English
新闻公告
More
化学进展 2019, Vol. 31 Issue (5): 699-713 DOI: 10.7536/PC180815 前一篇   后一篇

所属专题: 锂离子电池

• •

锂离子电池正极界面修饰用电解液添加剂

蒋志敏1, 王莉2, 沈旻1, 陈慧闯1, 马国强1,**(), 何向明2,**()   

  1. 1. 浙江省化工研究院有限公司 杭州 310023
    2. 清华大学核能与新能源技术研究院 北京 100084
  • 收稿日期:2018-08-20 出版日期:2019-05-15 发布日期:2019-03-21
  • 通讯作者: 马国强, 何向明
  • 基金资助:
    科技部国际合作项目(2016YFE0102200); 国家自然科学基金重点项目(U1564205)

Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery

Zhimin Jiang1, Li Wang2, Min Shen1, Huichuang Chen1, Guoqiang Ma1,**(), Xiangming He2,**()   

  1. 1. Zhejiang Chemical Industry Research Institute Co. Ltd., Hangzhou 310023, China
    2. Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2018-08-20 Online:2019-05-15 Published:2019-03-21
  • Contact: Guoqiang Ma, Xiangming He
  • About author:
    ** E-mail: (Guoqiang Ma);
    (Xiangming He)
  • Supported by:
    Ministry of Science and Technology of China(2016YFE0102200); National Natural Science Foundation of China(U1564205)

提高电压是提高锂离子电池比能量的重要途径之一。例如,LiNi0.5Mn1.5O4(4.7 V)、LiNiPO4(5.1 V)和富锂锰基等电极材料在较高的充电截止电压下表现出较高的能量密度和较低的成本,具有很好的应用前景。另外,提高LiCoO2和三元电池体系的充电截止电压是提升电池能量密度的简单有效措施。但是,当电池充电截止电压提高时,不仅会造成电解液在正极/电解液界面的氧化分解,还会加速正极中金属阳离子在电解液中的溶解,造成电池循环性能和安全性下降。采用不同的正极界面修饰用电解液添加剂,既可以有效钝化正极/电解液界面,抑制电解液的分解,还可以有效抑制正极结构的破坏。本文从添加剂的分子结构出发,介绍了磺酸酯、硼酸酯、磷酸酯、氟代碳酸酯、腈类、酸酐和锂盐等添加剂在正极界面的相关研究成果,并对不同添加剂的作用机理进行了详细的解释和归纳;另外,介绍了添加剂的联用技术在不同电池体系中的最新研究成果;最后,对新型正极界面修饰用电解液添加剂的开发进行了展望。

Increasing the voltage is one of the important ways to improve the energy density of lithium ion batteries. For example, LiNi0.5Mn1.5O4 (4.7 V), LiNiPO4(5.1 V) and lithium-rich manganese-based materials exhibit high energy density and low cost at high charge cut-off voltage, showing good application prospects. In addition, increasing the charge cut-off voltage of LiCoO2 and NMC battery systems is a simple and effective approach to increase the energy density. However, when the charge cut-off voltage is increased, not only the electrolyte will be oxidatively decomposed at the cathode /electrolyte interface, but also the dissolution of the metal cation from the cathode materials will be accelerated. These are the main causes for the decreased cycle stability and safety. The electrolyte additives can be used for modifying positive electrode interfaces, thus passivating the cathode/electrolyte interface and inhibiting the decomposition of the electrolyte. Moreover, the modified electrolyte can effectively suppress the destruction of the cathode structure. Based on the molecular structure of the additives, the related research results of additives such as sulfonate ester, boric acid ester, phosphate ester, fluorocarbonate, nitrile, anhydride and lithium salt at the positive electrode interface are introduced in this paper. The action mechanisms of different additives are explained and generalized. Furthermore, the combination technology of additives for different batteries are introduced. At last, the development of new electrolyte additives for cathode/electrolyte interface modification are discussed.

()
图1 含硫、磷、硼官能团的正极用添加剂的结构
Fig. 1 Structures of additives for cathodes containing sulfur, phosphorus and boron groups
图2 含氟、腈官能团的正极用添加剂的结构
Fig. 2 Structures of additives for cathodes containing fluorine, nitrile groups
图3 F-EMC分别与EC、TFPC、FEC、TFP-PC-E的1∶1混合溶剂电解液的漏电流测试[15]
Fig. 3 Floating test of F-EMC solvent mixed with EC, TFPC, FEC, and TFP-PC-E at 1∶1 ratio[15]
图4 HTN添加剂在正极表面的成膜机制示意图[63]
Fig. 4 The schematic for the surface modification mechanism of the HTN additive on the cathode[63]
图5 含电解液添加剂GA及不含GA的LNM/LTO电池电化学性能对比[65]
Fig. 5 Comparison of electrochemical behaviors of a LNM/LTO cell with and without GA as electrolyte additive[65]
图6 锂盐型及其他正极用添加剂的结构
Fig. 6 Structures of additives for cathode of Lithium salt type and others
图式1 EC分解反应机理[84]
Scheme. 1 Possible mechanism for the EC decomposition[84]
表1 各种添加剂的正极界面修饰作用及对于锂离子电池作用的性能对比
Table 1 The interface modification on the cathode of different ectrolyte additive and the different performance behavior to batteries
Electrolyte additive Oxidation potential
(V vs. Li+/Li)
Additive effect ref
Main action mechanism Interface film component Reported battery chemistry and the mechanism of the additives
FEC 6.44(PF6-) Film formation PEO-like polymer, carbonate LiNi0.5Mn1.5O4/graphite: Participate in the formation of protective surface film on cathode; enhance voltage stability at elevated temperature. 15
FEMC 6.26(PF6-) Film formation Metal fluorides, C-F containing species LiNi0.5Mn1.5O4/Li and LiNi0.5Mn1.5O4/Li4Ti5O12: Increase oxidation stsbility in high-voltage; enhance cycling performance. 15
VC 4.85[11] Film formation Ploy(VC) LiCoO2/Li: Form effective passivation layers at the surface of both electrodes; not suitable for the condition of high voltage. 11
ADN 6.9[72] Metal ions absorbing -CN
containing species
LiCoO2/MCMB: Improve resistance to aluminum; form a stable solid electrolyte interface especially to cathode of LiCoO2. 72
SUN 6.8[72] Metal ions absorbing -CN
containing species
Li[Li0.2Mn0.56Ni0.16Co0.08]O2/Li: Form a more dense and stabe interface; suppress the decomposition of LiPF6,EC and DMC; enhance capacity performance. 72
BP 4.5[73] Overcharge protection Oligomers having 6-12 benzene rings LiCoO2/graphite: Have lower oxidation potential than solvents; form a thick interfacial film on cathode. 73
HFiP 4.2[74] Film formation CF3-,CF3-CR2- species Li[Li0.2Mn0.56Ni0.16Co0.08]O2/Li: Form a more stable SEI layer; have more stable solid electrolyte impedance and smaller charge transfer resistance. 74
TMSP 4.1[75] Film formation and electrolyte stabilizer Si-O,P-O species LiNi0.5Mn1.5O4/graphite: Alleviate the decomposition of LiPF6 by hydrolysis; eliminate HF promoting Mn/Ni dissolution from the cathode. 75
TMSB 3.76[48] Film formation and electrolyte stabilizer Si-O,B-O species LiMn2O4/Li: Show excellent capacity retention at high temperature; reduce the content of HF. 48
MMDS 4.6[76] Film formation Li2SO3,ROSO2Li,
sulfide component
LiNi0.5Co0.2Mn0.3O2/graphite: Increase capacity retention; improve the conductivity of CEI; suppress the solvent decompdsition at high voltage. 76
SA 4.4[64] Film formation Hydrocarbons,Li2CO3 LiNi0.5Mn1.5O4/Li: Improve high voltage stability; form a modified protective layer. 64
TB 4.3[50] Film formation and electrolyte stabilizer Metal oxide,
B-O species
LiNi1/3Co1/3Mn1/3O2/Li: Improve cyclic stability and rate
capability; form a stable and low impedance film.
50
LiBOB 4.2[74] Film formation and electrolyte stabilizer Li oxalate,
oxalate species
LiNi0.5Mn1.5O4/Li: React with water traces and suppress the formation of POF3; improve high voltage and high temperature stability. 74
LiDFOB 4.35[77] Film formation and electrolyte stabilizer B containing polycarbonate Li1.2Ni0.15Mn0.55Co0.1O2/ Li: Reduces both cell capacity loss and impedance rise; inhibits electrolyte oxidation; reduces dissolution of metal ions. 77
图式2 TMSP氧化成膜机理[11]
Scheme. 2 Schematic representation of possible mechanisms for electrochemical oxidative decomposition of TMSP[11]
图式3 VC添加剂可能的聚合产物(A)自由基聚合物,(B)线性聚合物[87]
Scheme. 3 Main possible VC degradation products:(A)radical polymer,(B)linear polymer[87]
图式4 DFDEC氧化分解及与EC反应生成稳定SEI膜过程[89]
Scheme. 4 Electrochemical oxidative decomposition of DFDEC and its further reaction with EC to form a stable SEI[89]
图式5 亚磷酸酯类添加剂去除电解液中HF的机理[42]
Scheme. 5 Proposed mechanisms for the functions of phosphite-based additives for the HF removal[42]
图式6 LiBOB添加剂用于改善高电压正极电化学性能的机理[94]
Scheme. 6 Proposed mechanisms for the LiBOB additive for improvement in electrochemical performance of high-voltage cathode[94]
图式7 BP和CHB的反应机理[97]
Scheme. 7 Proposed reaction mechanisms of BP and CHB[97]
图式8 腈类添加剂去除电解液中HF的机理[61]
Scheme. 8 Proposed mechanisms for the functions of nitrile-based additives for the HF removal[61]
图7 腈类对于正极界面的保护作用(a)不含腈电解液(b)含长链腈电解液(c)含较短链腈电解液[102]
Fig. 7 Effects of nitriles protecting cathode surface from electrolyte(a) nitrile-absent electrolyte and nitrile-present electrolytes of(b) long-chain nitriles and(c) short-chain nitriles[102]
图8 EC、EMC、TMSB和TMSP与PF6-络合的优化分子结构及其计算氧化电位(vs. Li/Li+)[106]
Fig. 8 Optimized structure of EC, EMC, TMSB and TMSP with PF6- and the calculated oxidation potential(vs. Li/Li+)[106]
[1]
Armand M, Tarascon J M . Nature, 2008,451:652. https://www.ncbi.nlm.nih.gov/pubmed/18256660

doi: 10.1038/451652a     URL     pmid: 18256660
[2]
Zhang X, Ross P N, Kostecki R, Kong F, Sloop S, Kerr J B, Striebel K, Cairns E J, McLarnon F . Journal of the Electrochemical Society, 2001,148(5):147.
[3]
李伟善(Li W S) . 新能源进展 (Journal of Circuits and Systems), 2013,1(1):95.
[4]
Goodenough J B, Park K S . Journal of the American Chemical Society, 2013,135(4):1167. https://www.ncbi.nlm.nih.gov/pubmed/23294028

doi: 10.1021/ja3091438     URL     pmid: 23294028
[5]
Yim T, Kang K S, Mun J, Lim S H, Woo S G, Kim K J, Park M S, Cho W, Song J H, Han Y K, Yu J S, Kim Y J . Journal of Power Sources, 2016,302:431. https://linkinghub.elsevier.com/retrieve/pii/S0378775315304389

doi: 10.1016/j.jpowsour.2015.10.051     URL    
[6]
Lin Y M, Klavetter K C, Abel P R, Davy N C, Snider J L, Heller A, Mullins C B . Chemical Communications, 2012,48(58):7268. https://www.ncbi.nlm.nih.gov/pubmed/22706565

doi: 10.1039/c2cc31712e     URL     pmid: 22706565
[7]
Kraytsberg A, Ein-Eli Y . Journal of Power Sources, 2011,196(3):886. 5ff43c19-ecc2-492b-8b62-99fd70511a82http://dx.doi.org/10.1016/j.jpowsour.2010.09.031

doi: 10.1016/j.jpowsour.2010.09.031     URL    
[8]
Ma G Q, Wen Z Y, Jin J, Wu M F, Zhang G X, Wu X W, Zhang J C . Solid State Ionics, 2014,262:174. 1945c94f-6826-4930-8f4e-532c39663e30http://dx.doi.org/10.1016/j.ssi.2013.10.012

doi: 10.1016/j.ssi.2013.10.012     URL    
[9]
Hu M, Pang X, Zhou Z . Journal of Power Sources, 2013,237:229.
[10]
Lloris J M, Vicente C P R, Tirado J L . Electrochemical and Solid-State Letters, 2002,5(10):A234.
[11]
Song Y M, Han J G, Park S, Lee K T, Choi N S . J. Mater. Chem. A, 2014,2(25):9506.
[12]
Xia Y, Sakai T, Fujieda T, Wada M, Yoshinaga H . Electrochemical and Solid-State Letters, 2001,4(2):A9. https://iopscience.iop.org/article/10.1149/1.1339238

doi: 10.1149/1.1339238     URL    
[13]
Wang D, Xiao J, Xu W, Nie Z, Wang C, Graff G, Zhang J G . Journal of Power Sources, 2011,196(4):2241. 52b7b67f-fc47-4d65-873f-593b4b2439d5http://dx.doi.org/10.1016/j.jpowsour.2010.10.021

doi: 10.1016/j.jpowsour.2010.10.021     URL    
[14]
Zhou F, Cococcioni M, Kang K, Ceder G . Electrochemistry Communications, 2004,6(11):1144. 45064e28-7dc8-4814-bdd5-a903d85c1164http://www.sciencedirect.com/science/article/pii/S1388248104002401

doi: 10.1016/j.elecom.2004.09.007     URL    
[15]
He M, Hu L, Xue Z, Su C C, Redfern P, Curtiss L A, Polzin B, Cresce A V, Xu K, Zhang Z . Journal of the Electrochemical Society, 2015,162(9):A1725.
[16]
Xu K, Angell C A . Journal of the Electrochemical Society, 1998,145(4):L70.
[17]
Moshkovich M, Cojocaru M, Gottlieb H E, Aurbach D . Journal of Electroanalytical Chemistry, 2001,497(1):84.
[18]
Yang L, Markmaitree T, Lucht B L . Journal of Power Sources, 2011,196(4):2251.
[19]
邢丽丹(Xing L D), 许梦清(Xu M Q), 李伟善(Li W S), . 中国科学:化学 (Scientia Sinica Chimica), 2014,44(8):1289.
[20]
Wu Y, Vadivel Murugan A, Manthiram A . Journal of the Electrochemical Society, 2008,155(9):A635.
[21]
Zheng J M, Li J, Zhang Z R, Guo X J, Yang Y . Solid State Ionics, 2008,179(27/32):1794.
[22]
Park B C, Kim H B, Myung S T, Amine K, Belharouak I, Lee S M, Sun Y K . Journal of Power Sources, 2008,178(2):826.
[23]
Peled E . Journal of the Electrochemical Society, 1979,126(12):2047.
[24]
马国强(Ma G Q), 蒋志敏(Jiang Z M), 陈慧闯(Chen H C), 王莉(Wang L), 董经博(Dong J B), 张建君(Zhang J J), 徐卫国(Xu W G), 何向明(He X M) . 无机材料学报 (Journal of Inorganic Materials), 2018,33(7):699.
[25]
Thomas M, Bruce P G, Goodenough J B . Journal of the Electrochemical Society, 1985,132(7):1521.
[26]
Guyomard D, Tarascon J M . Journal of the Electrochemical Society, 1992,139(4):937.
[27]
Guyomard D, Tarascon J M . Journal of the Electrochemical Society, 1993,140(11):3071.
[28]
Xu M Q, Li W S, Zuo X X, Liu J S, Xu X . Journal of Power Sources, 2007,174(2):705.
[29]
Li B, Xu M, Li B, Liu Y, Yang L, Li W, Hu S . Electrochimica Acta, 2013,105(26):1.
[30]
Petibon R, Madec L, Rotermund L M, Dahn J R . Journal of Power Sources, 2016,313:152. https://linkinghub.elsevier.com/retrieve/pii/S0378775316301616

doi: 10.1016/j.jpowsour.2016.02.054     URL    
[31]
Zhang B, Metzger M, Solchenbach S, Payne M, Meini S, Gasteiger H A, Garsuch A, Lucht B L . Journal of Physical Chemistry C, 2015,119(21):11337.
[32]
Downie L, Hyatt S R, Wright A, Dahn J R . Journal of Physical Chemistry C, 2014,118(51):29533.
[33]
Ma L, Xia J, Dahn J R . Journal of the Electrochemical Society, 2014,161(14):A2250.
[34]
Zuo X, Fan C, Xiao X, Liu J, Nan J . ECS Electrochemistry Letters, 2012,1(3):A50. https://iopscience.iop.org/article/10.1149/2.006203eel

doi: 10.1149/2.006203eel     URL    
[35]
Lee H, Choi S, Choi S, Kim H J, Choi Y, Yoon S, Cho J J . Electrochemistry Communications, 2007,9(4):801. bc2e7ae5-aa8c-4cee-baa6-c285637692a2http://www.sciencedirect.com/science/article/pii/S1388248106005200

doi: 10.1016/j.elecom.2006.11.008     URL    
[36]
许梦清(Xu M Q), 邢丽丹(Xing L D), 李伟善(Li W S) . 化学进展 (Progress in Chemistry), 2009,21(10):2017.
[37]
Pires J, Timperman L, Castets A, Peña J S, Dumont E, Levasseur S, Dedryvere R, Tessier C, Anouti M . RSC Advances, 2015,5(52):42088.
[38]
Li B, Wang Y, Rong H, Wang Y, Liu J, Xing L, Xu M, Li W . Journal of Materials Chemistry A, 2013,1(41):12954.
[39]
Nam N D, Park I J, Kim J G . ECS Transactions, 2011,33(22):7.
[40]
Ma Y, Yin G, Zuo P, Tan X, Gao Y, Shi P . Electrochemical and Solid-State Letters, 2008,11(8):A129. https://iopscience.iop.org/article/10.1149/1.2931972

doi: 10.1149/1.2931972     URL    
[41]
Tan S, Zhang Z, Li Y, Li Y, Zheng J, Zhou Z, Yang Y . Journal of the Electrochemical Society, 2012,160(2):A285.
[42]
Song Y M, Kim C K, Kim K E, Hong S Y, Choi N S . Journal of Power Sources, 2016,302:22.
[43]
Tu W, Xia P, Zheng X, Ye C, Xu M, Li W . Journal of Power Sources, 2017,341:348.
[44]
Xia J, Madec L, Ma L, Ellis L D, Qiu W, Nelson K J, Lu Z, Dahn J R . Journal of Power Sources, 2015,295:203.
[45]
Zuo X, Fan C, Liu J, Xiao X, Wu J, Nan J . Journal of Power Sources, 2013,229(3):308.
[46]
Yan C, Ying X, Xia J, Gong C, Chen K . Journal of Energy, 2016,4:015.
[47]
Pang C, Xu G, An W, Ding G, Liu X, Chai J, Ma J, Liu H, Cui G . Energy Technology, 2017,5(11):1979.
[48]
Li J, Xing L, Zhang R, Chen M, Wang Z, Xu M, Li W . Journal of Power Sources, 2015,285:360.
[49]
Liu Y, Tan L, Li L . Journal of Power Sources, 2013,221:90.
[50]
Wang Z, Xing L, Li J, Li B, Xu M, Liao Y, Li W . Electrochimica Acta, 2015,184:40.
[51]
Chang C C, Chen T K . Journal of Power Sources, 2009,193(2):834.
[52]
Markevich E, Salitra G, Aurbach D . ACS Energy Letters, 2017,2(6):1337.
[53]
马国强(Ma G Q), 王莉(Wang L), 张建君(Zhang J J), 陈慧闯(Chen H C), 何向明(He X M), 丁元胜(Ding Y S) . 化学进展 (Progress in Chemistry), 2016,28(9):1299.
[54]
Hu L, Zhang Z, Amine K . Electrochemistry Communications, 2013,35:76.
[55]
Markevich E, Salitra G, Fridman K, Sharabi R, Gershinsky G, Garsuch A, Semrau G, Schmidt M A, Aurbach D . Langmuir, 2014,30(25):7414. https://www.ncbi.nlm.nih.gov/pubmed/24885475

doi: 10.1021/la501368y     URL     pmid: 24885475
[56]
Lee Y M, Nam K M, Hwang E H, Kwon Y G, Kang D H, Kim S S, Song S W . The Journal of Physical Chemistry C, 2014,118(20):10631.
[57]
Zhu Y, Casselman M D, Li Y, Wei A, Abraham D P . Journal of Power Sources, 2014,246:184.
[58]
尹成果(Yin C G), 马玉林(Ma Y L), 程新群(Cheng X Q), 尹鸽平(Yin G P) . 化学进展 (Progress in Chemistry), 2013,25(1):54.
[59]
Abu-Lebdeh Y, Davidson I . Journal of Power Sources, 2009,189(1):576.
[60]
Abu-Lebdeh Y, Davidson I . Journal of the Electrochemical Society, 2009,156(1):A60.
[61]
Chen R, Liu F, Chen Y, Ye Y, Huang Y, Wu F, Li L . Journal of Power Sources, 2016,306:70.
[62]
Wang C, Yu L, Fan W, Liu J, Ouyang L, Yang L, Zhu M . ACS Applied Materials & Interfaces, 2017,9(11):9630. https://www.ncbi.nlm.nih.gov/pubmed/28221019

doi: 10.1021/acsami.6b16220     URL     pmid: 28221019
[63]
Wang L, Ma Y, Li Q, Zhou Z, Cheng X, Zuo P, Du C, Gao Y, Yin G . Journal of Power Sources, 2017,361:227. https://linkinghub.elsevier.com/retrieve/pii/S0378775317308583

doi: 10.1016/j.jpowsour.2017.06.075     URL    
[64]
Luo R, Xu D, Zeng X, Li X, Zeng J, Liao S . Ionics, 2015,21(9):2535.
[65]
Bouayad H, Wang Z, Dupré N, Dedryvère R, Foix D, Franger S, Martin J F, Boutafa L, Patoux S, Gonbeau D . Journal of Physical Chemistry C, 2014,118(9):4634. https://pubs.acs.org/doi/10.1021/jp5001573

doi: 10.1021/jp5001573     URL    
[66]
Aravindan V, Gnanaraj J, Madhavi S, Liu H K . Chemistry, 2011,17(51):14326. https://www.ncbi.nlm.nih.gov/pubmed/22114046

doi: 10.1002/chem.201101486     URL     pmid: 22114046
[67]
Kawamura T, Kimura A, Egashira M, Okada S, Yamaki J I . Journal of Power Sources, 2016,104(2):260. https://linkinghub.elsevier.com/retrieve/pii/S0378775301009600

doi: 10.1016/S0378-7753(01)00960-0     URL    
[68]
Li C, Hou Q, Li S, Tang F, Wang P . Journal of Alloys & Compounds, 2017,723:887.
[69]
Zhang L, Ma Y, Cheng X, Zuo P, Cui Y, Guan T, Du C, Gao Y, Yin G . Solid State Ionics, 2014,263(10):146.
[70]
Kanamura K, Umegaki T, Shiraishi S, Ohashi M, Takehara Z I . Journal of the Electrochemical Society, 2002,149(2):A185.
[71]
胡锋波(Hu F B), 张庆华(Zhang Q H), 詹晓力(Zhan X L), 陈丰秋(Chen F Q) . 化工进展 (Progress in Chemistry), 2011,10:2097.
[72]
Tan S, Ji Y J, Zhang Z R, Yang Y . Chemphyschem, 2014,15(10):1956. https://www.ncbi.nlm.nih.gov/pubmed/25044525

doi: 10.1002/cphc.201402175     URL     pmid: 25044525
[73]
Abe K, Ushigoe Y, Yoshitake H, Yoshio M . Journal of Power Sources, 2006,153(2):328.
[74]
Xu K . Chemical Reviews, 2014,114(23):11503. https://www.ncbi.nlm.nih.gov/pubmed/25351820

doi: 10.1021/cr500003w     URL     pmid: 25351820
[75]
Jie Z, Wang J, Yang J, Nuli Y . Electrochimica Acta, 2014,117(4):99.
[76]
Zheng X, Huang T, Pan Y, Wang W, Fang G, Wu M . Journal of Power Sources, 2015,293:196. https://linkinghub.elsevier.com/retrieve/pii/S0378775315009520

doi: 10.1016/j.jpowsour.2015.05.061     URL    
[77]
Choi N S, Han J G, Ha S Y, Park I, Back C K . RSC Advances, 2015,5(4):2732.
[78]
Ha S Y, Han J G, Song Y M, Chun M J, Han S I, Shin W C, Choi N S . Electrochimica Acta, 2013,104:170.
[79]
Zhu Y, Li Y, Bettge M, Abraham D P . Journal of the Electrochemical Society, 2012,159(12):A2109. https://iopscience.iop.org/article/10.1149/2.083212jes

doi: 10.1149/2.083212jes     URL    
[80]
Qin Y, Chen Z, Liu J, Amine K . Electrochemical and Solid-State Letters, 2010,13(2):A11. https://iopscience.iop.org/article/10.1149/1.3261738

doi: 10.1149/1.3261738     URL    
[81]
Yang G H, Shi J L, Shen C, Wang S W, Xia L, Luo H, Xia Y G . RSC Advances, 2017,7(42):26052. http://xlink.rsc.org/?DOI=C7RA03926C

doi: 10.1039/C7RA03926C     URL    
[82]
李建刚(Li J G), 杨冬平(Yang D P), 万春荣(Wan C R), 杨张平(Yang Z P) . 电池 (Battery Bimonthly), 2004,34(2):135.
[83]
庄全超(Zhuang Q C), 许金梅(Xu J M), 樊小勇(Fan X Y), 魏国祯(Wei G Z), 董全峰(Dong Q F), 姜艳霞(Jiang Y X), 黄令(Huang L), 孙世刚(Sun S G) . 中国科学 (Scientia Sinica), 2007,37(1):18.
[84]
Xing L, Li W, Wang C, Gu F, Xu M, Tan C, Jin Y . Journal of Physical Chemistry B, 2009,113(52):16596. https://www.ncbi.nlm.nih.gov/pubmed/19947609

doi: 10.1021/jp9074064     URL     pmid: 19947609
[85]
Haregewoin A M, Wotango A S, Hwang B J . Energy. Environ. Sci., 2016,9(6):1955. http://xlink.rsc.org/?DOI=C6EE00123H

doi: 10.1039/C6EE00123H     URL    
[86]
邓邦为(Deng B W), 万琦(Wan Q), 瞿美臻(Qu M Z), 彭工厂(Peng G C) . 化学学报 (Acta Chimica Sinica), 2018,76(4):259. d9014313-625f-4378-9b36-530b6b55f454http://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract346508.shtml

doi: 10.6023/A17110517     URL    
[87]
El Ouatani L, Dedryveère R, Siret C, Biensan P, Reynaud S, Iratçabal P, Gonbeau D . Journal of The Electrochemical Society, 2009,156(2):A103.
[88]
Madec L, Petibon R, Tasaki K, Xia J, Sun J P, Hill I G, Dahn J R . J. Physical Chemistry Chemical Physics Pccp, 2015,17(40):27062.
[89]
Pham H Q, Nam K M, Hwang E H, Kwon Y G, Jung H M, Song S W . Journal of the Electrochemical Society, 2014,161(14):A2002. 404a25b3-2f5f-4382-9e73-679a36361110http://dx.doi.org/10.1149/2.1141412jes

doi: 10.1149/2.1141412jes     URL    
[90]
Terborg L, Weber S, Blaske F, Passerini S, Winter M, Karst U, Nowak S . Journal of Power Sources, 2013,242(4):832. https://linkinghub.elsevier.com/retrieve/pii/S0378775313009154

doi: 10.1016/j.jpowsour.2013.05.125     URL    
[91]
Rong H, Xu M, Xie B, Liao X, Huang W, Xing L, Li W . Electrochimica Acta, 2014,147(147):31.
[92]
Lee Y M, Lee Y G, Kang Y M, Cho K Y . Electrochemical and Solid-State Letters, 2010,13(13):A55.
[93]
Yim T, Woo S G, Lim S, Cho W, Song J, Han Y K, Kim Y J . Journal of Materials Chemistry A, 2015,3(11):6157.
[94]
Pieczonka N P W, Yang L, Balogh M P, Powell B R, Chemelewski K, Manthiram A, Krachkovskiy S A, Goward G R, Liu M, Kim J H . Journal of Physical Chemistry C, 2013,117(44):22603.
[95]
张玲玲(Zhang L L), 马玉林(Ma Y L), 杜春雨(Du C Y), 尹鸽平(Yin G P) . 化学进展 (Progress in Chemistry), 2014,26(4):553.
[96]
Lee K S, Sun Y K, Noh J, Song K S, Kim D W . Electrochemistry Communications, 2009,11(10):1900.
[97]
Shima K, Shizuka K, Ue M, Ota H, Hatozaki T, Yamaki J I . Journal of Power Sources, 2006,161(2):1264.
[98]
陈仕玉(Chen S Y), 王兆翔(Wang Z X), 赵海雷(Zhao H L), 陈立泉(Chen L Q) . 化学进展 (Progress in Chemistry), 2009,21(4):629.
[99]
Lee H, Lee J H, Ahn S, Kim H J, Cho J J . Electrochemical and Solid-State Letters, 2006,9(9):A307.
[100]
Ji Y, Zhang Z, Gao M, Li Y, McDonald M J, Yang Y . Journal of the Electrochemical Society, 2015,162(4):A774.
[101]
Kim Y S, Kim T H, Lee H, Song H K . Energy & Environmental Science, 2011,4(10):4038.
[102]
Kim Y S, Lee H, Song H K . ACS Applied Materials & Interfaces, 2014,6(11):8913. https://www.ncbi.nlm.nih.gov/pubmed/24836760

doi: 10.1021/am501671p     URL     pmid: 24836760
[103]
Wang X S, Zheng X W, Liao Y H, Huang Q M, Xing L D, Xu Q M, Li W S . Journal of Power Sources, 2017,338:108.
[104]
Shao N, Sun X G, Dai S, Jiang D . The Journal of Physical Chemistry B, 2011,115(42):12120. https://www.ncbi.nlm.nih.gov/pubmed/21919491

doi: 10.1021/jp204401t     URL     pmid: 21919491
[105]
Wang Y, Xing L, Li W, Bedrov D . The Journal of Physical Chemistry Letters, 2013,4(22):3992. https://www.ncbi.nlm.nih.gov/pubmed/26276483

doi: 10.1021/jz501973d     URL     pmid: 26276483
[106]
Wang K, Xing L D, Zhu Y M, Zheng X W, Cai D D, Li W S . Journal of Power Sources, 2017,342:677.
[107]
Jian X, Sinha N N, Chen L P, Dahn J R . Journal of the Electrochemical Society, 2013,161(3):A264.
[108]
Xia J, Dahn J R . Journal of Power Sources, 2016,324:704.
[109]
Sinha N N, Burns J C, Dahn J R . Journal of the Electrochemical Society, 2014,161(6):A1084.
[110]
Han Y K, Yoo J, Yim T . Journal of Materials Chemistry A, 2015,3(20):10900.
[111]
王超(Wang C), 胡立新(Hu L X) . 湖北工业大学学报 (Journal of Hubei University of Technology), 2011,26(2):80.
[112]
范伟贞(Fan W Z), 左晓希(Zuo X X), 刘建生(Liu J J), 李钊(Li Z) . 电池 (Battery Bimonthly), 2015,45(4):21.
[113]
Ma L, Wang D Y, Downie L E, Xia J, Nelson K J, Sinha N N, Dahn J R . Journal of the Electrochemical Society, 2014,161(9):A1261.
[114]
Xia J, Ma L, Dahn J R . Journal of Power Sources, 2015,287:377.
[115]
Ma L, Xia J, Dahn J R . Journal of the Electrochemical Society, 2015,162(7):A1170. https://iopscience.iop.org/article/10.1149/2.0181507jes

doi: 10.1149/2.0181507jes     URL    
[116]
Nelson K J, D'Eon G L, Wright A T B, Ma L, Xia J, Dahn J R . Journal of the Electrochemical Society, 2015,162(6):A1046. https://iopscience.iop.org/article/10.1149/2.0831506jes

doi: 10.1149/2.0831506jes     URL    
[117]
Yang J P, Zhao P, Shang Y M, Wang L, He X M, Fang M, Wang J L . Electrochimica Acta, 2014,121:264. 5f24f079-78d1-4130-8721-55ab971f43e4http://dx.doi.org/10.1016/j.electacta.2013.12.170

doi: 10.1016/j.electacta.2013.12.170     URL    
[118]
Yang J P, Zhang Y F, Zhao P, Shang Y M, Wang L, He X M, Wang J L . Electrochimica Acta, 2015,158:202. https://linkinghub.elsevier.com/retrieve/pii/S0013468614026024

doi: 10.1016/j.electacta.2014.12.143     URL    
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[4] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[5] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[6] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[7] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[8] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[9] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[10] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[11] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[12] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[13] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[14] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[15] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.