Connelly J T . Acta Biomater., 2014,10(6):2415.
[81]
Kourouklis A P, Kaylan K B, Underhill G H . Biomaterials, 2016,99:82.
[82]
Wang C, Wu J, Xu Z K . Macromol. Rapid Commun., 2010,31(12):1078.
[83]
Li L D, Li J, Kulkarni A, Liu S . J. Mater. Chem. B, 2013,1(4):571.
[84]
Wang L, Li Y, Huang G, Zhang X, Pingguan-Murphy B, Gao B, Lu T J, Xu F . Crit. Rev. Biotechnol., 2016,36(3):553.
[85]
Oh S H, An D B, Kim T H, Lee J H . Acta Biomater., 2016,35:23.
[86]
Loessner D, Stok K S, Lutolf M P, Hutmacher D W, Clements J A, Rizzi S C . Biomaterials, 2010,31(32):8494.
[87]
Smith Callahan L A . High-Throughput, 2018,7(1):1.
[88]
Vedadghavami A, Minooei F, Mohammadi M H, Khetani S, Rezaei Kolahchi A, Mashayekhan S, Sanati-Nezhad A . Acta Biomater., 2017,62:42.
[89]
Xia T, Liu W, Yang L . J. Biomed. Mater. Res., Part A, 2017,105(6):1799.
[90]
Marklein R A, Burdick J A . Soft Matter, 2010,6(1):136.
[91]
Garcia S, Sunyer R, Olivares A, Noailly J, Atencia J, Trepat X . Lab Chip, 2015,15(12):2606.
[92]
Tong X M, Jiang J, Zhu D Q, Yang F . ACS Biomater. Sci. Eng., 2016,2(5):845.
[93]
Norris S C P, Tseng P, Kasko A M . ACS Biomater. Sci. Eng., 2016,2(8):1309.
[94]
DeForest C A, Tirrell D A . Nat. Mater., 2015,14(5):523.
[95]
Uto K, Tsui J H, DeForest C A, Kim D H . Prog. Polym. Sci., 2017,65:53.
[96]
DeForest C A, Anseth K S . Nat. Chem., 2011,3(12):925.
[97]
Kloxin A M, Benton J A, Anseth K S . Biomaterials, 2010,31(1):1.
[98]
Gauvin R, Chen Y C, Lee J W, Soman P, Zorlutuna P, Nichol J W, Bae H, Chen S, Khademhosseini A . Biomaterials, 2012,33(15):3824.
[99]
Soman P, Chung P H, Zhang A P, Chen S . Biotechnol. Bioeng., 2013,110(11):3038.
[100]
Hynes M J, Maurer J A . Mol. BioSyst., 2013,9(4):559.
[101]
Yao X, Peng R, Ding J . Adv. Mater., 2013,25(37):5257.
[102]
Ogaki R, Alexander M, Kingshott P . Mater. Today, 2010,13(4):22.
[103]
Vonhoren B, Roling O, Buten C, Korsgen M, Arlinghaus H F, Ravoo B J . Langmuir, 2016,32(9):2277.
[104]
Hynes M J, Maurer J A . Langmuir, 2012,28(47):16237.
[105]
DeForest C A, Anseth K S . Angew. Chem. Int. Ed. Engl., 2012,51(8):1816.
[106]
Wade R J, Bassin E J, Gramlich W M, Burdick J A . Adv. Mater., 2015,27(8):1356.
[107]
Chen X C, Huang W P, Hu M, Ren K F, Ji J . Small, 2019,15(9):1804867.
[108]
Harris B P, Metters A T . Macromolecules, 2006,39(8):2764.
[109]
Tomlinson M R, Genzer J . Chem. Commun., 2003,( 12):1350.
[110]
Luo W, Yousaf M N . J. Am. Chem. Soc., 2011,133(28):10780.
[111]
Lee E J, Chan E W L, Luo W, Yousaf M N . RSC Advances, 2014,4(60):31581.
[112]
Fors B P, Poelma J E, Menyo M S, Robb M J, Spokoyny D M, Kramer J W, Waite J H, Hawker C J . J. Am. Chem. Soc., 2013,135(38):14106.
[113]
Li W, Yan Z, Ren J, Qu X . Chem. Soc. Rev., 2018,47(23):8639.
[114]
Hao Y W, Cui H J, Meng J X, Wang S T . J. Photochem. Photobiol., A, 2018,355:202.
[115]
Han K, Yin W N, Fan J X, Cao F Y, Zhang X Z . ACS Appl. Mater. Interfaces, 2015,7(42):23679.
[116]
Li W, Wang J, Ren J, Qu X . J. Am. Chem. Soc., 2014,136(6):2248.
[117]
Wirkner M, Alonso J M, Maus V, Salierno M, Lee T T, Garcia A J, del Campo A . Adv. Mater., 2011,23(34):3907.
[118]
Shin D S, Seo J H, Sutcliffe J L, Revzin A . Chem. Commun., 2011,47(43):11942.
[119]
Nakanishi J, Kikuchi Y, Takarada T, Nakayama H, Yamaguchi K, Maeda M . J. Am. Chem. Soc., 2004,126(50):16314.
[120]
Hu M, Chang H, Zhang H, Wang J, Lei W X, Li B C, Ren K F, Ji J . Adv. Healthcare Mater., 2017,6(14):1601410.
[121]
Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel J B, Demello A J . Lab Chip, 2008,8(8):1244.
[122]
Feng W, Ueda E, Levkin P A . Adv. Mater., 2018,30(20):1706111.
[123]
Ueda E, Geyer F L, Nedashkivska V, Levkin P A . Lab Chip, 2012,12(24):5218.
[124]
Feng W Q, Li L X, Ueda E, Li J S, Heissler S, Welle A, Trapp O, Levkin P A . Adv. Mater. Interfaces, 2014,1(7):1400269.
[125]
Wang B, Zhang Y, Zhang L . Nanoscale, 2017,9(14):4777.
[126]
Feng W, Li L, Yang C, Welle A, Trapp O, Levkin P A . Angew. Chem. Int. Ed. Engl., 2015,54(30):8732.
[127]
Geyer F L, Ueda E, Liebel U, Grau N, Levkin P A . Angew. Chem. Int. Ed. Engl., 2011,50(36):8424.
[128]
Li H, Yang Q, Li G, Li M, Wang S, Song Y . ACS Appl. Mater. Interfaces, 2015,7(17):9060.
[129]
Salgado C L, Oliveira M B, Mano J F . Integr. Biol., 2012,4(3):318.
[130]
Ueda E, Levkin P A . Adv. Mater., 2013,25(9):1234.
[131]
Efremov A N, Stanganello E, Welle A, Scholpp S, Levkin P A . Biomaterials, 2013,34(7):1757.
[132]
Popova A A, Demir K, Hartanto T G, Schmitt E, Levkin P A . RSC Advances, 2016,6(44):38263.
[133]
Tronser T, Popova A A, Jaggy M, Bastmeyer M, Levkin P A . Adv. Healthcare Mater., 2017,6(23):1700622.
[134]
Seo J, Shin J Y, Leijten J, Jeon O, Camci-Unal G, Dikina A D, Brinegar K, Ghaemmaghami A M, Alsberg E, Khademhosseini A . Biomaterials, 2018,153:85.
[135]
Lin E, Sikand A, Wickware J, Hao Y, Derda R . Acta Biomater., 2016,34:53.
[136]
Rasi Ghaemi S, Delalat B, Ceto X, Harding F J, Tuke J, Voelcker N H . Acta Biomater., 2016,34:41.
[137]
Chen Z, Dodig-Crnkovic T, Schwenk J M, Tao S C . Clin. Proteomics, 2018,15(1):7.
[138]
Gonzalez-Lucas D, Banuls M J, Puchades R, Maquieira A . Adv. Mater. Interfaces, 2016,3(13):1500850.
[139]
Gupta N, Lin B F, Campos L M, Dimitriou M D, Hikita S T, Treat N D, Tirrell M V, Clegg D O, Kramer E J, Hawker C J . Nat. Chem., 2010,2(2):138.
[140]
Mei Y, Saha K, Bogatyrev S R, Yang J, Hook A L, Kalcioglu Z I, Cho S W, Mitalipova M, Pyzocha N, Rojas F, Van Vliet K J, Davies M C, Alexander M R, Langer R, Jaenisch R, Anderson D G . Nat. Mater., 2010,9(9):768.
[141]
Celiz A D, Smith J G, Patel A K, Langer R, Anderson D G, Barrett D A, Young L E, Davies M C, Denning C, Alexander M R . Biomater. Sci., 2014,2(11):1604.
[142]
Ma Y, Zheng J, Amond E F, Stafford C M, Becker M L . Biomacromolecules, 2013,14(3):665.
[143]
Ma Y, Policastro G M, Li Q, Zheng J, Jacquet R, Landis W J, Becker M L . Biomacromolecules, 2016,17(4):1486.
[144]
Rape A D, Zibinsky M, Murthy N, Kumar S . Nat. Commun., 2015,6:8129.
[145]
Vega S L, Kwon M Y, Song K H, Wang C, Mauck R L, Han L, Burdick J A . Nat. Commun., 2018,9(1):614.
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[3] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[4] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[5] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[6] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[7] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[8] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[9] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[10] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[11] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[12] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[13] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[14] 张鹏, 郭心洁, 张倩, 丁彩凤. 有机染料聚集在光化学传感中的应用[J]. 化学进展, 2020, 32(2/3): 286-297.
[15] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.