English
新闻公告
More
化学进展 2016, Vol. 28 Issue (6): 860-871 DOI: 10.7536/PC151116 前一篇   后一篇

• 综述与评论 •

两嵌段聚合物自组装微观形貌中的网状结构

王新波1, 张淑红2, 赫晓东3*   

  1. 1. 哈尔滨工业大学(威海)材料科学与工程学院 威海 264209;
    2. 威海职业学院信息工程系 威海 264210;
    3. 哈尔滨工业大学复合材料与结构研究所 哈尔滨 150080
  • 收稿日期:2015-11-01 修回日期:2016-02-01 出版日期:2016-06-15 发布日期:2016-03-23
  • 通讯作者: 赫晓东 E-mail:Hexd@hit.edu.cn
  • 基金资助:
    省部产学研结合项目(No.2011B090400475)专项资金资助

Network Mesostructures in Self-Assembly of Diblock Copolymers and the Application

Wang Xinbo1, Zhang Shuhong2, He Xiaodong3*   

  1. 1. School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China;
    2. Department of Information Engineering, Weihai Vocational College, Weihai 264210, China;
    3. Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
  • Received:2015-11-01 Revised:2016-02-01 Online:2016-06-15 Published:2016-03-23
  • Supported by:
    The work was supported by the Industry-University Research Combination Project of Provincial and Ministerial Level (No.2011B090400475).
嵌段聚合物由于不同嵌段热力学不相容而形成微观相分离,进而发生自组装排列成规则有序的微观结构,其中网状结构是自组装微观结构中的复杂结构,具有令人瞩目的特性,在纳米科技领域应用价值极高,备受各国研究者的青睐。本文介绍了嵌段聚合物自组装原理和网状结构的特点,重点综述了两嵌段聚合物自组装结构中常见的三种网状结构的发展、制备方法以及在纳米科技中的应用,并指出当今网状结构的研究热点,预测该领域的发展趋势。
Block copolymers(BCPs) have been attracting significant attentions owning to their wide industrial applications such as elastomer materials, optics, electronics, information, chemistry and biology in the past decades. The unique properties and materials performances of BCPs arise from their rich nanostructures. The chemistry difference between covalently bonded blocks leads to microphase separation and characteristic nanosized domains, which is a function of temperature, block composition and the degree of polymerization of blocks. The consequent self-assembly behavior displays rich ordered morphologies, which typically include sphere, cylinder, gyroid and lamellae. Among the mesostructures, network morphologies are especially interesting and useful because of their three-dimensionally co-continuous, interpenetrated meso-networks. Their character of high porosity and huge interface area generates practical merits in various applications such as outstanding mechanical anti-creep and high charge transport efficiency of optoelectronic devices.However, the rarely observed network morphologies of BCPs gain insufficient attentions. This review introduces fundamental principles of BCPs self-assembly and emphasizes the network morphologies of diBCPs. Three main types of network morphologies are discussed, including ordered bicontinuous double diamond (OBDD), double gyroid (DG) and Fddd. It also reviews three kinds of network preparation methods that appear in recent literatures: precise synthesis of diBCPs with specific chemistry, order-order phase transition from other nanostructures, and blending with homopolymer. Several typical applications are also reviewed. In the last part, the current research highlights are summarized and the future research directions of network mesosturctures are predicted.

Contents
1 Introduction
2 Self-assembly of diblock copolymers
2.1 Block copolymers
2.2 Self-assembly principles of diblock copolymers
2.3 Network morphologies
3 Preparation methods of network mesostructures of diblock copolymers
3.1 Precise synthesis
3.2 Order-order transition
3.3 Blending
4 Applications
5 Conclusion

中图分类号: 

()
[1] Whitesides G M, Grzybowski B. Science, 2002, 295: 2418.
[2] Desiraju G R. Angew. Chem. Int. Ed., 1995, 34: 2311.
[3] Moulton B, Zaworotko M J. Chem. Rev., 2001, 101: 1629.
[4] Aizenberg J, Muller D A, Grazul J L, Hamann D R. Science, 2003, 299: 1205.
[5] Lehn J M. Angew. Chem. Int. Ed., 1990, 29: 1304.
[6] McGrath K M. Colloid Polym. Sci., 1996, 274: 399.
[7] McGrath K M. Colloid Polym. Sci., 1996, 274: 499.
[8] Boullanger P. Top. Curr. Chem., 1997, 187: 275.
[9] Freeman R G, Grabar K C, Allison K J, Bright R M, Davis J A, Guthrie A P, Hommer M B, Jackson M A, Smith P C, Walter D G, Natan M J. Science, 1995, 267: 1629.
[10] Hamley I W. Angew. Chem. Int. Ed., 2003, 42: 1692.
[11] Yin Y D, Lu Y, Gates B, Xia Y N. J. Am. Chem. Soc., 2001, 123: 8718.
[12] Fan J A, Wu C H, Bao K, Bao J M, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G, Capasso F. Science, 2010, 328: 1135.
[13] Holmes T C, de Lacalle S, Su X, Liu G S, Rich A, Zhang S G. Proc. Natl. Acad. Sci. U. S. A., 2000, 97: 6728.
[14] Kadler K E, Holmes D F, Trotter J A, Chapman J A. Biochem. J., 1996, 316: 1.
[15] Timpl R, Brown J C. Bioessays., 1996, 18: 123.
[16] Goetz R, Gompper G, Lipowsky R. Phys. Rev. Lett., 1999, 82: 221.
[17] Stowell M H B, Marks B, Wigge P, McMahon H T. Nat. Cell Biol., 1999, 1: 27.
[18] Bermudez H, Brannan A K, Hammer D A, Bates F S, Discher D E. Macromolecules, 2002, 35: 8203.
[19] Raguse B, Braach-Maksvytis V, Cornell B A, King L G, Osman P D J, Pace R J, Wieczorek L. Langmuir, 1998, 14: 648.
[20] Bellomo E G, Wyrsta M D, Pakstis L, Pochan D J, Deming T J. Nat. Mater., 2004, 3: 244.
[21] Zhang S G. Biotechnol. Adv., 2002, 20: 321.
[22] Anzini P, Xu C F, Hughes S, Magnotti E, Jiang T, Hemmingsen L, Demeler B, Conticello V P. J. Am. Chem. Soc., 2013, 135: 10278.
[23] Rothemund P W K. Nature, 2006, 440: 297.
[24] Braun E, Eichen Y, Sivan U, Ben-Yoseph G. Nature, 1998, 391: 775.
[25] Winfree E, Liu F R, Wenzler L A, Seeman N C. Nature, 1998, 394: 539.
[26] Myhrvold C, Dai M, Silver P A, Yin P. Nano. Lett., 2013, 13: 4242.
[27] Szwarc M. Nature, 1956, 178: 1168.
[28] Sawamoto M, Ebara K, Tanizaki A, Higashimura T. J. Polym. Sci. Pol. Chem., 1986, 24: 2919.
[29] Kuroki M, Nashimoto S, Aida T, Inoue S. Macromolecules, 1988, 21: 3114.
[30] Sogah D Y, Webster O W, Hertler W R. Rubber Chem. Technol., 1985, 58: 865.
[31] Coessens V, Pintauer T, Matyjaszewski K. Prog. Polym. Sci., 2001, 26: 337.
[32] Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P T, Mayadunne R T A, Meijs G F, Moad C L, Moad G, Rizzardo E, Thang S H. Macromolecules, 1998, 31: 5559.
[33] Leduc M R, Hawker C J, Dao J, Frechet J M J. J. Am. Chem. Soc., 1996, 118: 11111.
[34] Otsu T, Kuriyama A. Polym. J., 1985, 17: 95.
[35] Bates F S, Fredrickson G H. Phys. Today., 1999, 52: 32.
[36] Bates F S, Fredrickson G H. Annu. Rev. Phys. Chem., 1990, 41: 525.
[37] Frenkel D. Physica A, 1999, 263: 26.
[38] Bates F S. Science, 1991, 251: 898.
[39] Wells A F. Three-Dimensional Nets and Polyhedra. 1st ed. NY: JohnWiley & Sons, 1977. 3.
[40] (a) Thomas E L, Alward D B, Kinning D J, Martin D C. Macromolecules, 1986, 19: 2197.; (b) Thomas E L, Anderson D M, Henkee C S, Hoffman D. Nature, 1988, 334: 598.; (c) Likhtman A E, Semenov A N. Macromolecules, 1997, 30: 7273.; (d) Hasegawa H, Tanaka H, Yamasaki K, Hashimoto T. Macromolecules, 1987, 20: 1651.; (e) Chu C Y, Lin W F, Tsai J C, Lai C S, Lo S C, Chen H L, Hashimoto T. Macromolecules, 2012, 45: 2471.; (f) Anderson D M, Davis H T, Scriven L E, Nitsche J C C. Adv. Chem. Phys., 1990, 77: 337.; (g) Herman D S, Kinning D J, Thomas E L, Fetters L J. Macromolecules, 1987, 20: 2940.; (h) Alward D B, Kinning D J, Thomas E L, Fetters L J. Macromolecules, 1986, 19: 215.; (i) Kinning D J, Thomas E L, Alward D B, Fetters L J, Handlin D L. Macromolecules, 1986, 19: 1288.; (j) Winey K I, Thomas E L, Fetters L J. Macromolecules, 1992, 25: 422.; (k) Spontak R J, Smith S D, Ashraf A. Macromolecules, 1993, 26: 956.; (l) Spontak R J, Smith S D, Ashraf A. Microsc. Res. Tech., 1994, 27: 412.; (m) Xie R, Yang B X, Jiang B Z. Macromolecules, 1993, 26: 7097.; (n) Wang Z G, Safran S A. Europhys. Lett., 1990, 11: 425.; (o) Anderson D M, Thomas E L. Macromolecules, 1988, 21: 3221.; (p) Likhtman A E, Semenov A N. Macromolecules, 1994, 27: 3103.; (q) Olmsted P D, Milner S T. Phys. Rev. Lett., 1994, 72: 936.
[41] (a) Hajduk D A, Harper P E, Gruner S M, Honeker C C, Kim G, Thomas E L, Fetters L J. Macromolecules, 1994, 27: 4063.; (b) Schulz M F, Bates F S, Almdal K, Mortensen K. Phys. Rev. Lett., 1994, 73: 86.; (c) Matsen M W, Schick M. Phys. Rev. Lett., 1994, 72: 2660.; (d) Saranathan V, Osuji C O, Mochrie S G J, Noh H, Narayanan S, Sandy A, Dufresne E R, Prum R O. Proc. Natl. Acad. Sci. U.S.A., 2010, 107: 11676.; (e) Epps T H, Cochran E W, Hardy C M, Bailey T S, Waletzko R S, Bates F S. Macromolecules, 2004, 37: 7085.; (f) Matsen M W, Bates F S. Macromolecules, 1996, 29: 7641.
[42] (a) Bailey T S, Hardy C M, Epps T H, Bates F S. Macromolecules, 2002, 35: 7007.; (b) Ranjan A, Morse D C. Phys. Rev. E., 2006, 74: 011803.; (c) Takenaka M, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Shimizu H, Kim M I, Hasegawa H. Macromolecules, 2007, 40: 4399.; (d) Yamada K, Nonomura M, Ohta T. Macromolecules, 2004, 42: 5762.; (e) Jung J, Park H W, Lee J Y, Huang H Y, Chang T H, Rho Y C, Ree M H, Sugimori H. Jinnai H. Soft Matter, 2011, 7: 10424; (f) Tyler C A, Morse D C. Phys. Rev. Lett., 2005, 94: 208302.; (g) Wang X B, Lo T Y, Hsueh H Y, Ho R M. Macromolecules, 2013, 8: 2997.
[43] Jung J, Park H W, Lee S, Lee H, Chang T, Matsunaga K, Jinnai H. ACS Nano, 2010, 4: 3109.
[44] Wei W, Liu Y, Xiong H M. ACS Macro. Lett., 2014, 3: 892.
[45] Liu B, Yang M, Xia N, Zheng P, Wang W, Burger C. Soft Matter., 2012, 8: 9545.
[46] Chen C K, Hsueh H Y, Chiang Y W, Ho R M, Akasaka S, Hasegawa H. Macromolecules, 2010, 43: 8637.
[47] Lin S H, Ho C C, Su W F. Soft Matter., 2012, 8: 4890.
[48] Chavis M A, Smilgies D M, Wiesner U B, Ober C K. Adv. Funct. Mater., 2015, 25: 3057.
[49] Vukovic I, Friedrich H, Merino D H, Portale G, ten Brinke G, Loos K. Macromol. Rapid Commun., 2013, 34: 1208.
[50] Hsueh H Y, Ling Y C, Wang H F, Chien L Y C, Hung Y C, Thomas E L, Ho R M. Adv. Mater., 2014, 26: 3225.
[51] Tanaka H, Hasegawa H, Hashimoto T. Macromolecules, 1991, 24: 240.
[52] Vukovic I, Punzhin S, Vukovic Z, Onck P, de Hosson J T M, ten Brinke G, Loos K. ACS Nano, 2011, 5: 6339.
[53] Epps T H, Bailey T S, Pham H D, Bates F S. Chem. Mat., 2002, 14: 1706.
[54] Huang J, Tong Z Z, Zhou B, Xu J T, Fan Z Q. Polymer, 2014, 55: 1070.
[55] Wang H F, Yu L H, Wang X B, Ho R M. Macromolecules, 2014, 47: 7993.
[56] Hur K, Francescato Y, Giannini V, Maier S A, Hennig R G, Wiesner U. Angew. Chem. Int. Ed., 2011, 50: 11985.
[57] Pernot H, Baumert M, Court F, Leibler L. Nat. Mater., 2002, 1: 54.
[58] Crossland E J W, Kamperman M, Nedelcu M, Ducati C, Wiesner U, Smilgies D, Toombes G E S, Hillmyer M A, Ludwigs S, Steiner U, Snaith H. Nano Lett., 2009, 9: 2807.
[59] Thurn-Albrecht T, Steiner R, DeRouchey J, Stafford C M, Huang E, Bal M, Tuominen M, Hawker C J, Russell T. Adv. Mater., 2000, 12: 787.
[60] Urbas A M, Maldovan M, DeRege P, Thomas E L. Adv. Mater., 2002, 14: 1850.
[61] Okumura A, Nishikawa Y, Hashimoto T. Polymer, 2006, 47: 7805.
[62] Mansky P, Harrison C K, Chaikin P M, Register R A, Yao N. Appl. Phys. Lett., 1996, 68: 2586.
[63] Zalusky A S, Olayo-Valles R, Wolf J H, Hillmyer M A. J. Am. Chem. Soc., 2002, 124: 12761.
[64] Hillmyer M A, Wolf J H. Langmuir, 2003, 19: 6553.
[65] Hillmyer M A, Mao H. Macromolecules, 2005, 38: 4038.
[66] Cavicchi K A, Zalusky A S, Hillmyer M A, Lodge T P. Macromol. Rapid Commun., 2004, 25: 704.
[67] Guo F X, Andreasen J W, Vigild M E, Ndoni S. Macromolecules, 2007, 40: 3669.
[68] Ndoni S, Vigild M E, Berg R H. J. Am. Chem. Soc., 2003, 125: 13366.
[69] Uehara H, Yoshida T, Kakiage M, Yamanobe T, Komoto T, Nomura K, Nakajima K, Matsuda M. Macromolecules, 2006, 39: 3971.
[70] Chung C M, Lee J H, Cho S Y, Kim J G, Moon S Y. J. Appl. Polym. Sci., 2006, 101: 532.
[71] Hashimoto T, Tsutsumi K, Funaki Y. Langmuir, 1997, 13: 6869.
[72] Tseng W H, Chen C K, Chiang Y W, Ho R M, Akasaka S, Hasegawa H. J. Am. Chem. Soc., 2009, 131: 1356.
[73] Hsueh H Y, Chen H Y, She M S, Chen C K, Ho R M, Gwo S, Hasegawa H, Thomas E L. Nano Lett., 2010, 10: 4994.
[74] Hsueh H Y, Ho R M. Langmuir, 2012, 28: 8518.
[75] Crossland E J W, Ludwigs S, Hillmyer M A, Steiner U. Soft Matter, 2010, 6: 670.
[76] Scherer M R J, Li L, Cunha P M S, Scherman O A, Steiner U. Adv. Mater., 2012, 24: 1217.
[77] Wei D, Scherer M R J, Bower C, Andrew P, Ryhanen T, Steiner U. Nano Lett., 2012, 12: 1857.
[78] Scherer M R J, Steiner U. Nano Lett., 2013, 13: 3005.
[79] Hsueh H Y, Ho R M, Huang Y C, Lai C H, Makida T, Hasegawa H. Adv. Mater., 2011, 23: 3041.
[80] Hsueh H Y, Chen H Y, Hung Y C, Ling Y C, Gwo S, Ho R M. Adv. Mater., 2013, 25: 1780.
[81] Kim E, Vaynzof Y, Sepe A, Guldin S, Scherer M, Cunha P, Roth S V, Steiner U. Adv. Funct. Mater., 2014, 24: 863.
[82] Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Li Z, Yu C Z, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2005, 44: 7053.
[83] Wang X B, Lin T C, Hsueh H Y, Lin S C, He X D, Ho R M. Langmuir,DOI:10.1021/acs.langmuir.6b01765.
[84] Maldovan M, Ullal C K, Carter W C, Thomas E L. Nat. Mater., 2003, 2: 664.
[85] Michielsen K, Kole J S. Phys. Rev. B: Condens. Matter., 2003, 68: 115107.
[86] Yang X, Loos J. Macromolecules, 2007, 40: 1353.
[87] Toombes G E S, Finnefrock A C, Tate M W, Ulrich R, Wiesner U, Gruner S M. Macromolecules, 2007, 40: 8974.
[88] Mille C, Tyrodec E C, Corkery R W. Chem. Commun., 2011, 47: 9873.
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 王金凤, 李爱森, 李振. 室温磷光凝胶研究进展[J]. 化学进展, 2022, 34(3): 487-498.
[6] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[7] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[8] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[9] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[10] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[11] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[12] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[13] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[14] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[15] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.