English
新闻公告
More
化学进展 2019, Vol. 31 Issue (11): 1540-1549 DOI: 10.7536/PC190817 前一篇   后一篇

• •

药物输送体系构筑中的超分子组装策略

徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭**()   

  1. 复旦大学化学系 上海 200438
  • 收稿日期:2019-08-15 出版日期:2019-11-15 发布日期:2019-10-23
  • 通讯作者: 黎占亭
  • 基金资助:
    国家自然科学基金项目(21890732); 国家自然科学基金项目(21921003)

Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems

Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li**()   

  1. School of Chemistry, Fudan University, Shanghai 200438, China
  • Received:2019-08-15 Online:2019-11-15 Published:2019-10-23
  • Contact: Zhan-Ting Li
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21890732); National Natural Science Foundation of China(21921003)

超分子组装提供了药物输送体系设计的新原理。以高效的分子间非共价键作用为驱动力,超分子药物输送体系能够利用结构简单的分子单体获得精确的成分控制,并使得载体结构易于预测,形貌与体积易于调控,有利于实现药物的控制释放。本文首先总结超分子药物输送体系的研究背景,之后重点介绍基于环糊精、杯芳烃、柱芳烃和葫芦脲的主-客体体系的超分子药物输送体系的构建与药物输送功能,然后介绍水溶性的超分子有机框架在药物输送方面的应用,最后提出了超分子药物载体实用化需要克服的若干挑战性问题。

Supramolecular self-assembly provides a new strategy for the development of drug delivery systems from molecular components. With non-covalent interactions as driving forces, supramolecular drug delivery systems(SDDSs) can realize precise component control at the molecular level, increased predictability of the self-assembled structures, tunable control of morphologies and sizes, controlled release of delivered drugs. In this review, we first concisely introduce the background for the design of SDDSs and then describe important advances in SDDS development that involves the applications of cyclodextrin, calixarene, pillararene and cucurbituril based on host-guest interactions. Following these popular design principles, we further present the applications of water-soluble supramolecular organic frameworks as SDDSs. Finally, the challenges that need to be addressed for the practical translation of SDDSs are discussed.

()
图1 年发表论文数(SciFinder数据库中搜索:“drug delivery”+ “supramolecular”, 2019年7月28日)
Fig. 1 Annual publications(from SciFinder: “drug delivery” + “supramolecular”, July 28, 2019)
图2 CHBC-2和HA-AD通过β-环糊精-金刚烷络合作用形成超分子交联聚合物及其对阿霉素包结机制[64]
Fig. 2 The formation of the cross-linked supramolecular polymer by CHBC-2 and HA-AD through the encapsulation of β-cyclodextrin toward adamantane and its loading of doxorubicin[64]. Copyright 2016, American Chemical Society
图3 聚合物P1和P2形成的囊泡和纳米粒组装体光控阿霉素包埋与释放[67]
Fig. 3 Switch-controlled loading and release of DOX through light-triggered con-version between vesicles and nanoparticles formed by polymers P1 and P2[67]. Copyright 2015, Royal Society of Chemistry
图4 两亲性的CD和CA及其混合物形成稳定囊泡,其外侧环糊精和杯芳烃大环分别络合络氨酸和赖氨酸侧链,从而可以通过正交多价性原理结合富含络氨酸和赖氨酸的肽[69]
Fig. 4 Illustration of the multivalent peptide recognition by the co-assembly of CD and CA amphiphiles[69]
图5 芳烃Calix-4 A组装形成胶束和大的DNA复合物示意图[71]
Fig. 5 Illustration of the self-assembly of Calix-4 A into micelles and further formation of larger DNA complexes[71]
图6 两亲性磺化杯芳烃SC4AH作为“药物伴侣”形成囊泡型药物输送平台[78]
Fig. 6 Amphiphilic sulfonated calixarene SC4AH as “drug chaperone” to co-assemble with drugs to form delivery platform[78]
图7 WS6和G组装形成超分子囊泡及pH-响应的米托蒽醌包埋与释放[90]
Fig. 7 Schematic illustration of the formation of supramolecular vesicles from WS6 and G and the pH-responsive mitoxantrone loading and release[90]. Copyright 2013 American Chemical Society
图8 FCAP+ 组装形成正离子囊泡及氧化-还原响应的阿霉素和siRNA释放[96]
Fig. 8 Illustration of the formation of cationic vesicles by FCAP+ and their redox-responsive DOX/siRNA release[96]. Copyright 2014 John-Wiley
图9 CB[7]对奥沙利铂的络合及肿瘤微环境内精胺取代的控制释放[122]
Fig. 9 Schematic representation of the complexation of oxaliplatin by CB[7] and controlled release through being replaced by spermine in tumor microenvironment[122]
图10 聚合物Polym-1和Polym-2及金刚烷胺Adam-3的结构及两个聚合物与CB[8]形成三组分络合物和胶束示意图[123]
Fig. 10 The structure of Polym-1, Polym-2 and Adam-3 and the formation of the ternary complex and supramolecular micelles between the two polymers and CB[8][123]. Copyright 2012 American Chemical Society
图11 开环葫芦脲Acyclic CB-1、Acyclic CB-2和Acyclic CB 3a-c及阿霉素前药DOX-prodrug的结构[125,126,127,128]
Fig. 11 The structure of acyclic cucurbiturils Acyclic CB-1, Acyclic CB-2 and Acyclic CB-3a-c and doxorubicin prodrug DOX-prodrug[125,126,127,128]
图12 开环葫芦脲四面体单体T1与CB[8]组装形成超分子有机框架SOF及其原位负载药物示意图[139]
Fig. 12 Illustration of the formation of SOFs from tetrahedral building blocks T1 and CB[8] and their in situ loading of drugs[139]
[1]
Pedersen C J . J. Am. Chem. Soc., 1967,89:2495. https://pubs.acs.org/doi/abs/10.1021/ja00986a052

doi: 10.1021/ja00986a052     URL    
[2]
Lehn J M . Science, 1985,227:849. https://www.ncbi.nlm.nih.gov/pubmed/17821215

doi: 10.1126/science.227.4689.849     URL     pmid: 17821215
[3]
Zheng B, Wang F, Dong S, Huang F . Chem. Soc. Rev., 2012,41:1621. https://www.ncbi.nlm.nih.gov/pubmed/22012256

doi: 10.1039/c1cs15220c     URL     pmid: 22012256
[4]
Guo D S, Liu Y . Acc. Chem. Res., 2014,47:1925. https://www.ncbi.nlm.nih.gov/pubmed/24666259

doi: 10.1021/ar500009g     URL     pmid: 24666259
[5]
Cram D J, Cram J M . Science, 1974,183:803. https://www.ncbi.nlm.nih.gov/pubmed/17780761

doi: 10.1126/science.183.4127.803     URL     pmid: 17780761
[6]
Han Y, Meng Z, Ma Y X, Chen C F . Acc. Chem. Res., 2014,47:2026. https://www.ncbi.nlm.nih.gov/pubmed/24877894

doi: 10.1021/ar5000677     URL     pmid: 24877894
[7]
Xiao T, Zhong W, Zhou L, Xu L, Sun X Q, Elmes R B P, Hu X Y, Wang L . Chin. Chem. Lett., 2019,30:31. https://linkinghub.elsevier.com/retrieve/pii/S1001841718302213

doi: 10.1016/j.cclet.2018.05.034     URL    
[8]
Wang M X . Sci. China Chem., 2018,61:993. https://doi.org/10.1007/s11426-018-9328-8

doi: 10.1007/s11426-018-9328-8     URL    
[9]
Yang L P, Liu W E, Jiang W . Tetrahedron Lett, 2016,57:3978. https://linkinghub.elsevier.com/retrieve/pii/S0040403916309352

doi: 10.1016/j.tetlet.2016.07.077     URL    
[10]
王梅祥 ( Wang M X). 化学进展(Prog. Chem.), 2018,30:463.
[11]
Li B, Wang B, Huang X, Dai L, Cui L, Li J, Jia X, Li C . Angew. Chem. Int. Ed., 2019,58:3885. https://www.ncbi.nlm.nih.gov/pubmed/30600896

doi: 10.1002/anie.201813972     URL     pmid: 30600896
[12]
Balzani V, Credi A, Raymo F M, Stoddart J F . Angew. Chem. Int. Ed., 2000,39:3348. https://www.ncbi.nlm.nih.gov/pubmed/11091368

doi: 10.1002/1521-3773(20001002)39:19【-逻*辑*与-】lt;3348::aid-anie3348【-逻*辑*与-】gt;3.0.co;2-x     URL     pmid: 11091368
[13]
张双进(Zhang S J), 杨扬(Yang Y), 孙小强(Sun X Q), 尹芳华(Yin F H), 强琚莉(Jiang J L), 王乐勇(Wang L Y) . 化学进展(Prog. Chem.), 2016,28:244.
[14]
Wang Q, Chen D, Tian H . Sci. China Chem., 2018,61:1261. https://doi.org/10.1007/s11426-018-9267-3

doi: 10.1007/s11426-018-9267-3     URL    
[15]
Lehn J M . Polym. Int., 2002,51:825. http://doi.wiley.com/10.1002/%28ISSN%291097-0126

doi: 10.1002/(ISSN)1097-0126     URL    
[16]
吉晓帆(Ji X F), 夏丹玉(Xia D Y), 颜徐州(Yan X Z), 王虎(Wang H), 黄飞鹤(Huang F H) . 高分子学报(Acta Polymerica Sinica), 2017,1:9.
[17]
马骧(Ma X), 田禾(Tian H), . 高分子学报(Acta Polymerica Sinica), 2017,1:27.
[18]
Chen Y, Sun S, Lu D, Shi Y, Yao Y . Chin. Chem. Lett., 2019,30:37. https://linkinghub.elsevier.com/retrieve/pii/S1001841718304091

doi: 10.1016/j.cclet.2018.10.022     URL    
[19]
黄文忠(Huang W Z), 占田广(Zhan T G), 林沨(Lin F), 赵新(Zhao X) . 化学进展(Prog. Chem.), 2016,28:165.
[20]
徐江飞(Xu J F), 张希(Zhang X) . 高分子学报(Acta Polymerica Sinica), 2017,1:37.
[21]
Zeng F, Zimmerman S C . Chem. Rev., 1997,97:1681. https://www.ncbi.nlm.nih.gov/pubmed/11851463

doi: 10.1021/cr9603892     URL     pmid: 11851463
[22]
Yang X, Liu F, Zhao Z, Liang F, Zhang H, Liu S . Chin. Chem. Lett., 2018,29:1560. https://linkinghub.elsevier.com/retrieve/pii/S100184171830041X

doi: 10.1016/j.cclet.2018.01.032     URL    
[23]
潘梅(Pan M), 韦张文(Wei Z W), 徐耀维(Xu Y W), 苏成勇(Su C Y) . 化学进展(Prog. Chem.), 2017,29:47.
[24]
Kan X, Liu H, Pan Q, Li Z, Zhao Y . Chin. Chem. Lett., 2018,29:261.
[25]
Chen Y, Huang F, Li Z T, Liu Y . Sci. China Chem., 2018,61:979.
[26]
Anslyn E V . J. Org. Chem., 2007,72:687. https://www.ncbi.nlm.nih.gov/pubmed/17253783

doi: 10.1021/jo0617971     URL     pmid: 17253783
[27]
Wu X, Li Z, Chen X X, Fossey J S, James T D, Jiang Y B . Chem. Soc. Rev., 2013,42:8032. https://www.ncbi.nlm.nih.gov/pubmed/23860576

doi: 10.1039/c3cs60148j     URL     pmid: 23860576
[28]
Mako T L, Racicot J M, Levine M . Chem. Rev, 2019,119:322. https://www.ncbi.nlm.nih.gov/pubmed/30507166

doi: 10.1021/acs.chemrev.8b00260     URL     pmid: 30507166
[29]
Wei T, Zhang H, Li W, Qu W, Su J, Lin Q, Zhang Y, Yao H . Chin. J. Chem., 2017,35:1311.
[30]
Peng H Q, Niu L Y, Chen Y Z, Wu L Z, Tung C H, Yang Q Z . Chem. Rev., 2015,115:7502. https://www.ncbi.nlm.nih.gov/pubmed/26040205

doi: 10.1021/cr5007057     URL     pmid: 26040205
[31]
Li P, Chen Y, Liu Y . Chin. Chem. Lett., 2019,30:1190.
[32]
Zheng B, Hou Y, Gao L, Zhang M . Chin. J. Chem., 2019,37:843.
[33]
Yang M, Liu Q, Tang Q, Wang C, Yang M, Sun T, Huang Y, Tao Z . Chem. J. Chin. Univ., 2018,39:2665.
[34]
Ma X, Zhao Y . Chem. Rev, 2015,115:7794. https://www.ncbi.nlm.nih.gov/pubmed/25415447

doi: 10.1021/cr500392w     URL     pmid: 25415447
[35]
Haag R . Angew. Chem. Int. Ed., 2004,43:278. https://www.ncbi.nlm.nih.gov/pubmed/14705079

doi: 10.1002/anie.200301694     URL     pmid: 14705079
[36]
Webber M J, Langer R . Chem. Soc. Rev., 2017,46:6600. https://www.ncbi.nlm.nih.gov/pubmed/28828455

doi: 10.1039/c7cs00391a     URL     pmid: 28828455
[37]
Peng L, Liu S, Feng A, Yuan J . Mol. Pharmaceutics, 2017,14:2475. https://www.ncbi.nlm.nih.gov/pubmed/28463008

doi: 10.1021/acs.molpharmaceut.7b00160     URL     pmid: 28463008
[38]
Feng W, Jin M, Yang K, Pei Y, Pei Z . Chem. Commun, 2018,54:13626. https://www.ncbi.nlm.nih.gov/pubmed/30444504

doi: 10.1039/c8cc08252a     URL     pmid: 30444504
[39]
Hu X Y, Wang L . Supramol. Chem, 2018,30:664.
[40]
张丹维(Zhang D W), 王辉(Wang H), 黎占亭(Li Z T) . 高分子通报(Polymer Bulletin), 2018,6:243.
[41]
Wu X, Gao L, Hu X Y, Wang L . Chem. Rec, 2016,16:1216. https://www.ncbi.nlm.nih.gov/pubmed/27061964

doi: 10.1002/tcr.201500265     URL     pmid: 27061964
[42]
徐柳(Xu L), 钱晨(Qian C), 朱辰奇(Zhu C Q), 陈志鹏(Chen Z P), 陈瑞(Chen R) . 化学进展(Prog. Chem.), 2018,30:1341.
[43]
赖欣宜(Lai X Y), 王志勇(Wang Z Y), 郑永太(Zheng Y T), 陈永明(Chen Y M) . 化学进展(Prog. Chem.), 2019,31:783.
[44]
Tibbitt M W, Dahlman J E, Langer R . J. Am. Chem. Soc., 2016,138:704. https://www.ncbi.nlm.nih.gov/pubmed/26741786

doi: 10.1021/jacs.5b09974     URL     pmid: 26741786
[45]
Pattni, B S, Chupin V V, Torchilin V P . Chem. Rev., 2015,115:10938. https://www.ncbi.nlm.nih.gov/pubmed/26010257

doi: 10.1021/acs.chemrev.5b00046     URL     pmid: 26010257
[46]
Qin S Y, Zhang A Q, Cheng S X, Rong L, Zhang X Z . Biomater., 2017,112:234. https://linkinghub.elsevier.com/retrieve/pii/S0142961216305610

doi: 10.1016/j.biomaterials.2016.10.016     URL    
[47]
Ma Y, Mou Q, Wang D, Zhu X, Yan D . Theranostics, 2016,6:930. https://www.ncbi.nlm.nih.gov/pubmed/27217829

doi: 10.7150/thno.14855     URL     pmid: 27217829
[48]
Xu C, Tian H, Chen X . Sci. China Chem., 2017,60:319. http://link.springer.com/10.1007/s11426-016-0466-x

doi: 10.1007/s11426-016-0466-x     URL    
[49]
Bangham A D, Standish M M, Watkins J C . J. Mol. Biol., 1965,13:238. https://www.ncbi.nlm.nih.gov/pubmed/5859039

doi: 10.1016/s0022-2836(65)80093-6     URL     pmid: 5859039
[50]
Gregoriadis G, Ryman B E . Biochem. J., 1971,124:48B.
[51]
Barenholz Y . J. Control. Release, 2012,160:117. https://www.ncbi.nlm.nih.gov/pubmed/22484195

doi: 10.1016/j.jconrel.2012.03.020     URL     pmid: 22484195
[52]
Tran S, DeGiovanni, P J, Piel B, Rai P . Clin. Trans. Med., 2017,6:44. https://www.ncbi.nlm.nih.gov/pubmed/29230567

doi: 10.1186/s40169-017-0175-0     URL     pmid: 29230567
[53]
Cranmer L D . OncoTargets Therapy, 2019,12:2047. https://www.ncbi.nlm.nih.gov/pubmed/30936721

doi: 10.2147/OTT.S145539     URL     pmid: 30936721
[54]
Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen S, Chen W, Chen X, Chen X, Chen Z, Ding B, Dong Q, Fan Q, Fu T, Hou D, Jiang Q, Ke H, Jiang X, Liu G, Li S, Li T, Liu Z, Nie G, Ovais M, Pang D, Qiu N, Shen Y, Tian H, Wang C, Wang H, Wang Z, Xu H, Xu J F, Yang X, Zhu S, Zheng X, Zhang X, Zhao Y, Tan W, Zhang X, Zhao, Y . Sci. China Chem., 2018,61:1503. https://doi.org/10.1007/s11426-018-9397-5

doi: 10.1007/s11426-018-9397-5     URL    
[55]
Biedermann F, Nau W M, Schneider H J . Angew. Chem. Int. Ed., 2014,53:11158. https://www.ncbi.nlm.nih.gov/pubmed/25070083

doi: 10.1002/anie.201310958     URL     pmid: 25070083
[56]
Isaacs L . Isr. J. Chem., 2011,51:578. a4508026-f3e7-4792-a82c-141e833703c2http://dx.doi.org/10.1002/ijch.201100022

doi: 10.1002/ijch.201100022     URL    
[57]
Kurkov S V, Loftsson T . Int. J. Pharm., 2013,453:167. https://www.ncbi.nlm.nih.gov/pubmed/22771733

doi: 10.1016/j.ijpharm.2012.06.055     URL     pmid: 22771733
[58]
Keating G M . Drugs, 2016,76:1041. https://www.ncbi.nlm.nih.gov/pubmed/27324403

doi: 10.1007/s40265-016-0604-1     URL     pmid: 27324403
[59]
Ottinger E A, Kao M L, Carrillo-Carrasco N, Yanjanin N, Shankar R K, Janssen M, Brewster M, Scott I, Xu X, Cradock J, Terse P, Dehdashti S J, Marugan J, Zheng W, Portilla L, Hubbs A, Pavan W J, Heiss J, Vite C H, Walkley S U, Ory D S, Silber S A, Porter F D, Austin C P, McKew J C . Curr. Top. Med. Chem., 2017,17:91. https://doi.org/10.2174/156802661701161114223616

doi: 10.2174/156802661701161114223616     URL    
[60]
Zhang Y M, Liu Y H, Liu Y . Adv. Mater, 2019,1806158.
[61]
Zhang D, Lv P, Zhou C, Zhao Y, Liao X, Yang B . Mater. Sci. Eng. C, 2019,96:872. https://www.ncbi.nlm.nih.gov/pubmed/30606602

doi: 10.1016/j.msec.2018.11.031     URL     pmid: 30606602
[62]
Zheng Z, Geng W C, Xu Z, Guo D S . Isr. J. Chem., 2019, Doi: 10.1002/ijch.201900032.
[63]
Yang Y, Jia X, Zhang Y M, Li N, Liu Y . Chem. Commun, 2018,54:8713. https://www.ncbi.nlm.nih.gov/pubmed/30023992

doi: 10.1039/c8cc04783a     URL     pmid: 30023992
[64]
Yu J, Chen Y, Zhang Y H, Xu X, Liu Y . Org. Lett, 2016,18:4542. https://www.ncbi.nlm.nih.gov/pubmed/27589016

doi: 10.1021/acs.orglett.6b02183     URL     pmid: 27589016
[65]
Liu B w, Zhou H, Zhou S t, Yuan J y . Eur. Polym. J., 2015,65:63. https://linkinghub.elsevier.com/retrieve/pii/S0014305715000294

doi: 10.1016/j.eurpolymj.2015.01.017     URL    
[66]
Yang G, Zhang X, Kochovski Z, Zhang Y, Dai B, Sakai F, Jiang L, Lu Y, Ballauff M, Li X, Liu C, Chen G, Jiang M . J. Am. Chem. Soc., 2016,138:1932. https://www.ncbi.nlm.nih.gov/pubmed/26799414

doi: 10.1021/jacs.5b11733     URL     pmid: 26799414
[67]
Zhang H, Fan X, Suo R, Li H, Yang Z, Zhang W, Bai Y, Yao H, Tian W . Chem. Commun, 2015,51:15366. https://www.ncbi.nlm.nih.gov/pubmed/26343347

doi: 10.1039/c5cc05579b     URL     pmid: 26343347
[68]
Bai Y, Liu C P, Song X, Zhuo L, Bu H, Tian W . Chem. Asian J., 2018,13:3903. https://www.ncbi.nlm.nih.gov/pubmed/30311448

doi: 10.1002/asia.201801366     URL     pmid: 30311448
[69]
Xu Z, Shaorui Jia S, Wang W, Yuan Z, Ravoo B J, Guo D S . Nat. Chem., 2019,11, 86. https://www.ncbi.nlm.nih.gov/pubmed/30455432

doi: 10.1038/s41557-018-0164-y     URL     pmid: 30455432
[70]
Ikeda A, Shinkai S . Chem. Rev, 1997,97:1713. https://www.ncbi.nlm.nih.gov/pubmed/11851464

doi: 10.1021/cr960385x     URL     pmid: 11851464
[71]
Rodik R V, Klymchenko A S, Jain N, Miroshnichenko S I, Richert L, Kalchenko V I, Mely Y . Chem. Eur. J., 2011,17:5526. https://www.ncbi.nlm.nih.gov/pubmed/21503994

doi: 10.1002/chem.201100154     URL     pmid: 21503994
[72]
王以炫(Wang Y X), 刘育(Liu Y) . 化学学报(Acta Chimica Sinica), 2015,73:984.
[73]
Zhou Y, Li H, Yang Y W . Chin. Chem. Lett., 2015,26:825. https://linkinghub.elsevier.com/retrieve/pii/S1001841715000613

doi: 10.1016/j.cclet.2015.01.038     URL    
[74]
Giuliani M, Morbioli I, Sansone F, Casnati A . Chem. Commun, 2015,51:14140. https://www.ncbi.nlm.nih.gov/pubmed/26286064

doi: 10.1039/c5cc05204a     URL     pmid: 26286064
[75]
Rodik R V, Klymchenko A S, Mely Y, Kalchenko V I . J. Inclus. Phenom. Macrocycl. Chem., 2014,80:189. http://link.springer.com/10.1007/s10847-014-0412-8

doi: 10.1007/s10847-014-0412-8     URL    
[76]
Wang J, Ding X, Guo X . Adv. Colloid Interface Sci., 2019,269:187. https://www.ncbi.nlm.nih.gov/pubmed/31082545

doi: 10.1016/j.cis.2019.04.004     URL     pmid: 31082545
[77]
Peng S, Gao J, Liu Y, Guo D S . Chem. Commun., 2015,51:16557. https://www.ncbi.nlm.nih.gov/pubmed/26421328

doi: 10.1039/c5cc05170c     URL     pmid: 26421328
[78]
Wang Y X, Guo D S, Duan Y C, Wang Y J, Liu Y . Sci. Rep, 2015,5:9019. https://www.ncbi.nlm.nih.gov/pubmed/25761778

doi: 10.1038/srep09019     URL     pmid: 25761778
[79]
Chen M X, Li T, Peng S, Tao D . New J. Chem., 2016,40:9923. http://xlink.rsc.org/?DOI=C6NJ01986B

doi: 10.1039/C6NJ01986B     URL    
[80]
Mo J, Eggers P K, Yuan Z x, Raston C L, Lim L Y . Sci. Rep., 2016,6:23489. https://www.ncbi.nlm.nih.gov/pubmed/27009430

doi: 10.1038/srep23489     URL     pmid: 27009430
[81]
Granata G, Paterniti I, Geraci C, Cunsolo F, Esposito E, Cordaro M, Blanco A R, Cuzzocrea S, Consoli G M L . Mol. Pharmaceutics, 2017,14:1610. https://www.ncbi.nlm.nih.gov/pubmed/28394618

doi: 10.1021/acs.molpharmaceut.6b01066     URL     pmid: 28394618
[82]
Wang Y X, Zhang Y M, Wang Y L, Liu Y . Chem. Mater, 2015,27:2848. https://pubs.acs.org/doi/10.1021/cm504653k

doi: 10.1021/cm504653k     URL    
[83]
Xue M, Yang Y, Chi X, Zhang Z, Huang F . Acc. Chem. Res., 2012,45:1294. https://www.ncbi.nlm.nih.gov/pubmed/22551015

doi: 10.1021/ar2003418     URL     pmid: 22551015
[84]
Ogoshi T, Yamagishi T a, Nakamoto Y . Chem. Rev., 2016,116:7937. https://www.ncbi.nlm.nih.gov/pubmed/27337002

doi: 10.1021/acs.chemrev.5b00765     URL     pmid: 27337002
[85]
薛敏(Xue M), 范芳芳(Fan F F), 杨勇(Yang Y), 陈传峰(Chen C F) . 化学进展(Prog. Chem.), 2019,31:491.
[86]
Yu G, Chen X . Theranostics, 2019,9:3041. https://www.ncbi.nlm.nih.gov/pubmed/31244941

doi: 10.7150/thno.31653     URL     pmid: 31244941
[87]
邵为(Shao W), 刘昕(Liu X), 王婷婷(Wang T T), 胡晓玉(Hu X Y) . 有机化学(Chinese Journal of Organic Chemistry), 2018,38:1107.
[88]
Sathiyajith C, Shaikh R R, Han Q, Zhang Y, Meguellati K, Yang Y W . Chem. Commun., 2017,53:677. http://xlink.rsc.org/?DOI=C6CC08967D

doi: 10.1039/C6CC08967D     URL    
[89]
Yu G, Yu W, Shao L, Zhang Z, Chi X, Mao Z, Gao C, Huang F . Adv. Funct. Mater., 2016,26:8999. http://doi.wiley.com/10.1002/adfm.v26.48

doi: 10.1002/adfm.v26.48     URL    
[90]
Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C, Pan Y, Wang L . J. Am. Chem. Soc., 2013,135:10542. https://www.ncbi.nlm.nih.gov/pubmed/23795864

doi: 10.1021/ja405014r     URL     pmid: 23795864
[91]
Cao Y, Hu X Y, Li Y, Zou X, Xiong S, Lin C, Shen Y Z, Wang L . J. Am. Chem. Soc., 2014,136:10762. https://www.ncbi.nlm.nih.gov/pubmed/25033305

doi: 10.1021/ja505344t     URL     pmid: 25033305
[92]
Hu X Y, Jia K, Cao Y, Li Y, Qin S, Zhou F, Lin C, Zhang D, Wang L . Chem.-Eur. J., 2015,21:1208. https://www.ncbi.nlm.nih.gov/pubmed/25370941

doi: 10.1002/chem.201405095     URL     pmid: 25370941
[93]
Liu X, Shao W, Zheng Y, Yao C, Peng L, Zhang D, Hu X Y, Wang L . Chem. Commun, 2017,53:8596. https://www.ncbi.nlm.nih.gov/pubmed/28718478

doi: 10.1039/c7cc04932c     URL     pmid: 28718478
[94]
Zuo M, Qian W, Xu Z, Shao W, Hu X Y, Zhang D, Jiang J, Sun X, Wang L . Small, 2018,14:1801942. http://doi.wiley.com/10.1002/smll.v14.38

doi: 10.1002/smll.v14.38     URL    
[95]
Hu X Y, Gao L, Mosel S, Ehlers M, Zellermann E, Jiang H, Knauer S K, Wang L, Schmuck C . Small, 2018,14, 1803952. http://doi.wiley.com/10.1002/smll.v14.52

doi: 10.1002/smll.v14.52     URL    
[96]
Chang Y, Yang K, Wei P, Huang S, Pei Y, Zhao W, Pei Z . Angew. Chem. Int. Ed., 2014,53:13126. https://www.ncbi.nlm.nih.gov/pubmed/25267331

doi: 10.1002/anie.201407272     URL     pmid: 25267331
[97]
Yang K, Chang Y, Wen J, Lu Y, Pei Y, Cao S, Wang F, Pei Z . Chem. Mater, 2016,28:1990. https://pubs.acs.org/doi/10.1021/acs.chemmater.6b00696

doi: 10.1021/acs.chemmater.6b00696     URL    
[98]
Yang K, Pei Y, Wen J, Pei Z . Chem. Commun, 2016,52:9316. https://www.ncbi.nlm.nih.gov/pubmed/27332040

doi: 10.1039/c6cc03641d     URL     pmid: 27332040
[99]
Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L . Angew. Chem. Int. Ed., 2005,44:4844. https://www.ncbi.nlm.nih.gov/pubmed/16052668

doi: 10.1002/anie.200460675     URL     pmid: 16052668
[100]
焦阳(Jiao Y), 张希(Zhang X) . 化学学报(Acta Cinica Sinica), 2018,76:659.
[101]
Hou C, Zeng X, Gao Y, Qiao S, Zhang X, Xu J, Liu J . Isr. J. Chem., 2018,58:286. http://doi.wiley.com/10.1002/ijch.v58.3-4

doi: 10.1002/ijch.v58.3-4     URL    
[102]
Zou H, Liu J, Li Y, Li X, Wang X . Small, 2018,14:1802234. http://doi.wiley.com/10.1002/smll.v14.46

doi: 10.1002/smll.v14.46     URL    
[103]
Liu L . J. Inclus. Phenom. Macrocycl. Chem., 2017,87:1. http://link.springer.com/10.1007/s10847-016-0683-3

doi: 10.1007/s10847-016-0683-3     URL    
[104]
Kuok K I, Li S, Wyman I W, Wang R . Ann. New York Acad. Sci., 2017,1398:108. https://www.ncbi.nlm.nih.gov/pubmed/28692768

doi: 10.1111/nyas.13376     URL     pmid: 28692768
[105]
Walker S, Oun R, McInnes F J, Wheate N J . Isr. J. Chem., 2011,51:616. http://doi.wiley.com/10.1002/ijch.201100033

doi: 10.1002/ijch.201100033     URL    
[106]
Macartney D H . Isr. J. Chem., 2011,51:600. 0ceb3a36-875e-4212-ba77-629c75daf150http://dx.doi.org/10.1002/ijch.201100040

doi: 10.1002/ijch.201100040     URL    
[107]
Yin H, Wang R . Isr. J. Chem., 2018,58:188. http://doi.wiley.com/10.1002/ijch.v58.3-4

doi: 10.1002/ijch.v58.3-4     URL    
[108]
张智睿(Zhang Z R), 阚京兰(Kan J L), 冯华明(Feng H M), 刘青云(Liu Q Y), 陶朱(Tao Z), 肖昕(Xiao X) . 有机化学(Chinese Journal of Organic Chemistry), 2018,38:1972.
[109]
黄净净(Huang J J), 许志玲(Xu Z L), 练小卫(Lian X), 张晓东(Zhang X D W), 陶朱(Tao Z), 周清娣(Zhou Q D), 张前军(Zhang Q J), 卫钢(Wei G) . 高等学校化学学报(Chinese Journal of Chinese University), 2018,39:2425.
[110]
Xu Z, Lian X, Li M, Zhang X, Wang Y, Tao Z, Zhang Q . Chem. Res. Chin. Univ., 2017,33:736. http://link.springer.com/10.1007/s40242-017-7096-8

doi: 10.1007/s40242-017-7096-8     URL    
[111]
Hettiarachchi G, Nguyen D, Wu J, Lucas D, Ma D, Isaacs L, Briken V . PLoS One, 2010,5:e10514. https://www.ncbi.nlm.nih.gov/pubmed/20463906

doi: 10.1371/journal.pone.0010514     URL     pmid: 20463906
[112]
Uzunova V D, Cullinane C, Brix K, Nau W M, Day A I . Org. Biomol. Chem., 2010,8:2037. https://www.ncbi.nlm.nih.gov/pubmed/20401379

doi: 10.1039/b925555a     URL     pmid: 20401379
[113]
Oun R, Floriano R S, Isaacs L, Rowan E G, Wheate N J . Toxicol. Res., 2014,3:447. https://academic.oup.com/toxres/article/3/6/447-455/5573428

doi: 10.1039/C4TX00082J     URL    
[114]
Li F, Gorle A K, Ranson M, Vine K L, Kinobe R, Feterl M, Warner J M, Keene F R, Collins J G, Day A I . Org. Biomol. Chem., 2017,15:4172. https://www.ncbi.nlm.nih.gov/pubmed/28443914

doi: 10.1039/c7ob00724h     URL     pmid: 28443914
[115]
Zhang X, Xu X, Li S, Wang L H, Zhang J, Wang R . Sci. Rep, 2018,8:8819. https://www.ncbi.nlm.nih.gov/pubmed/29891955

doi: 10.1038/s41598-018-27206-6     URL     pmid: 29891955
[116]
Park K M, Lee D W, Sarkar B, Jung H, Kim J, Ko Y H, Lee, K E, Jeon H, Kim K . Small, 2010,6:1430. https://www.ncbi.nlm.nih.gov/pubmed/20564485

doi: 10.1002/smll.201000293     URL     pmid: 20564485
[117]
Pennakalathil J, Jahja E, Özdemir E S, Konu O, Tuncel D . Biomacromolecules, 2014,15:3366. https://www.ncbi.nlm.nih.gov/pubmed/25075758

doi: 10.1021/bm500839j     URL     pmid: 25075758
[118]
Yang Y W . MedChemComm, 2011,2:1033. a852f30e-5f6a-40ec-a153-6e72eae88111http://dx.doi.org/10.1039/c1md00158b

doi: 10.1039/c1md00158b     URL    
[119]
Liu J, Du X, Zhang X . Chem. Eur. J., 2011,17:810. https://www.ncbi.nlm.nih.gov/pubmed/21226095

doi: 10.1002/chem.201002899     URL     pmid: 21226095
[120]
Wu X, Zhang Y M, Liu Y . RSC Adv, 2016,6:99729. http://xlink.rsc.org/?DOI=C6RA21900D

doi: 10.1039/C6RA21900D     URL    
[121]
Chen Y, Huang Z, Xu J F, Sun Z, Zhang X . ACS Appl. Mater. Interfaces, 2016,8:22780. https://www.ncbi.nlm.nih.gov/pubmed/27548507

doi: 10.1021/acsami.6b08295     URL     pmid: 27548507
[122]
Chen Y, Huang Z, Zhao H, Xu J F, Sun Z, Zhang X . ACS Appl. Mater. Interfaces, 2017,9:8602. https://www.ncbi.nlm.nih.gov/pubmed/28194936

doi: 10.1021/acsami.7b01157     URL     pmid: 28194936
[123]
Loh X J, Barrio J, Toh P, Lee T C, Jiao D, Rauwald U, Appel E A, Scherman O A . Biomacromolecules, 2012,13:84. https://www.ncbi.nlm.nih.gov/pubmed/22148638

doi: 10.1021/bm201588m     URL     pmid: 22148638
[124]
Wang Y, Li D, Wang H, Chen Y, Han H, Jin Q, Ji J . Chem. Commun, 2014,50:9390. https://www.ncbi.nlm.nih.gov/pubmed/25005141

doi: 10.1039/c4cc03978e     URL     pmid: 25005141
[125]
Ma D, Hettiarachchi G, Nguyen D, Zhang B, Wittenberg J B, Zavalij P V, Briken V, Isaacs L . Nat. Chem, 2012,4:503. https://www.ncbi.nlm.nih.gov/pubmed/22614387

doi: 10.1038/nchem.1326     URL     pmid: 22614387
[126]
Li F, Liu D, Liao X, Zhao Y, Li R, Yang B . Bioorg. Med. Chem., 2019,27:525. https://www.ncbi.nlm.nih.gov/pubmed/30606675

doi: 10.1016/j.bmc.2018.12.035     URL     pmid: 30606675
[127]
Mao D, Liang Y, Liu Y, Zhou X, Ma J, Jiang B, Liu J, Ma D . Angew. Chem. Int. Ed., 2017,56:12614. https://www.ncbi.nlm.nih.gov/pubmed/28812329

doi: 10.1002/anie.201707164     URL     pmid: 28812329
[128]
Mao W, Mao D, Yang F, Ma D . Chem. Eur. J., 2019,25:2272. https://www.ncbi.nlm.nih.gov/pubmed/30511775

doi: 10.1002/chem.201804835     URL     pmid: 30511775
[129]
Jiang S, Lan S, Mao D, Yang X, Shi K, Ma D . Chem. Commun, 2018,54:9486. https://www.ncbi.nlm.nih.gov/pubmed/30087959

doi: 10.1039/c8cc05552a     URL     pmid: 30087959
[130]
Maeda H . J. Drug Target., 2017,25:781. https://www.ncbi.nlm.nih.gov/pubmed/28988499

doi: 10.1080/1061186X.2017.1365878     URL     pmid: 28988499
[131]
Wang L, Huo M, Chen Y, Shi J . Adv. Healthcare Mater., 2018,7:1701156. http://doi.wiley.com/10.1002/adhm.v7.8

doi: 10.1002/adhm.v7.8     URL    
[132]
Tian J, Wang H, Zhang D W, Liu Y, Li Z T . Natl. Sci. Rev., 2017,4:426. https://academic.oup.com/nsr/article/4/3/426/3072203

doi: 10.1093/nsr/nwx030     URL    
[133]
王辉(Wang H), 张丹维(Zhang D W), 黎占亭(Li Z T) . 高分子学报(Acta Polymerica Sinica), 2017,19.
[134]
Li X F, Yu S B, Yang B, Tian J, Wang H, Zhang D W, Liu Y, Li Z T . Sci. China Chem., 2018,61:830. https://doi.org/10.1007/s11426-018-9234-2

doi: 10.1007/s11426-018-9234-2     URL    
[135]
Tian J, Zhou T Y, Zhang S C, Aloni S, Altoe M Vi, Xie S H, Wang H, Zhang D W, Zhao X, Liu Y, Li Z T . Nat. Commun., 2014,5:5574. https://www.ncbi.nlm.nih.gov/pubmed/25470406

doi: 10.1038/ncomms6574     URL     pmid: 25470406
[136]
Wu Y P, Yang B, Tian J, Yu S B, Wang H, Zhang D W, Liu Y, Li Z T . Chem. Commun., 2017,53:13367. https://www.ncbi.nlm.nih.gov/pubmed/29199747

doi: 10.1039/c7cc08824h     URL     pmid: 29199747
[137]
Yu S B, Qi Q, Yang B, Wang H, Zhang D W, Liu Y, Li Z T . Small, 2018,14:1801037. http://doi.wiley.com/10.1002/smll.201801037

doi: 10.1002/smll.201801037     URL    
[138]
Tian J, Yao C, Yang W L, Zhang L, Zhang D W, Wang H, Zhang F, Liu Y, Li Z T . Chin. Chem. Lett., 2017,28:798. https://linkinghub.elsevier.com/retrieve/pii/S1001841717300323

doi: 10.1016/j.cclet.2017.01.010     URL    
[139]
Yao C, Tian J, Wang H, Zhang D W, Liu Y, Zhang F, Li Z T . Chin. Chem. Lett., 2017,28:893. https://linkinghub.elsevier.com/retrieve/pii/S1001841717300141

doi: 10.1016/j.cclet.2017.01.005     URL    
[140]
Yang B, Zhang X D, Jian Li J, Tian J, Wu Y P, Yu F X, Wang R, Wang H, Zhang D W, Liu Y, Zhou L, Li Z T . CCS Chem., 2019,1:156. https://www.chinesechemsoc.org/journal/ccschem

doi: 10.31635/20965745     URL    
[141]
Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C W . Nat. Rev. Mater., 2016,1:16014. https://doi.org/10.1038/natrevmats.2016.14

doi: 10.1038/natrevmats.2016.14     URL    
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 曹新华, 韩晴晴, 高爱萍, 王桂霞. 气态酸和有机胺响应的超分子凝胶[J]. 化学进展, 2021, 33(9): 1538-1549.
[8] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[9] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[10] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[11] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[12] 张鹏, 郭心洁, 张倩, 丁彩凤. 有机染料聚集在光化学传感中的应用[J]. 化学进展, 2020, 32(2/3): 286-297.
[13] 孙子茹, 刘胜男, 高清志. 靶向葡萄糖转运蛋白(GLUTs)抗癌药物的开发[J]. 化学进展, 2020, 32(12): 1869-1878.
[14] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[15] 侯瑞, 李桂群, 张岩, 李明俊, 周桂明, 柴晓明. 基于超分子聚合物的自修复材料[J]. 化学进展, 2019, 31(5): 690-698.