English
新闻公告
More
化学进展 2017, Vol. 29 Issue (5): 553-562 DOI: 10.7536/PC170203 前一篇   后一篇

• 综述 •

镁硫二次电池电解液

李亚琦, 左朋建*, 李睿楠, 马玉林, 尹鸽平*   

  1. 哈尔滨工业大学化工与化学学院 哈尔滨 150001
  • 收稿日期:2017-02-14 修回日期:2017-04-06 出版日期:2017-05-15 发布日期:2017-05-10
  • 通讯作者: 左朋建, 尹鸽平 E-mail:zuopj@hit.edu.cn;yingeping@hit.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.2143303)资助

Electrolytes for Rechargeable Magnesium-Sulfur Batteries

Yaqi Li, Pengjian Zuo*, Ruinan Li, Yulin Ma, Geping Yin*   

  1. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2017-02-14 Revised:2017-04-06 Online:2017-05-15 Published:2017-05-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 2143303).
镁硫二次电池具有安全性好、成本低、能量密度高等特点,其中电解液是目前制约其发展的关键因素。由于硫电极的亲电子特性,格氏试剂及其衍生物系列的传统镁离子电解液无法适用。本文针对有机镁盐+AlCl3、MgCl2+有机铝卤盐、MgCl2+AlCl3、Mg(TFSI)2(双三氟甲烷磺酰亚胺基镁)四类电解质溶液体系进行总结和评述。有机镁盐+AlCl3电解液的镁硫电池表现出较好的电化学性能,MgCl2+有机铝卤盐电解液体系与硫电极具有良好的兼容性。而使用Mg(TFSI)2和MgCl2+AlCl3电解液时硫电极的比容量不高,且放电平台低。目前所报道的镁硫电池体系的可逆容量衰减都较大,通过加入电解液添加剂等方法可以改善其放电特性和循环稳定性。本文还总结了电解液中活性阳离子结构、阴离子以及电解液添加剂的作用,并展望了镁硫电池电解液体系的研究趋势。
Rechargeable magnesium-sulfur batteries have advantages of good safety, low cost, and high theoretical energy density. Currently, electrolyte is the key factor to restrict the development of magnesium-sulfur batteries. Generally, traditional Grignard reagents and magnesium ion electrolytes are nucleophilic and incompatible with sulfur. In this paper, the electrolytes for magnesium-sulfur batteries are divided into four categories, containing organomagnesium+AlCl3, MgCl2+organoaluminum halide, MgCl2+AlCl3 and magnesium bis(trifluoromethane sulfonyl)imide (Mg(TFSI)2). Among them, the organomagnesium+AlCl3 electrolyte is relatively promising for magnesium-sulfur batteries, and HMDSMgCl+AlCl3/THF electrolyte is used to demonstrate a proof of concept for the first rechargeable Mg/S battery. The Mg(TFSI)2 or MgCl2+AlCl3 based electrolyte for magnesium-sulfur batteries do not contain organic metal salts, and the synthesis methods are simple. However, the batteries using these two kinds of electrolytes exhibit low specific capacity and discharge voltage. As for MgCl2+organoaluminum halide electrolyte, the compatibility with the sulfur electrode has been proved, while the specific capacity, the discharge voltage and other electrochemical properties have not been reported. It is generally believed that the electrolytes for magnesium-sulfur batteries contain monomer Mg, dimeric Mg, trimeric Mg species and other Mg complexes at the same time, and there is a thermodynamically equilibrium among them regulating electrolyte ion conductivity, diffusion coefficient and so on. The effect of anions on the electrolyte is mainly reflected in the anodic stability of electrolytes and the reversibility of Mg deposition-dissolution. Electrolyte additives in the magnesium-sulfur battery electrolyte make a contribution to reduce dissolution of sulfur species and the reoxidation kinetic barrier of low-order MgPS (PS is polysulfides), restrain shuttle effect, and improve the electrolyte conductivity. At last, the research trends of electrolyte for magnesium sulfur batteries are proposed.
Contents
1 Introduction
2 Electrolytes for rechargeable magnesium-sulfur batteries
2.1 Organomagnesium + AlCl3
2.2 MgCl2 + organoaluminum halide
2.3 MgCl2+ AlCl3
2.4 Mg(TFSI)2
3 Structure of the active cations
4 The comparison of anions
5 Electrolyte additives
6 Conclusion

中图分类号: 

()
[1] Ling C, Banerjee D, Matsui M. Electrochimica Acta, 2012, 76:270.
[2] Saha P, Datta M K, Velikokhatnyi O I, Manivannan A, Alman D, Kumta P N. Progress in Materials Science, 2014, 66:1.
[3] Nelson J M, Evans W V. J. Am. Chem. Soc., 1917, 39:82.
[4] Gregory T D, Hoffman R J, Winterton R C. Electrochem. Soc, 1990, 137:775.
[5] Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E. Nature, 2000, 407:724.
[6] Kim H S, Arthur T S, Allred G D, Zajicek J, Newman J G, Rodnyansky A E, Oliver A G, Boggess W C, Muldoon J. Nat. Commun., 2011, 2:427.
[7] Liebenow C, Yang Z, Lobitz P. Electrochemistry Communications, 2000, 2:641.
[8] Zhao-Karger Z, Zhao X, Wang D, Diemant T, Behm R J, Fichtner M. Advanced Energy Materials, 2015, 5(3):1401155.
[9] Vinayan B P, Zhao-Karger Z, Diemant T, Chakravadhanula V S K, Schwarzburger N I, Cambaz M A, Behm R J, Kübel C, Fichtner M. Nanoscale, 2016, 8(6):3296.
[10] Zhao-Karger Z, Zhao X, Fuhr O, Fichtner M. RSC Advances, 2013, 3(37):16330.
[11] Liu T, Shao Y, Li G, Gu M, Hu J, Xu S, Nie Z, Chen X, Wang C, Liu J. Journal of Materials Chemistry A, 2014, 2(10):3430.
[12] Cheng Y, Stolley R M, Han K S, Shao Y, Arey B W, Washton N M, Mueller K T, Helm M L, Sprenkle V L, Liu J, Li G. Phys. Chem. Chem. Phys., 2015, 17(20):13307.
[13] Zhao-Karger Z, Mueller J E, Zhao X, Fuhr O, Jacob T, Fichtner M. RSC Advances, 2014, 4(51):26924.
[14] Doe R E, Han R, Hwang J. EP 279570A0, 2013.
[15] Doe R E, Han R, Hwang J, Gmitter A J, Shterenberg I, Yoo H D, Pour N, Aurbach D. Chem. Commun., 2014, 50(2):243.
[16] Muldoon J, Bucur C B, Oliver A G, Zajicek J, Allred G D, Boggess W C. Energy Environ. Sci., 2013, 6(2):482.
[17] Li W, Cheng S, Wang J, Qiu Y, Zheng Z, Lin H, Nanda S, Ma Q, Xu Y, Ye F, Liu M, Zhou L, Zhang Y. Angew. Chem. Int. Ed., 2016, 55, 6406.
[18] Tran T T, Lamanna W M, Obrovac M N. Journal of The Electrochemical Society, 2012, 159(12):A2005.
[19] Lossius L P, Emmenegger F. Electrochimica Acta, 1996, 41(3):445.
[20] Kimura T, Fujii K, Sato Y, Morita M, Yoshimoto N. The Journal of Physical Chemistry C, 2015, 119(33):18911.
[21] Ha S Y, Lee Y W, Woo S W, Koo B, Kim J, Cho J, Lee K T, Choi N. ACS Appl. Mater. Interfaces, 2014, 6(6):4063.
[22] Shterenberg, Salama M, Yoo H D, Gofer Y, Park J, Sun Y, Aurbach D. Journal of The Electrochemical Society, 2015, 162(13):A7118.
[23] Sa N, Pan B, Saha-Shah A, Hubaud A A, Vaughey J T, Baker L A, Liao C, Burrell A K. ACS Appl. Mater. Interfaces, 2016, 8(25):16002.
[24] Pan B, Huang J, He M, Brombosz S M, Vaughey J T, Zhang L, Burrell A K, Zhang Z, Liao C. ChemSusChem, 2016, 9:595.
[25] Kim I T, Yamabuki K, Sumimoto M, Tsutsumi H, Morita M, Yoshimoto N. Journal of Power Sources, 2016, 323:51.
[26] Kim I T, Yamabuki K, Morita M. Tsutsumi H, Yoshimoto N. Journal of Power Sources, 2015, 278:340.
[27] Sakamoto S, Imamoto T, Yamaguchi K. Organic Letters,2001, 3:1793.
[28] Liao C, Guo B, Jiang D E, Custelcean R, Mahurin S M, Sun X G, Dai S. J. Mater. Chem. A, 2014, 2(3):581.
[29] Benmayza A, Ramanathan M, Arthur T S, Matsui M, Mizuno F, Guo J, Glans P A, Prakash J. The Journal of Physical Chemistry C, 2013, 117(51):26881.
[30] Nakayama Y, Kudo Y, Oki H, Yamamoto K, Kitajima Y, Noda K. Journal of The Electrochemical Society, 2008, 155(10):A754.
[31] Barile C J, Barile C, Kevin K R, Nuzzo R G, Gewirth A A. The Journal of Physical Chemistry C, 2014, 118(48):27623.
[32] Aurbach D, Gizbar H, SchechterR A, Chusid O, Gottlieb H E, Gofer Y, Goldberg I. Journal of The Electrochemical Society, 2002, 149(2):A115.
[33] Guo Y, Yang J, NuLi Y, Wang J. Electrochemistry Communications, 2010, 12(12):1671.
[34] Gofer Y, Chusid O, Gizbar H, Viestfrid Y, Gottlieb H E, Marks V, Aurbach D. Electrochemical and Solid-State Letters, 2006, 9(5):A257.
[35] Guo Y, Zhang F, Yang J, Wang F. Electrochemistry Communications, 2012, 18:24.
[36] Pour N, Gofer Y, Major D T, Aurbach D. J. Am. Chem. Soc., 2011, 133(16):6270.
[37] Muldoon J, Bucur C B, Oliver A G, Sugimoto T, Matsui M, Kim H S, Allred G D, Zajicek J, Kotani Y. Energy & Environmental Science, 2012, 5(3):5941.
[38] Gao T, Noked M, Pearse A J, Gillette E, Fan X, Zhu Y, Luo C, Suo L, Schroeder M A, Xu K, Lee S B, Rubloff G W, Wang C. J. Am. Chem. Soc., 2015, 137(38):12388.
[39] Bian P, NuLi Y, Abudoureyimu Z, Yang J, Wang J L. Electrochimica Acta, 2014, 121:258.
[40] Keyzer E N, Glass H F, Liu Z, Bayley P M, Dutton S E, Grey C P, Wright D S. J. Am. Chem. Soc., 2016, 138(28):8682.
[41] Mohtadi R, Matsui M, Arthur T S, Hwang S J. Angew. Chem. Int. Ed. Engl., 2012, 51(39):9780.
[1] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[2] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[3] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[4] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[5] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[6] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[7] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[8] 蒋志敏, 王莉, 沈旻, 陈慧闯, 马国强, 何向明. 锂离子电池正极界面修饰用电解液添加剂[J]. 化学进展, 2019, 31(5): 699-713.
[9] 赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4): 613-630.
[10] 黄路露, 孙凯玲, 刘明瑞, 李静, 廖世军. 非水系锂空气电池碳基正极材料[J]. 化学进展, 2019, 31(10): 1406-1416.
[11] 常增花, 王建涛, 武兆辉, 赵金玲, 卢世刚. 高浓度锂盐电解液[J]. 化学进展, 2018, 30(12): 1960-1974.
[12] 马国强, 王莉, 张建君, 陈慧闯, 何向明, 丁元胜. 含有氟代溶剂或含氟添加剂的锂离子电解液[J]. 化学进展, 2016, 28(9): 1299-1312.
[13] 张贺, 张驰, 宋晔. 阳极氧化钛纳米管阵列膜可控制备[J]. 化学进展, 2016, 28(6): 773-783.
[14] 张玲玲, 马玉林, 杜春雨, 尹鸽平. 锂离子电池高电压电解液[J]. 化学进展, 2014, 26(04): 553-559.
[15] 王华丽, 白莹, 陈实, 吴锋, 吴川. 室温铝二次电池及其关键材料[J]. 化学进展, 2013, 25(08): 1392-1400.
阅读次数
全文


摘要

镁硫二次电池电解液