English
新闻公告
More
化学进展 2016, Vol. 28 Issue (6): 773-783 DOI: 10.7536/PC151046 前一篇   后一篇

• 综述与评论 •

阳极氧化钛纳米管阵列膜可控制备

张贺, 张驰, 宋晔*   

  1. 南京理工大学 软化学与功能材料教育部重点实验室 南京 210094
  • 收稿日期:2015-10-01 修回日期:2016-03-01 出版日期:2016-06-15 发布日期:2016-03-23
  • 通讯作者: 宋晔 E-mail:soong_ye@sohu.com
  • 基金资助:
    国家自然科学基金项目(No. 51377085, 51577093)资助

Fabrication of Anodic Titania Nanotube Arrays with Tunable Morphologies

Zhang He, Zhang Chi, Song Ye*   

  1. Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2015-10-01 Revised:2016-03-01 Online:2016-06-15 Published:2016-03-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51377085,51577093).
阳极氧化钛纳米管(anodic titania nanotubes,ATNTs)阵列膜具有制备简便、比表面积大和有序度高等优点因而备受人们关注,已广泛应用于太阳能电池、传感器、光催化和超级电容器等领域。但与类似的多孔阳极氧化铝相比,在可控制备即微观形貌控制方面仍相差甚远。迄今,ATNTs的综述文章多侧重于ATNTs的形成机理、改性及应用方面,而本文则聚焦于近十年来ATNTs制备技术成果,试图揭示其在管长、管径和规整度等方面的可控制备规律。首先介绍了在乙二醇(EG)电解液中制备ATNTs的常规阳极氧化条件,以及得到的ATNTs的典型形貌特征。然后评述了非EG电解液体系中,ATNTs的生长规律和形貌特征。在此基础上,综述了如何通过改变阳极氧化工艺参数,如电解液温度、F-浓度、氧化电压和时间等来实现对ATNTs管径及规整性的调控,并讨论了制备超长纳米管膜的难点和方法,以及获得ATNTs自支撑膜的各种工艺。最后指出了目前ATNTs可控制备存在的不足及今后的发展方向。
Anodic titania nanotubes (ATNTs) have recently attracted particular attention due to their ease of preparation, low cost, large surface area, alignment and self-ordering. Especially, ATNTs are of interest for a wide variety of applications, including dye-sensitized solar cells, electrochemical sensors, photocatalysts, supercapacitors, etc. However, compared with analogous porous anodic alumina, the synthesis of ATNTs with regular and controllable microscopic morphologies is still under development. Although a number of excellent reviews on ATNTs have appeared, most of them have generally focused on their formation mechanism, properties, modifications and applications. This review attempts to pay close attention to the controllable fabrication of ATNTs, i.e., length, tube diameter, and self-ordering of nanotubes can be adjusted over large length scales. The preparation techniques of ATNTs in the last decade are summarized and the key factors for synthesis of ATNTs with tunable morphologies are discussed. In this review, we first present the anodization conditions of fabricating conventional ATNTs in ethylene glycol (EG) electrolytes and the typical microscopic morphologies of as-obtained ATNTs. Then, we discuss the growth characteristics and morphological parameters of ATNTs anodized in other electrolyte systems, such as aqueous solution, glycerol, dimethyl sulfoxide. It has been demonstrated that anodization conditions, including the solvent, temperature, anodization voltage, anodization duration and F- concentration, have profound effects on the morphologies of ATNTs. On the basis of these experimental findings, we overview how to adjust tube diameter, tube length, wall thickness and self-organization of ATNTs by changing anodization parameters. Some fabrication methods for nanotubes with a length of over several hundreds micrometers and the structural features of such thick ATNT films are also given. In addition, the strategies to detach as-formed ATNTs from the metallic substrate and to obtain free-standing ATNT membranes are described. Finally, we emphasize some related issues for fabrication of ATNTs with tunable morphologies and indicate the main challenges and potential future directions of the field.

Contents
1 Introduction
2 Anodization conditions of fabricating the conventional ATNTs
3 ATNTs grown in non-ethylene glycol (EG)-based electrolyte systems
4 Adjustment of tube diameter and ordering of ATNTs
4.1 Adjustment of tube diameter
4.2 Achievement of an improved ordering for ATNTs
5 Methods for fabricating ATNTs with ultralong nanotubes
6 Strategies to obtain free-standing ATNT membranes
7 Conclusion

中图分类号: 

()
[1] Pfaff G, Reynders P. Chem. Rev., 1999, 99: 1963.
[2] Manero J M, Gil F J, Planell J A. J. Mater. Sci., 1996, 7: 131.
[3] Ding J, Huang Z, Zhu J, Kou S, Zhang X, Yang H. Sci. Rep., 2015, 5: 17773.
[4] Zayat M, Garcia-Parejo P, Levy D. Chem. Soc. Rev., 2007, 36: 1270.
[5] Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C G. Nano Lett., 2006, 6: 215.
[6] Shankar K, Bandara J, Paulose M, Wietasch H, Varghese O K, Mor G K, LaTempa T J, Thelakkat M, Grimes C A. Nano Lett., 2008, 8: 1654.
[7] Adachi M, Murata Y, Okada I, Yoshikawa S. J. Electrochem. Soc., 2003, 150: G488.
[8] Hoyer P. Langmuir, 1996, 12: 1411.
[9] Xiong C R, Balkus K. J. Chem. Mater., 2005, 17: 5136.
[10] Wu C W, Ohsuna T, Kuwabara M, Kuroda K. J. Am. Chem. Soc., 2006, 128: 4544.
[11] Wang X, Huang B, Wang Z, Qin X, Zhang X, Dai Y, Whangbo M. Chem.-Eur. J., 2010, 16: 7106.
[12] Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihar K. Adv. Mater., 1999, 11: 1307.
[13] Chen Q, Zhou W Z, Du G H, Peng L M. Adv. Mater., 2002, 14: 1208.
[14] 王道爱(Wang D A), 刘盈(Liu Y), 王成伟(Wang C W), 周峰(Zhou F). 化学进展(Prog. Chem.), 2010, 22: 1035.
[15] 郑青(Zheng Q), 周保学(Zhou B X), 白晶(Bai J), 蔡伟民(Cai W M), 廖俊生(Liao J S). 化学进展(Prog. Chem.), 2007, 19: 117.
[16] 朱绪飞(Zhu X F), 韩华(Han H), 宋晔(Song Y), 段文强(Duan W Q).物理化学学报(Acta Phys. -Chim. Sin.), 2012, 28: 1291.
[17] 朱绪飞(Zhu X F), 韩华(Han H), 戚卫星(Qi W X), 路超(Lu C), 蒋龙飞(Jiang L F), 段文强(Duan W Q).化学进展(Prog. Chem.), 2012, 24: 2073.
[18] 郝彦忠(Hao Y Z), 王利刚(Wang L G). 化学学报(Acta Chim. Sinica), 2008, 66: 757.
[19] Liu N, Schneider C, Freitag D, Hartmann M, Venkatesan U, Müller J, Spiecker E, Schmuki P. Nano Lett., 2014, 14: 3309.
[20] 杨旭一(Yang X Y), 黄其煜(Huang Q Y). 化学进展(Prog. Chem.), 2009, 21: 116.
[21] Zeng T, Ni H, Su X, Chen Y, Jiang Y J. Power Sources., 2015, 283: 443.
[22] Wang D A, Liu Y, Yu B, Zhou F, Liu W M. Chem. Mater., 2009, 21: 1198.
[23] Roy P, Berger S, Schmuki P. Angew. Chem. Int. Ed., 2011, 50: 2904.
[24] Mohamed A E R, Rohani S. Energy Environ. Sci., 2011, 4: 1065.
[25] Lee K, Mazare A, Schmuki P. Chem. Rev., 2014, 114: 9385.
[26] Bai J, Zhou B X, Li L H, Liu Y B, Zheng Q, Shao J H, Zhu X Y, Cai W M, Liao J S, Zou L X. J. Mater. Sci., 2008, 43: 1880.
[27] Macak J M, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. Curr. Opin. Solid State Mater. Sci., 2007, 11: 3.
[28] Su Z, Zhou W. J. Mater. Chem., 2011, 21: 8955.
[29] Yang H, Tan Z, Liu Y, Ma Z, Zhang L. IEEE Trans. Nanotechnol., 2013, 12: 1037.
[30] Dong J, Han J, Liu Y, Nakajima A, Matsushita S, Wei S, Gao W. ACS Appl. Mater. Interfaces, 2014, 6: 1385.
[31] Paulose M, Shankar K, Yoriya S, Prakasam H E, Varghese O K, Mor G K, Latempa T A, Fitzgerald A, Grimes C G. J. Phys. Chem. B, 2006, 110: 16179.
[32] Pan D, Huang H, Wang X, Wang L, Liao H, Li Z, Wu M. J. Mater. Chem. A, 2014, 2: 11454.
[33] Tsui L K, Zangari G. Electrochim. Acta, 2014, 128: 341.
[34] Wu H, Li D, Zhu X, Yang C, Liu D, Chen X, Song Y, Lu L. Electrochim. Acta, 2014, 116: 129.
[35] Li Z, Ding Y, Kang W, Li C, Li D, Wang X, Chen Z, Wu M, Pan D. Electrochim. Acta, 2015, 161: 40.
[36] Zhai C, Zhu M, Lu Y, Ren F, Wang C, Du Y, Yang P. Phys. Chem. Chem. Phys., 2014, 16: 14800.
[37] Ye M, Zheng D, Lv M, Chen C, Lin C, Lin Z. Adv. Mater., 2013, 25: 3039.
[38] Ngaboyamahina E, Debiemme-Chouvy C, Pailleret A, Sutter E M M. J. Phys. Chem. C, 2014, 118: 26341.
[39] Yu D, Song Y, Zhu X, Yang R, Han A. Appl. Surf. Sci., 2013, 276: 711.
[40] Prakasam H E, Shankar K, Paulose M, Varghese O K, Grimes C A. J. Phys. Chem. C, 2007, 111: 7235.
[41] Song Y, Lv H, Yang C, Xiao H, Chen X, Zhu X, Li D. Phys. Chem. Chem. Phys., 2014, 16: 15796.
[42] Gui Q, Xu Z, Zhang H, Cheng C, Zhu X, Yin M, Song Y, Lu L, Chen X, Li D. ACS Appl. Mater. Interfaces., 2014, 6: 17053.
[43] Song C B, Qiang Y H, Zhao Y L, Gu X Q, Song D M, Zhu L. Appl. Surf. Sci., 2014, 305: 792.
[44] Dong J, Han J, Liu Y, Nakajima A, Matsushita S, Wei S, Gao W. ACS Appl. Mater. Interfaces, 2014, 6: 1385.
[45] Ali G, Kim H J, Kim J J, Cho S O. Nanoscale, 2014, 6: 3632.
[46] Reyes-Gil K R, Stephens Z D, Stavila V, Robinson D B. ACS Appl. Mater. Interfaces, 2015, 7: 2202.
[47] Albu S P, Ghicov A, Aldabergenova S, Drechesel P, LeClere D, Thompson G E, Macak J M, Schmuki P. Adv. Mater., 2008, 20: 4135.
[48] Ni J, Noh K, Frandsen C J, Kong S D, He G, Tang T, Jin S. Mater. Sci. Eng. C, 2013, 33: 259.
[49] Liu N, Mirabolghasemi H, Lee K, Albu S P, Tighineanu A, Altomare M, Schmuki P. Faraday Discuss., 2013, 164: 107.
[50] Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Surf. Interface Anal., 1999, 27: 629.
[51] Zwilling V, Aucouturier M, Darque-Ceretti E. Electrochim. Acta, 1999, 45: 921.
[52] Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E C. J. Mater. Res., 2001, 16: 3331.
[53] Beranek R, Hildebrand H, Schmuki P. Electrochem. Solid-State Lett., 2003, 6: B12.
[54] Tong X, Yang P, Wang Y, Qin Y, Guo X. Nanoscale, 2014, 6: 6692.
[55] Xie S, Gan M, Ma L, Li Z, Yan J, Yin H, Shen X, Xu F, Zheng J, Zhang J, Hu J. Electrochim. Acta, 2014, 120: 408.
[56] Macak J M, Tsuchiya H, Schmuki P. Angew. Chem. Int. Ed., 2005, 44: 2100.
[57] Macak J M, Schmuki P. Electrochim. Acta, 2006, 52: 1258.
[58] Sturgeon M R, Lai P, Hu M Z. J. Mater. Res., 2011, 26: 2612.
[59] Alivov Y, Fan Z Y, Johnstone D. J. Appl. Phys., 2009, 106: 034314.
[60] Xue C, Yonezawa T, Nguyen M T, Lu X. Langmuir, 2015, 31: 1575.
[61] Xue C, Narushima T, Ishida Y, Tokunaga T, Yonezawa T. ACS Appl. Mater. Interfaces, 2014, 6: 19924.
[62] Zhu Y F, Xu L, Hu J, Zhang J, Du R G, Lin C J. Electrochim. Acta, 2014, 121: 361.
[63] Kodate K, Komai Y. Nanotechnology, 2008, 25: 255202.
[64] Berger S, Ghicov A, Nah Y C, Schmuki P. Langmuir, 2009, 25: 4841.
[65] Zhang J, Tang X, Li D. J. Phys. Chem. C, 2011, 115: 21529.
[66] Chang X, Thind S S, Chen A. ACS Catal., 2014, 4: 2616.
[67] Xu X, Fang X, Zhai T, Zeng H, Liu B, Hu X, Bando Y, Golberg D. Small, 2011, 7: 445.
[68] Yoriya S, Paulose M, Varghese O K, Mor G K, Grimes C A. J. Phys. Chem. C, 2007, 111: 13770.
[69] Xing J, Hui L, Xia Z, Chen J, Zhang Y, Li Z. Ind. Eng. Chem. Res., 2014, 53: 10667.
[70] Hahn R, Macak J M, Schmuki P. Electrochem. Commun., 2007, 9: 947.
[71] Richter C, Wu Z, Panaitescu E, Willey R J, Menon L. Adv. Mater., 2007, 19: 946.
[72] Mirabolghasemi H, Liu N, Lee K, Schmuki P. Chem. Commun., 2013, 49: 2067.
[73] So S, Hwang I, Schmuki P. Energy. Environ. Sci., 2015, 8: 849.
[74] Li H, Cheng J W, Shu S, Zhang J, Zheng L, Tsang C K, Cheng H, Liang F, Lee S T, Li Y Y. Small, 2013, 9: 37.
[75] Berger S, Kunze J, Schmuki P, Valota A T, LeClere D J, Skeldon P, Thompson G E. J. Electrochem. Soc., 2010, 157: C18.
[76] Park J, Bauer S, von der Mark K, Schmuki P. Nano Lett., 2007, 7: 1686.
[77] Lan M Y, Liu C P, Huang H H, Chang J K, Lei S W. Nanoscale Res. Lett., 2013, 8: 150.
[78] Kowalski D, Tighineanu A, Schmuki P. J. Mater. Chem., 2011, 21: 17909.
[79] Zhang Y, Yu D, Gao M, Li D, Song Y, Jin R, Ma W, Zhu X. Electrochim. Acta, 2015, 160: 33.
[80] Kim C W, Suh S P, Choi M J, Kang Y S, Kang Y S. J. Mater. Chem. A, 2013, 1: 11820.
[81] Smith Y R, Sarma B, Mohanty S K, Misra M. ACS Appl. Mater. Interfaces, 2012, 4: 5883.
[82] Yin H, Liu H, Shen W Z. Nanotechnology, 2010, 21: 035601.
[83] Liu X, Guo M, Cao J, Lin J, Tsang Y H, Chen X, Huang H. Nanoscale Res. Lett., 2014, 9: 5447.
[84] Liu N, Lee K, Schmuki P. Electrochem. Commun., 2012, 15: 1.
[85] Yu D, Song Y, Zhu X, Yang C, Yang B, Xiao H. Mater. Lett., 2013, 109: 211.
[86] Wang X, Sun L, Zhang S, Wang X. ACS Appl. Mater. Interfaces, 2014, 6: 1361.
[87] Macak J M, Albu S P, Schmuki P. Phys. Stat. Sol. (RRL)., 2007, 1: 181.
[88] Choi J, Wehrspohn R B, Lee J, Gösele U. Eletrochim. Acta, 2004, 49: 2645.
[89] Chen B, Lu K, Tian Z. Langmuir, 2011, 27: 800.
[90] Ono S, Saito M, Asoh H. Electrochim. Acta, 2005, 51: 827.
[91] Song Y, Jiang L, Qi W, Lu C, Zhu X, Jia H. J. Electroanal. Chem., 2012, 673: 24.
[92] Yoo J E, Lee K, Altomare M, Selli E, Schmuki P. Angew. Chem. Int. Ed., 2013, 52: 7514.
[93] Yoo J, Lee K, Tighineanu A, Schmuki P. Electrochem. Commun., 2013, 34: 177.
[94] Chen B, Lu K, Tian Z. J. Mater. Chem., 2011, 21: 8835.
[95] Chen B, Lu K, Geldmeier J A. Chem. Commun., 2011, 47: 10085.
[96] Chen B, Lu K. Langmuir, 2011, 27: 12179.
[97] Kondo T, Nagao S, Yanagishita T, Nguyen N T, Lee K, Schmuki P, Masuda H. Electrochem. Commun., 2015, 50: 73.
[98] Masuda H, Asoh H, Watanabe M, Nishio K, Nakao M, Tamamura T. Adv. Mater., 2001, 13: 189.
[99] Wang J, Lin Z. Chem. Mater., 2008, 20: 1257.
[100] Gui Q, Yu D, Li D, Song Y, Zhu X, Cao L, Zhang S, Ma W, You S. Appl. Surf. Sci., 2014, 314: 505.
[101] He Z, Que W, Sun P, Ren J. ACS Appl. Mater. Interfaces., 2013, 5: 12779.
[102] Paulose M, Prakasam H E, Varghese O K, Peng L, Popat K C, Mor G K, Desai T A, Grimes C A. J. Phys. Chem. C, 2007, 111: 14992.
[103] Shankar K, Mor G K, Prakasam H E, Yoriya S, Paulos M, Varghese O K, Grimes C A. Nanotechnology, 2007, 18: 065707.
[104] Albu S P, Ghicov A, Macak J M, Schmuki P. Phys. Stat. Sol. (RRL)., 2007, 1: R65.
[105] Yu D, Zhu X, Xu Z, Zhong X, Gui Q, Song Y, Zhang S, Chen X, Li D. ACS Appl. Mater. Interfaces, 2014, 6: 8001.
[106] Banerjee S, Misra M, Mohapatra S K, Howard C, Kamilla S K. Nanotechnology, 2010, 21: 145201.
[107] So S, Lee K, Schmuki P. J. Am. Chem. Soc., 2012, 134: 11316.
[108] Liu G, Wang K, Hoivik N, Jakobsen H. Sol. Energy Mater. Sol. Cells, 2012, 98: 24.
[109] Albu S P, Ghicov A, Macak J M, Hahn R, Schmuki P. Nano Lett., 2007, 7: 1286.
[110] Chen Q W, Xu D S, Wu Z Y, Liu Z F. Nanotechnology, 2008, 19: 365708.
[111] Dubey M, Shrestha M, Zhong Y, Galipeau D, He H. Nanotechnology, 2011, 22: 285201.
[112] Lin C J, Yu W Y, Lu Y T, Chien S H. Chem. Commun., 2008, 45: 6031.
[113] Chen Q, Xu D. J. Phys. Chem. C, 2009, 113: 6310.
[114] Kant K, Losic D. Phys. Stat. Sol. (RRL)., 2009, 3: 139.
[115] Jo Y, Jung I, Lee I, Choi J, Tak Y. Electrochem. Commun., 2010, 12: 616.
[116] Kim H S, Yu S H, Cho Y H, Kang S H, Sung Y E. Electrochim. Acta, 2014, 130: 600.
[117] Salari M, Aboutalebi S H, Chidembo A T, Nevirkovets I P, Konstantinov K, Liu H K. Phys. Chem. Chem. Phys., 2012, 14: 4770.
[118] Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y. Nano Lett., 2012, 12: 1690.
[119] Zhu K, Neale N R, Miedaner A, Frank A J. Nano Lett., 2007, 7: 69.
[120] Wang J, Lin Z. J. Phys. Chem. C, 2009, 113: 4026.
[121] Ruan C, Paulose M, Varghese O K, Mor G K, Grimes C A. J. Phys. Chem. B, 2005, 109: 15754.
[122] Albu S P, Schmuki P. Phys. Stat. Sol. (RRL)., 2010, 4: 215.
[123] Zhou H, Zhang Y. J. Phys. Chem. C, 2014, 118: 5626.
[124] Müller V, Schmuki P. Electrochem. Commun., 2014, 42: 21.
[125] Zhang Z, Hedhili M N, Zhu H, Wang P. Phys. Chem. Chem. Phys., 2013, 15: 15637.
[126] Chen X, Ye S, Lu L, Cheng C, Liu D, Fang X, Chen X, Zhu X, Li D. Nanoscale Res. Lett., 2013, 8: 542.
[127] Zhong X, Yu D, Song Y, Li D, Xiao H, Yang C, Lu L, Ma W, Zhu X. Mater. Res. Bull, 2014, 60: 348.
[128] Xie Z B, Blackwood D. J. Electrochim. Acta, 2010, 56: 905.
[1] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[2] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[3] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[4] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[5] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[6] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[7] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[8] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[9] 蒋志敏, 王莉, 沈旻, 陈慧闯, 马国强, 何向明. 锂离子电池正极界面修饰用电解液添加剂[J]. 化学进展, 2019, 31(5): 699-713.
[10] 赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4): 613-630.
[11] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
[12] 黄路露, 孙凯玲, 刘明瑞, 李静, 廖世军. 非水系锂空气电池碳基正极材料[J]. 化学进展, 2019, 31(10): 1406-1416.
[13] 常增花, 王建涛, 武兆辉, 赵金玲, 卢世刚. 高浓度锂盐电解液[J]. 化学进展, 2018, 30(12): 1960-1974.
[14] 李亚琦, 左朋建*, 李睿楠, 马玉林, 尹鸽平*. 镁硫二次电池电解液[J]. 化学进展, 2017, 29(5): 553-562.
[15] 马国强, 王莉, 张建君, 陈慧闯, 何向明, 丁元胜. 含有氟代溶剂或含氟添加剂的锂离子电解液[J]. 化学进展, 2016, 28(9): 1299-1312.