English
新闻公告
More
化学进展 2019, Vol. 31 Issue (12): 1681-1695 DOI: 10.7536/PC190330 前一篇   后一篇

• •

稀土氟化物上转换荧光增强及应用

程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新**()   

  1. 东北林业大学材料科学与工程学院 哈尔滨 150040
  • 收稿日期:2019-03-25 出版日期:2019-12-15 发布日期:2019-10-15
  • 通讯作者: 刘守新
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2572017EB05); 黑龙江省博士后基金项目(LBH-Z14004); 黑龙江省自然科学基金项目(LH2019E002)

Enhancement Luminescence and Applications of Rare Earth Fluoride

Qian Cheng, Jiaming Yu, Xinzhu Huo, Yumeng Shen, Shouxin Liu**()   

  1. College of Materails Science and Engineering, Northeast Forest University, Harbin 150040, China
  • Received:2019-03-25 Online:2019-12-15 Published:2019-10-15
  • Contact: Shouxin Liu
  • About author:
  • Supported by:
    Fundamental Research Funds for the Central Universities(2572017EB05); Heilongjiang Province Postdoctoral Science Foundation(LBH-Z14004); Natural Science Foundation of Heilongjiang Province(LH2019E002)

稀土氟化物上转换纳米材料具有化学稳定性高、反斯托克位移大、无光漂白、荧光寿命长、发光谱带窄和穿透深度深等优点,在荧光成像和光热疗、传感器、太阳能电池及防伪技术等领域具有广泛的应用前景,是一种极具发展潜力的荧光材料。然而该类材料在实际应用时还存在有荧光效率低、吸收截面小等亟待解决的瓶颈问题。针对以上问题,本文系统阐述了离子共掺杂、核壳结构、表面等离子耦合、光子晶体、宽频敏化和热效应等增强稀土氟化物上转换荧光的方法及其近年的研究进展。并在此基础上,总结了近年来荧光增强稀土氟化物上转换纳米材料在生物成像和光热疗、生物传感、太阳能电池及防伪技术等领域的应用研究现状。最后,分析了稀土氟化物UCNPs目前仍存在的不足,并对将来的发展方向进行了展望。

Rare earth fluoride upconversion nanomaterials have immense potential applications for biological imaging and photothermal therapy, biosensing, solar cell and anti-counterfeiting technology, due to its high chemical stability, large anti-stokes shifts, no photobleaching, long fluorescence life, narrow emission band and deep penetration, which is a promising fluorescent material. However,such materials are limited in practical application due to their low upconversion luminescence efficiency and small absorption cross-section of activator. Based on the above problems, upconversion luminescence enhancement of rare earth doped fluoride materials such as ion co-doping, core shell structure, surface plasmon coupling, photonic crystal, broadband sensitization and thermal effect are expounded herein, and the mechanisms of enhancement of upconversion luminescence are analyzed. In addition, the research status in the fields of biological imaging and photothermal therapy, biosensing, solar cell and anti-counterfeiting technology is elaborated. Moreover, the limitations and development directions for future are also prospected.

()
图1 稀土掺杂上转换纳米材料组成示意图
Fig. 1 Schematic diagram of rare earth doped upconversion nanomaterials
图2 不同半径的离子掺杂到基质晶格内引起晶格的变化:晶格收缩(左) 晶格膨胀(右)[1]
Fig. 2 The changes of the doping of a host atom with a dopant of varied size:crystal lattice contraction(left) and expansion(right)[1]
表1 离子诱导上转换发光提高
Table 1 Ion-induced upconversion enhancement
图3 Mn2+掺杂红色上转换荧光光谱图[35]
Fig. 3 Red emission upnconversion fluorescence spectra of Mn2+ doped NaYF4:Yb3+,Er3+[35]
图4 稀土离子掺杂纳米粒子的壳包覆功能[36]
Fig. 4 Basic functions of a shell around Ln3+ doped nanoparticles[36]
图5 活化壳增强上转换纳米晶发光的机理及光谱图。(a)结构示意图;(b)荧光光谱图(插图为钝化壳和活化壳在相同激发密度下的发光对比);(c)增强发光机制[45];(d)活化壳包覆及未包覆纳米晶的荧光光谱图: BaGdF5:Yb3+, Er3+@BaGdF5:x%Yb3+(左);核、核@活化壳、核@活化壳@活化壳(右)[46]
Fig. 5 The mechanism and spectrogram of the upconversion nanocrystals enhanced by activated shell.(a) Schematic diagram. (b)Upconversion luminescence spectra(The insert illustrated the comparison of the luminescence intensity of nanoparticles coated with inert and activated shells under the same excitation density).(c) Mechanism of enhanced luminescence[45].(d) The upconversion emission spectra and phtographs of nanoparticles coated with active shell and uncoated: BaGdF5:Yb3+, Er3+@BaGdF5:x%Yb3+(left), core、core@active shell、core@active shell@active shell(right)[46]
图6 (a) NaYF4:Yb3+,Er3+异质壳包覆上转换发光光谱及量子产率图[47];(b) NaYF4:Yb3+,Er3+@mNaYF4(m=0、1、2、3、4、5)纳米粒子在980 nm激发下的荧光图[49]
Fig. 6 (a) The upconversion luminscence and quantum yield of NaYF4:Yb3+,Er3+ nanoparticles coated with heterogeneous shell[47].(b)Emission spectra of NaYF4:Yb3+,Er3+@mNaYF4(m=0,1,2,3,4,5)nanoparticles by 980 nm excitation[49]
图7 等离子体共振增强上转换发光机制[1]
Fig. 7 Schematic illustration showing the plausible mechamism of enhancement of upconversion luminescence by plasmon resonance[1]
图8 (a) Ag NP-Al2O3-NaYF4:Yb3+,Er3+ UCNPs的上转换荧光光谱,插图为其结构示意图[58];(b)组装成天线复合结构的上转换荧光增强[59];(c) SiO2隔离层厚度对Ag/SiO2/NaYF4:Yb, Er, Gd复合结构的上转换荧光增强[60];(d) 中心场强度 [E/Eo][2]z=d/2,插图为NaGdF4: Yb3+,Er3+在980 nm激发下的Efupc值[61]
Fig. 8 (a) Upconversion luminescence spectra of Ag NP-Al2O3-NaYF4:Yb3+,Er3+ UCNPs,the inset is its schematic structure[58].(b)Luminscence enhancement through use of a disk-coupled dot-on-pillar antenna array(D2PA)[59].(c) PL enhancement factor as a function of SiO2 spacer layer thickness[60].(d) The center field intensity [E/Eo] [2]z=d/2. The inset table is the numerical Efupc of the NaGdF4: Yb3+,Er3+ under 980 nm excitation[61]
表2 核壳机构体系等离子体增强稀土氟化物上转换发光
Table 2 Core-shell system for plasmonic enhancement luminscence of rare earth fluoride
图9 (a) PMMA OPCs/NaYF4:Yb3+,Tm3+ UCNP化合物形成示意图;(b) NaYF4:Yb3+,Tm3+ UCNP和PMMA OPCs/NaYF4:Yb3+,Tm3+化合物的荧光光谱比较,插图为NaYF4:Yb3+,Tm3+的能级转换过程图;(c)上转换荧光增强随PMMA OPCs的PSB的关系[81]
Fig. 9 (a)The schematic of the formation of PMMA OPCs/NaYF4:Yb3+,Tm3+ UCNP composites.(b)A comparision of UCL spectra of NaYF4:Yb3+,Tm3+ UCNP and PMMA OPCs/NaYF4:Yb3+,Tm3+ composites. Inset:UC population and emission process of NaYF4:Yb3+,Tm3+.(c) Dependence of the UC enhancement factor as a funciton of PSB of PMMA OPCs[81]
图10 染料敏化上转换发光的结构示意图(a)核(S:敏化剂,A:激活剂);(b)核壳结构(S1∶1类敏化剂,S2∶2类敏化剂,A:激活剂);红色实线、红色虚线,蓝色实线,蓝色虚线及绿色箭头分别代表激发、能量转移、上转换路径和荧光过程[93]
Fig. 10 Schematic illustrations of dye sensitized upconversion in(a) Core(S: sensitizer, A: activator).(b)The core-shell structure(S1: type 1 sensitizer, S2:type 2 sensitizer, A: activator). The red solid line, red dashed line, blue solid line, blue dashed line and green arrows represent the excitation, energy transfer, upconversion pathway and fluorescence process[93]
图11 (a)IR-806敏化β-NaYF4: Yb3+/Er3+纳米晶的结构示意图;(b)样品的荧光光谱图,β-NaYF4: Yb3+/Er3+纳米颗粒(青色线)、IR-806(绿色线)、IR-780/β-NaYF4: Yb3+/Er3+ 纳米颗粒(红色线)、 IR-806/β-NaYF4: Yb3+/Er3+纳米颗粒(蓝色线)[94]
Fig. 11 (a) A schematic illustrations of IR-806 sensitized β-NaYF4: Yb3+/Er3+nanoparticles.(b) Luminescence spectra of β-NaYF4: Yb3+/Er3+nanoparticles(cyan line),IR-806(green line), IR-780/β-NaYF4: Yb3+/Er3+ nanoparticles(red line), IR-806/β-NaYF4: Yb3+/Er3+nanoparticles(blue line)[94]
图12 染料敏化纳米晶实现可调的激发光谱示意图(a)β-NaYF4: Yb3+/Er3+[96];(b)β-NaYF4: Yb3+/Tm3+[97];(c)三种敏化剂结构转移示意图;(d)NaY0.48Gd0.3Yb0.2Er0.02F4 IR806-UCNP 在染料激发下的上转换荧光强度随激发能量的关系图。误差棒代表平均值的标准偏差。插图为染料或者直接激发的发射光谱[98]
Fig. 12 Schematic illustration of dye-sensitized nanoparticles with tunable excitation wavelength(a) β-NaYF4: Yb3+/Er3+[96].(b) β-NaYF4:Yb3+/Tm3+[97].(c)Energy diagram of three sensiticers.(d)Excitation power dependence of upconverted emission from NaY0.48Gd0.3Yb0.2Er0.02F4 IR806-UCNP under excitation of the dye(808 nm excitation) or UCNP(980 nm excitation). Error bars represent one standard deviation from the mean. Inset, emission spectra for dye or direct excitation[98]
图13 表面光子提高上转换发光的过程示意图[102]
Fig. 13 Schematic illustration of the surface-photon-enhanced upconversion process[102]
图14 (a)基于DNA的NR二聚体与上转换纳米材料组装成卫星状纳米结构,并用于多模态成像引导联合光治疗的示意图;(b) PBS、NR-UCNP-Ce6及NR-二聚体-UCNP-Ce6的光热效应;(c) PBS、UCNP-Ce6、NR、NR dimer、NR-UCNP-Ce6及NR-二聚体-UCNP-Ce6在接种海拉肿瘤细胞的裸鼠体内热成像效果对比图[109]
Fig. 14 (a)Schematic illustration of DNA-based NR dimer and UCNP core-satellite assembly for multimodal imaging guided combination phototherapy.(b) Photothermal effect of assemblies of PBS、NR-UCNP-Ce6 and NR-dimer-UCNP-Ce6.(c)Thermal images of HeLa tumor-bearing mice with PBS、UCNP-Ce6、NR、NR dimer、NR-UCNP-Ce6 and NR-dimer-UCNP-Ce6[109]
图15 (a) 三明治结构的纳米晶及FRET检测Cu2+[111];(b)用生物酰化的上转换纳米晶为供体,FITC为受体利用 FRET 探测抗生素蛋白[83];(c)用宽带近红外光和光谱转换为可见范围激活N719染料改进DSSC装置;(d) AM1.5 G模拟阳光辐照(100 mW·cm -2)下DSSC、DSSC-UCNPs、DSSC-DSUCNPs电流密度-电压(J-V)特性[115]
Fig. 15 (a) Schematic illustration of the sandwich structured UCNPs and the principle of FRET based UC probe for Cu2+ detection[111].(b) FRET detection of avidin by employing biotinylated NCs as the donor and FITC as an acceptor[83].(c)Broadband near-infrared sunlight harvesting and then spectral conversion into visible range to activate N719 dye for the improvement of DSSC device.(d) The current density-voltage(J-V) characteristics of DSSC, DSSC-UCNPs and DSSC-DSUCNPs under AM 1.5 G simulated sunlight irradiation(100 mW·cm-2)[115]
[1]
Han S Y, Deng R R, Xie X J, Liu X G . Angew. Chem. Int. Ed., 2014,53:11702. https://www.ncbi.nlm.nih.gov/pubmed/25204638

doi: 10.1002/anie.201403408     URL     pmid: 25204638
[2]
Kumar D, Verma K, Verma S, Chaudhary B, Som S, Sharma V, Kumar V, Swart H C . Physica B, 2018,535:278.
[3]
Zhou J, Liu Q, Feng W, Sun Y, Li F Y . Chem. Rev., 2015,115:395. https://www.ncbi.nlm.nih.gov/pubmed/25492128

doi: 10.1021/cr400478f     URL     pmid: 25492128
[4]
Chen G Y, Qiu H L, Prasad P N, Chen X Y . Chem. Rev., 2014,114:5161. https://www.ncbi.nlm.nih.gov/pubmed/24605868

doi: 10.1021/cr400425h     URL     pmid: 24605868
[5]
Gai S L, Li C X, Yang P P, Lin J . Chem. Rev., 2014,114:2343. https://www.ncbi.nlm.nih.gov/pubmed/24344724

doi: 10.1021/cr4001594     URL     pmid: 24344724
[6]
Wen S H, Zhou J J, Zheng K Z, Bednarkiewicz A, Liu X G, Jin D Y . Nat. Commum., 2018,9.
[7]
Zou K S, Dong G Z, Sun M, Liu J C . J. Phys. D. Appl. Phys., 2018,51.
[8]
Shao Q Y, Zhang G T, Ouyang L L, Hu Y Q, Dong Y, Jiang J Q . Nanoscale, 2017,9:12132. https://www.ncbi.nlm.nih.gov/pubmed/28805873

doi: 10.1039/c7nr03682e     URL     pmid: 28805873
[9]
Zeng J H, Su J, Li Z H, Yan R X, Li Y D . Adv. Mater., 2005,17:2119.
[10]
Sun Y J, Chen Y, Tian L J, Yu Y, Kong X G, Zhao J W, Zhang H . Nanotechnol., 2007,18.
[11]
Wang F, Liu X G . Chem. Soc. Rev., 2009,38:976. https://www.ncbi.nlm.nih.gov/pubmed/19421576

doi: 10.1039/b809132n     URL     pmid: 19421576
[12]
Liu G Chem. Soc. Rev., 2015,44:1635. https://www.ncbi.nlm.nih.gov/pubmed/25286989

doi: 10.1039/c4cs00187g     URL     pmid: 25286989
[13]
You W W, Tu D, Zheng W, Huang P, Chen X Y . J. Lumin., 2018,201:255.
[14]
Gu F, Wang S F, Lu M K, Zhou G J, Xu D, Yuan D R . Langmuir, 2004,20:3528. https://www.ncbi.nlm.nih.gov/pubmed/15875379

doi: 10.1021/la049874f     URL     pmid: 15875379
[15]
Chen G Y, Liu H C, Liang H J, Somesfalean G, Zhang Z G . J. Phys. Chem. C, 2008,112:12030.
[16]
Wang H Q, Nann T . ACS Nano, 2009,3:3804. https://www.ncbi.nlm.nih.gov/pubmed/19873986

doi: 10.1021/nn9012093     URL     pmid: 19873986
[17]
Zhao C Z, Kong X G, Liu X M, Tu L P, Wu F, Zhang Y L, Liu K, Zeng Q H, Zhang H . Nanoscale, 2013,5:8084. https://www.ncbi.nlm.nih.gov/pubmed/23877262

doi: 10.1039/c3nr01916k     URL     pmid: 23877262
[18]
Cheng Q, Sui J H, Cai W . Nanoscale, 2012,4:779. https://www.ncbi.nlm.nih.gov/pubmed/22159174

doi: 10.1039/c1nr11365h     URL     pmid: 22159174
[19]
Yadav R S, Dhoble S J, Rai S B . Sensor Actuat B-Chem, 2018,273:1425.
[20]
Lei L, Chen D Q, Xu J, Zhang R, Wang Y S . Chem. Asian J., 2014,9:728. https://www.ncbi.nlm.nih.gov/pubmed/24403275

doi: 10.1002/asia.201301514     URL     pmid: 24403275
[21]
Huang Q M, Yu J C, Ma E, Lin K M . J. Phys. Chem. C, 2010,114:4719. https://www.ncbi.nlm.nih.gov/pubmed/20136115

doi: 10.1021/jp908242y     URL     pmid: 20136115
[22]
Yu H, Huang Q M, Ma E, Zhang X Q, Yu J C . J. Alloy Compd., 2014,613:253. https://linkinghub.elsevier.com/retrieve/pii/S092583881401281X

doi: 10.1016/j.jallcom.2014.05.174     URL    
[23]
Wang C Y, Cheng X H . J. Alloy Compd., 2015,649:196.
[24]
Zhou B, Xu B, He H M, Gu Z J, Tang B, Ma Y, Zhai T Y . Nanoscale, 2018,10:2834. https://www.ncbi.nlm.nih.gov/pubmed/29362768

doi: 10.1039/c7nr07709b     URL     pmid: 29362768
[25]
Ramasamy P, Chandra P, Rhee S W, Kim J . Nanoscale, 2013,5:8711. https://www.ncbi.nlm.nih.gov/pubmed/23900204

doi: 10.1039/c3nr01608k     URL     pmid: 23900204
[26]
Cheng Q, Li Y, Liu S X, Sui J H, Cai W . RCS Adv., 2015,5:93547.
[27]
Zhu Y R, Zhao S W, Zhou B, Zhu H, Wang Y F . J. Phys. Chem. C, 2017,121:18909.
[28]
Yi M Y, Liu Y F, Gao H P, Huang Z Y, Liang J W, Mao Y L . J Mater. Sci., 2018,53:1395.
[29]
Zhao S W, Liu W, Xue X Y, Yang Y S, Zhao Z Y, Wang Y F, Zhou B . RCS Adv., 2016,6:81542.
[30]
Huang Z Y, Yi M J, Gao H P, Zhang Z L, Mao Y L . J. Alloy Compd., 2017,694:241.
[31]
Du K M, Xu X, Yao S, Lei P P, Dong L L, Zhang M L, Feng J, Zhang H J . Cryst. Eng. Comm., 2018,20:1945.
[32]
Cong T, Ding Y D, Liu J P, Zhao H Y, Hong X . Mater. Lett., 2016,165:59.
[33]
Zhou H F, Wang X C, Lai Y F, Cheng S Y, Zheng Q, Yu J L . Appl. Phys. Mater., 2017,123.
[34]
Lei P P, Zhang P, Yao S, Song S Y, Dong L L, Xu X, Liu X L, Du K M, Feng J, Zhang H J . ACS Appl. Mater. Inter., 2016,8:27490. https://www.ncbi.nlm.nih.gov/pubmed/27696854

doi: 10.1021/acsami.6b08335     URL     pmid: 27696854
[35]
Tian G, Gu Z J, Zhou L J, Yin W Y, Liu X X, Yan L, Jin S, Ren W L, Xing G M, Li S J, Zhao Y L . Adv. Mater., 2012,24:1226. https://www.ncbi.nlm.nih.gov/pubmed/22282270

doi: 10.1002/adma.201104741     URL     pmid: 22282270
[36]
Zheng H R, Gao D L, Fu Z X, Wang E K, Lei Y, Tuan Y, Cui M . J. Lumin., 2011,131:423.
[37]
Lue Q, Guo F Y, Sun L, Li A H, Zhao L C . J. Appl. Phys., 2008,103.
[38]
Zhang J, An L Q, Wang S W . J. Alloy Compd., 2009,471:201.
[39]
Qian L P, Yuan D, Yi G S, Chow G M . J. Mater. Res., 2009,24:3559.
[40]
Shi F, Zhai X, Zheng K, Zhao D, Qin W . J. Nanosci. Nanotech., 2011,11:9912. https://www.ncbi.nlm.nih.gov/pubmed/22413320

doi: 10.1166/jnn.2011.5248     URL     pmid: 22413320
[41]
Liu P, Zhou G, Chen S, Wang S . Opt. Mater., 2014,36:1443. https://linkinghub.elsevier.com/retrieve/pii/S0925346713005788

doi: 10.1016/j.optmat.2013.11.002     URL    
[42]
Yi G S, Chow G M . Chem. Mater., 2007,19:341.
[43]
Huang P, Zheng W, Zhou S, Tu D, Chen Z, Zhu H, Li R, Ma E, Huang M, Chen X Y . Angew. Chem. Int. Ed., 2014,53(5):1252. https://www.ncbi.nlm.nih.gov/pubmed/24436151

doi: 10.1002/anie.201309503     URL     pmid: 24436151
[44]
Xiang G, Zhang J H, Hao Z, Zhang X, Pan G H, Luo Y, Lü W, Zhao H . Inorg. Chem., 2015,54(8):3921. https://www.ncbi.nlm.nih.gov/pubmed/25848860

doi: 10.1021/acs.inorgchem.5b00109     URL     pmid: 25848860
[45]
Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A . Adv. Funct. Mater., 2009,19:2924.
[46]
Yang D M, Li C X, Li G G, Shang M M, Kang X J, Lin J . J. Mater. Chem., 2011,21:5923.
[47]
Lay A, Siefe C, Fischer S, Mehlenbacher R D, Ke F, Mao W L, Aliyisatos A P, Goodman M B, Dionne J A . Nano Lett., 2018,18:4454. https://www.ncbi.nlm.nih.gov/pubmed/29927609

doi: 10.1021/acs.nanolett.8b01535     URL     pmid: 29927609
[48]
Xia M, Zhou D C, Yang Y, Yang Z W, Qiu J B . ECS J. Solid State Sci. Tec., 2017,6:R41.
[49]
Huang Q Y, Ye W H, Jiao X F, Yu L L, Liu Y L, Liu X T . J. Alloy Compd., 2018,763:216.
[50]
赵兵(Zhao B), 祁宁(Qi N), 张克勤(Zhang K Q) . 化学进展 (Prog. Chem.), 2016,28:1615.
[51]
Feng W, Sun L D, Yan C H . Chem. Commun., 2009,4393.
[52]
Xu W, Xu S, Zhu Y S, Liu T, Bai X, Dong B A, Xu L, Song H W . Nanoscale, 2012,4:6971. https://www.ncbi.nlm.nih.gov/pubmed/23076825

doi: 10.1039/c2nr32377j     URL     pmid: 23076825
[53]
Yin Z, Zhang X R, Zhou D L, Wang H, Xu W, Chen X, Zhang T X, Song H W . RSC Adv., 2016,6:86297.
[54]
Yin Z, Zhou D L, Xu W, Cui S B, Chen X, Wang H, Xu S H, Song H W . ACS Appl. Mater. Inter., 2016,8:11667. https://www.ncbi.nlm.nih.gov/pubmed/27111717

doi: 10.1021/acsami.5b12075     URL     pmid: 27111717
[55]
Xu W, Zhu Y S, Chen X, Wang J, Tao L, Xu S, Liu T, Song H W . Nano Res., 2013,6:795.
[56]
Chen X, Xu W, Zhang L H, Bai X, Cui S B, Zhou D L, Yin Z, Song H W, Kim D H . Adv. Funct. Mater., 2015,25:5462.
[57]
Kwon S J, Lee G Y, Jung K, Jang H S, Park J S, Ju H, Han I K, Ko H . Adv. Mater., 2016,28:7899. https://www.ncbi.nlm.nih.gov/pubmed/27376395

doi: 10.1002/adma.201601680     URL     pmid: 27376395
[58]
Saboktakin M, Ye X C, Oh S J, Hong S H, Fafarman A T, Chettiar U K, Engheta N, Murray C B, Kagan C R . ACS Nano, 2012,6:8758. https://www.ncbi.nlm.nih.gov/pubmed/22967489

doi: 10.1021/nn302466r     URL     pmid: 22967489
[59]
Zhang W, Ding F, Chou S Y . Adv. Mater., 2012, 24: OP236.
[60]
Shen J, Li Z Q, Chen Y R, Chen X H, Chen Y W, Sun Z, Huang S M . Appl. Surf. Sci., 2013,270:712.
[61]
Zhan S P, Wu X F, Tan C, Xiong J, Hu S J, Hu J S, Wu S B, Gao Y Y, Liu Y X . J. Alloy Compd., 2018,735:372. https://linkinghub.elsevier.com/retrieve/pii/S092583881733904X

doi: 10.1016/j.jallcom.2017.11.147     URL    
[62]
Chen G Y, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z P, Song J, Pandey R K, Agren H, Prasad P N, Han G . ACS Nano, 2012,6:8280. https://www.ncbi.nlm.nih.gov/pubmed/22928629

doi: 10.1021/nn302972r     URL     pmid: 22928629
[63]
Park W, Lu D W, Ahn S M . Chem. Soc. Rev., 2015,44:2940. https://www.ncbi.nlm.nih.gov/pubmed/25853439

doi: 10.1039/c5cs00050e     URL     pmid: 25853439
[64]
Dong B A, Xu S, Sun J A, Bi S, Li D, Bai X, Wang Y, Wang L P, Song H W . J. Mater. Chem., 2011,21:6193. http://xlink.rsc.org/?DOI=c0jm04498a

doi: 10.1039/c0jm04498a     URL    
[65]
Liu N, Qin W P, Qin G S, Jiang T, Zhao D . Chem. Commun., 2011,47:7671. https://www.ncbi.nlm.nih.gov/pubmed/21655626

doi: 10.1039/c1cc11179e     URL     pmid: 21655626
[66]
Li Z Q, Chen S, Li J J, Liu Q Q, Sun Z, Wang Z B, Huang S M . J. Appl. Phys., 2012,111.
[67]
Sudheendra L, Ortalan V, Dey S, Browning N D, Kennedy I M . Chem. Mater., 2011,23:2987. https://www.ncbi.nlm.nih.gov/pubmed/21709812

doi: 10.1021/cm2006814     URL     pmid: 21709812
[68]
Zhang H, Li Y J, Ivanov I A, Qu Y Q, Huang Y, Duan X F . Angew. Chem. Int. Ed., 2010,49:2865. https://www.ncbi.nlm.nih.gov/pubmed/20235253

doi: 10.1002/anie.200905805     URL     pmid: 20235253
[69]
Kannan P, Rahim F A, Teng X, Chen R, Sun H, Huang L, Kim D H . RSC Adv., 2013,3:7718.
[70]
Kannan P, Rahim F A, Chen R, Teng X, Huang L, Sun H, Kim D H . ACS Appl. Mater. Inter., 2013,5:3508.
[71]
Yuan P, Lee Y H, Gnanasammandhan M K, Guan Z, Zhang Y, Xu Q H . Nanoscale, 2012,4:5132. https://www.ncbi.nlm.nih.gov/pubmed/22790174

doi: 10.1039/c2nr31241g     URL     pmid: 22790174
[72]
Rohani S, Quintanilla M, Tuccio S, de Angelis F, Cantelar E, Govorov A O, Razzari L, Vetrone F . Adv. Opt. Mater., 2015,3:1606.
[73]
Qin Y, Dong Z L, Zhou D C, Yang Y, Xu X H, Qiu J B . Opt. Mater. Express, 2016,6:1942.
[74]
Zhang X D, Li B, Jiang M M, Zhang L M, Ma H P . RSC Adv., 2016,6:36528.
[75]
Yin D G, Cao X Z, Zhang L, Tang J X, Huang W F, Han Y L, Wu M H . Dalton Trans., 2015,44:11147. https://www.ncbi.nlm.nih.gov/pubmed/25999289

doi: 10.1039/c5dt01059d     URL     pmid: 25999289
[76]
He J J, Zheng W, Ligmajer F, Chan C F, Bao Z Y, Wong K L, Chen X Y, Hao J H, Dai J Y, Yu S F, Lei D Y . Light-Sci. Appl., 2017,6:16217.
[77]
Kang F W, He J J, Sun T Y, Bao Z Y, Wang F, Lei D Y . Adv. Funct. Mater., 2017,27.
[78]
Chen X, Zhou D L, Xu W, Zhu J Y, Pan G C, Yin Z, Wang H, Zhu Y S, Cui S B, Song H W . Sci. Rep., 2017,7.
[79]
Herter B, Wolf S, Fischer S, Gutmann J, Blaesi B, Goldschmidt J C . Opt. Express, 2013,21:A883. https://www.ncbi.nlm.nih.gov/pubmed/24104583

doi: 10.1364/OE.21.00A883     URL     pmid: 24104583
[80]
Liao J Y, Yang Z W, Wu H J, Yan D, Qiu J B, Song Z G, Yang Y, Zhou D C, Yin Z Y . J. Mater. Chem. C, 2013,1:6541.
[81]
Yin Z, Zhu Y S, Xu W, Wang J, Xu S, Dong B, Xu L, Zhang S, Song H W . Chem. Commun., 2013,49:3781. https://www.ncbi.nlm.nih.gov/pubmed/23539518

doi: 10.1039/c3cc40829a     URL     pmid: 23539518
[82]
Yang Y D, Zhou P W, Xu W, Xu S, Jiang Y D, Chen X, Song H W . J. Mater. Chem. C, 2016,4:659.
[83]
Xu S, Xu W, Wang Y F, Zhang S, Zhu Y S, Tao L, Xia L, Zhou P W, Song H W . Nanoscale, 2014,6:5859. https://www.ncbi.nlm.nih.gov/pubmed/24752220

doi: 10.1039/c4nr00224e     URL     pmid: 24752220
[84]
Liao J Y, Yang Z W, Lai S F, Shao B, Li J, Qiu J B, Song Z G, Yang Y . J. Phys. Chem. C, 2014,118:17992.
[85]
Niu W B, Su L T, Chen R, Chen H, Wang Y, Palaniappan A, Sun H D, Tok A L Y . Nanoscale, 2014,6:817. https://www.ncbi.nlm.nih.gov/pubmed/24257963

doi: 10.1039/c3nr04884e     URL     pmid: 24257963
[86]
Wang H, Yin Z, Xu W, Zhou D L, Cui S B, Chen X, Cui H N, Song H W . Nanoscale, 2016,8:10004. https://www.ncbi.nlm.nih.gov/pubmed/27139324

doi: 10.1039/c6nr00180g     URL     pmid: 27139324
[87]
Hofmann C L M, Eriksen E H, Fischer S, Richards B S, Balling P, Goldschmidt J C . Opt Exp., 2018,26:7537.
[88]
Su X, Sun X Q, Wu S L, Zhang S F . Nanoscale, 2017,9:7666. https://www.ncbi.nlm.nih.gov/pubmed/28541358

doi: 10.1039/c7nr01172e     URL     pmid: 28541358
[89]
Zhu C, Zhou W Y, Fang J J, Ni Y R, Fang L, Lu C H, Xu Z Z, Kang Z T . J. Alloy Compd., 2018,741:337.
[90]
Yin Z, Li H, Xu W, Cui S B, Zhou D L, Chen X, Zhu Y S, Qin G S, Song H W . Adv. Mater., 2016,28:2518. https://www.ncbi.nlm.nih.gov/pubmed/26833556

doi: 10.1002/adma.201502943     URL     pmid: 26833556
[91]
Wang H, Li M C, Yin Z, Zhang T X, Chen X, Zhou D L, Zhu J Y, Xu W, Cui H N, Song H W . ACS Appl. Mater. Inter., 2017,9:37128. https://www.ncbi.nlm.nih.gov/pubmed/28967250

doi: 10.1021/acsami.7b10015     URL     pmid: 28967250
[92]
Chen G Y, Damasco J, Qiu H, Shao W, Ohulchanskyy T Y, Valiev R R, Wu X, Han G, Wang Y, Yang C, Agren H, Prasad P N . Nano Lett., 2015,15:7400. https://www.ncbi.nlm.nih.gov/pubmed/26487489

doi: 10.1021/acs.nanolett.5b02830     URL     pmid: 26487489
[93]
Wang X, Valiev R R, Ohulchanskyy T Y, Agren H, Yang C, Chen G . Chem. Soc. Rev., 2017,46:4150. https://www.ncbi.nlm.nih.gov/pubmed/28621356

doi: 10.1039/c7cs00053g     URL     pmid: 28621356
[94]
Zou W Q, Visser C, Maduro J A, Pshenichnikov M S, Hummelen J C . Nat. Photon., 2012,6:560.
[95]
Hong R, Fernandez J M, Nakade H, Arvizo R, Emrick T, Rotello V M . Chem. Commun., 2006,22:2347. https://www.ncbi.nlm.nih.gov/pubmed/16733575

doi: 10.1039/b603988j     URL     pmid: 16733575
[96]
Wu X, Lee H, Bilsel O, Zhang Y W, Li Z J, Chen T, Liu Y, Duan C Y, Shen J, Punjabi A, Han G . Nanoscale, 2015,7:18424. https://www.ncbi.nlm.nih.gov/pubmed/26499208

doi: 10.1039/c5nr05437k     URL     pmid: 26499208
[97]
Lee J, Yoo B, Lee H, Cha G D, Lee H S, Cho Y, Kim S Y, Seo H, Lee W, Son D, Kang M, Kim H M, Park Y I, Hyeon T, Kim D H . Adv. Mater., 2017,29.
[98]
Garfield D J, Borys N J, Hamed S M, Torquato N A, Tajon C A, Tian B, Shevitski B, Barnard E S, Suh Y D, Aloni S, Neaton J B, Chan E M, Cohen B E, Schuck P J . Nat. Photon., 2018,12:402.
[99]
Chen G Y, Shao W, Valiev R R, Ohulchanskyy T Y, He G S, Agren H, Prasad P N . Adv. Opt. Mater., 2016,4:1760.
[100]
Hazra C, Ullah S, Correales Y E S, Caetano L G, Ribeiro S J L . J. Mater. Chem. C, 2018,6:4777.
[101]
Alyatkin S, Urena-Horno E, Chen B G, Muskens O L, Kanaras A G, Lagoudakis P G . J. Phys. Chem. C, 2018,122:18177.
[102]
Zhou J J, Wen S H, Liao J Y, Clarke C, Tawfik S A, Ren W, Mi C, Wang F, Jin D Y . Nat. Photon., 2018,12:154.
[103]
Zeng S J, Yi Z G, Lu W, Qian C, Wang H B, Rao L, Zeng T M, Liu H R, Liu H J, Fei B, Hao J H . Adv. Funct. Mater., 2014,24:4051.
[104]
Xia A, Zhang X F, Zhang J, Deng Y Y, Chen Q, Wu S S, Huang X H, Shen J . Biomaterials, 2014,35:9167. https://www.ncbi.nlm.nih.gov/pubmed/25108318

doi: 10.1016/j.biomaterials.2014.07.031     URL     pmid: 25108318
[105]
Chen X Q, Tang Y J, Liu A M, Zhu Y D, Gao D, Yang Y, Sun J, Fan H S, Zhang X D . ACS Appl. Mater. Inter., 2018,10:14378. https://www.ncbi.nlm.nih.gov/pubmed/29648442

doi: 10.1021/acsami.8b00409     URL     pmid: 29648442
[106]
Wang C, Xu C L, Xu L G, Sun C Q, Yang D, Xu J T, He F, Gai S L, Yang P P . J. Mater. Chem. B, 2018,6:2597. https://www.ncbi.nlm.nih.gov/pubmed/32254478

doi: 10.1039/c7tb02842c     URL     pmid: 32254478
[107]
Hong A R, Kim Y, Lee T S, Kim S, Lee K, Kim G, Jang H S . ACS Appl. Mater. Inter., 2018,10:12331.
[108]
Xu J T, Yang P P, Sun M D, Bi H T, Liu B, Yang D, Gai S L, He F, Lin J . ACS Nano, 2017,11:4133. https://www.ncbi.nlm.nih.gov/pubmed/28320205

doi: 10.1021/acsnano.7b00944     URL     pmid: 28320205
[109]
Sun M Z, Xu L G, Ma W, Wu X L, Kuang H, Wang L B, Xu C L . Adv. Mater., 2016,28:898. https://www.ncbi.nlm.nih.gov/pubmed/26635317

doi: 10.1002/adma.201505023     URL     pmid: 26635317
[110]
Liang Z Q, Wang X C, Zhu W, Zhang P P, Yang Y X, Sun C Y, Zhang J J, Wang X R, Xu Z, Zhao Y, Yang R F, Zhao S L, Zhou L . ACS Appl. Mater. Inter., 2017,9:3497. https://www.ncbi.nlm.nih.gov/pubmed/28067495

doi: 10.1021/acsami.6b14906     URL     pmid: 28067495
[111]
Zhang Y Q, Xu S, Li X P, Zhang J S, Sun J, Tong L L, Zhong H, Xia H P, Hua R N, Chen B J . Sensor. Actuat. B-Chem., 2018,257:829.
[112]
Ding Y L, Qiao H Z, Yang T H, Yin N Q, Li P, Zhao Y, Zhang X D . Opt. Mater., 2017,73:617.
[113]
Khan A F, Yadav R, Mukhopadhya P K, Singh S, Dwivedi C, Dutta V, Chawla S . J. Nanopart. Res., 2011,13:6837. http://link.springer.com/10.1007/s11051-011-0591-9

doi: 10.1007/s11051-011-0591-9     URL    
[114]
Ramasamy P, Kim J . Chem. Commun., 2014,50:879.
[115]
Li D Y, Agren H, Chen G Y . Dalton Trans., 2018,47:8526. https://www.ncbi.nlm.nih.gov/pubmed/29388652

doi: 10.1039/c7dt04461e     URL     pmid: 29388652
[116]
Xu W, Lee T K, Moon B S, Song H W, Chen X, Chun B, Kim Y J, Kwak S K, Chen P, Kim D H . Adv. Opt. Mater., 2018,6. https://www.ncbi.nlm.nih.gov/pubmed/30800617

doi: 10.1002/adom.201800633     URL     pmid: 30800617
[117]
Park K, Jung K, Kwon S J, Jang H S, Byun D, Han I K, Ko H . Adv. Funct. Mater., 2016,26:7836.
[1] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[2] 王阳, 胡珀, 周帅, 傅佳骏. 稀土上转换发光纳米材料的防伪安全应用[J]. 化学进展, 2021, 33(7): 1221-1237.
[3] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[4] 范鸿川, 杨东, 段鹏飞. 超分子组装体系中基于三重态-三重态湮灭的上转换发光[J]. 化学进展, 2018, 30(7): 879-887.
[5] 吴锦钧, 杨震, 焦剑梅, 孙鹏飞, 范曲立, 黄维. 水溶性苝酰亚胺类材料的合成及其生物应用[J]. 化学进展, 2017, 29(2/3): 216-230.
[6] 赵兵, 祁宁, 张克勤. 等离子体增强上转换发光及其应用[J]. 化学进展, 2016, 28(11): 1615-1625.
[7] 石星波, 温超, 符招弟, 邓放明, 郑舒, 刘秋云. 单个量子点的光学性质与应用[J]. 化学进展, 2014, 26(11): 1781-1792.
[8] 孙盟盟, 何勇, 杨万泰, 尹梅贞. 磷酸乙二酯类聚合物的合成及其生物应用[J]. 化学进展, 2013, 25(12): 2093-2102.
[9] 李恬, 王祎龙, 郭方方, 时东陆. 复杂形貌磁性复合微球制备及其生物应用[J]. 化学进展, 2013, 25(12): 2053-2067.
[10] 陈梦君, 杨万泰, 尹梅贞* . 纳米粒子的分类合成及其在生物领域的应用[J]. 化学进展, 2012, 24(12): 2403-2414.
[11] 刘涛, 孙丽宁, 刘政, 仇衍楠, 施利毅. 稀土上转换发光纳米材料的应用[J]. 化学进展, 2012, 24(0203): 304-317.