English
新闻公告
More
化学进展 2019, Vol. 31 Issue (10): 1406-1416 DOI: 10.7536/PC190306 前一篇   后一篇

• •

非水系锂空气电池碳基正极材料

黄路露, 孙凯玲, 刘明瑞, 李静, 廖世军**()   

  1. 华南理工大学化学与化工学院 广州 510641
  • 收稿日期:2019-03-07 出版日期:2019-10-15 发布日期:2019-08-05
  • 通讯作者: 廖世军
  • 基金资助:
    国家重点研发计划项目(2017YFB0102900); 国家重点研发计划项目(2016YFB0101201); 国家自然科学基金项目(21476088); 国家自然科学基金项目(21776104); 广东省科学技术厅(2015B010106012); 广州市科技创新委员会(201504281614372); 广州市科技创新委员会(2016GJ006)

Carbon-Based Cathode Materials for Non-Aqueous Lithium-Air Batteries

Lulu Huang, Kailing Sun, Mingrui Liu, Jing Li, Shijun Liao**()   

  1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
  • Received:2019-03-07 Online:2019-10-15 Published:2019-08-05
  • Contact: Shijun Liao
  • About author:
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776104); Guangdong Provincial Department of Science and Technology(2015B010106012); Guangzhou Science Technology and Innovation Committee(201504281614372); Guangzhou Science Technology and Innovation Committee(2016GJ006)

锂空气电池因其极高的理论能量密度和环境友好等优点,有望成为下一代车用动力电源体系。然而,目前锂空气电池尚存在许多的问题和挑战,就正极而言,空气电极活性低的问题已成为制约锂空气电池技术发展最为重要的问题,因此,开发高性能锂空气电池正极催化剂一直以来都是该领域的重要研究课题。碳基催化剂(正极材料)是目前最具吸引力的锂空气电池正极材料之一,近年来得到了广泛的关注和研究。本文总结和介绍了近年来国内外在多孔碳基材料、石墨烯基材料、掺杂碳材料等碳材料作为锂空气电池正极材料方面的进展,包括本课题组在非水系锂空气电池正极材料方面的研究工作,并对碳基正极材料的发展及其在锂空气电池中的应用前景做了展望。

Given their high theoretical energy density and environment compatibility, lithium-air batteries have been considered as possible alternatives to current vehicles-used Li-ion batteries. Currently lithium-air batteries still have quite a few problems and challenges to overcome, as for cathode electrodes, the development of lithium-air battery technology is hindered by air electrode with improved activity. Thus, the preparation of the high-efficiency cathode materials is still challenging. As one of the most attractive cathode materials for lithium-air batteries, carbon-based catalysts(cathode materials) have received extensive attention and research in recent years. In this paper, based on the comprehensive analysis of our group’s achievements, the recent progress of cathode catalyst for non-aqueous lithium-air batteries is briefly introduced, including porous carbon-based materials, graphene-based materials, and doped carbon materials. In every section, we also attempt to propose the future development of carbon-based cathode materials for the next stage.

()
图1 不同类型电池的能量密度对比(数据来源:参考文献[2,6,7])
Fig. 1 Energy densities(Wh·kg-1) for various types of batteries(data from ref 2,6,7)
图2 有机电解液体系锂/空气电池示意图
Fig. 2 Schematic diagram of non-aqueous lithium-air batteries
图3 (a)3DOM材料结构的模型,(b)产物在电极表面的形成与沉积过程,具有大孔径(上)和小孔径(下)的3DOM碳,(c)在电流密度100 mA·gcarbon-1和截止容量500 mAh·gcarbon-1条件下,不同孔径的3DOM电极循环性能测试,35 nm孔径(黑)和12 nm孔径且具有高(绿)和低(红)壁密度的3DOM碳,(d)不同孔径的3DOM电极的充放电曲线[51]
Fig. 3 (a) Model for the structure of 3DOM carbon.(b) Simplified 2D representation of the formation and accumulation of byproducts on 3DOM carbon with large(top) and small pores(bottom).(c) Cycling performance of bare 3DOM carbon of different pore sizes: 3DOM carbon with 35 nm pores(black) and 12 nm pores with high(green) and low(red) wall densities. Capacity is limited to 500 mAh·gcarbon-1, rate=100 mA·gcarbon-1.(d) Discharge/charge curves normalized to pore volumes[51]
图4 不同催化剂材料的Li-O2电池(a)端电压,(b)容量与循环次数的关系[58]
Fig. 4 The(a) terminal voltage,(b)correlation between specific capacities and cycle number of the Li-O2 batteries with various catalysts[58]
图5 (a)基于RMCNT电极的锂空气电池放电曲线,电流密度为1.5 mA·cm-2,截止容量为3.0 mAh·cm-2(紫色)和4.5 mAh·cm-2(蓝色),(b)不同催化剂材料的锂空气电池的循环性能,放电后CNT(c,d)和RMCNT(e,f)电极的SEM图像及其XPS分析[68]
Fig. 5 (a) Voltage profiles of RMCNT monolith electrode at 1.5 mA·cm-2 with cutoff capacities of 3.0 mAh·cm-2(purple) and 4.5 mAh·cm-2(blue).(b) Voltage profiles of CNT monolith electrode and RMCNT monolith electrode. SEM images of CNT(c),and RMCNT(e) electrodes after discharging. Chemical analysis of the electrode after discharging by XPS: CNT(d) and of RMCNT(f)[68]
图6 (a) 电流密度200 mA·g-1,电压范围2.3~4.6 V,不同石墨烯电极的电池充放电曲线,(b)N,S掺杂石墨烯电极的电池循环性能测试[73]
Fig. 6 (a)Discharge-charge profiles of Li-O2 cells using the nanoporous graphene electrode(the cells were tested at 2.3~4.6 V with a current density of 200 mAh·g-1).(b) Cycling stability of the nanoporous N- and S-doped graphene-based Li-O2 cells[73]
图7 (a)Si基底上生长的VA-NCCF的SEM图像,(b)单个VA-NCCF的TEM图像,(c)VA-NCCF电极表面Li2O2沉积状态概念图,(d)VA-NCCF为电极的锂空气电池倍率性能图,(e)放电产物的TEM图像(红色箭头指向纺锤形Li2O2,蓝色箭头指向球形Li2O2)[84]
Fig. 7 (a) SEM image of a VA-NCCF array grown on a piece of Si wafer.(b) TEM image of an individual VA-NCCF.(c) The sketch of Li2O2 grown on a coral-like carbon fiber.(d) Rate performance of the VA-NCCF electrode.(e) TEM image of a discharged catalyst fiber(blue and red arrows indicate spherical- and spindle-shaped Li2O2 particles, respectively[84]
[1]
Lim Y J, Kim H W, Lee S S, Kim H J, Kim J K, Jung Y G, Kim Y . ChemPlusChem., 2015,80:1100.
[2]
Shi J L, Xiao D D, Ge M, Yu X, Chu Y, Huang X, Zhang X D, Yin Y X, Yang X Q, Guo Y G, Gu L, Wan L J . Adv. Mater., 2018,30:1705575.
[3]
Gockeln M, Pokhrel S, Meierhofer F, Schowalter M, Rosenauer A, Fritsching U, Busse M, Mädler L, Kun R . J. Power Sources, 2018,374:97.
[4]
Shi Y, Zhou X Y, Zhang J, Bruck A M, Bond A C, Marschilok A C, Takeuchi K J, Takeuchi E S, Yu G H . Nano Lett., 2017,17:1906.
[5]
Scrosati B, Garche J . J. Power Sources, 2010,195:2419.
[6]
Fu J, Cano Z, Park M G, Yu A, Fowler M, Chen Z W . Adv. Mater., 2017,29:1604685.
[7]
Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M, , Nat. Mater., 2012,11:19.
[8]
易罗财(Yi L C), 次素琴(Ci S Q), 孙成丽(Sun C L), 温珍海(Wen Z H) . 化学进展 (Progress in Chemistry), 2016,28(8):1251.
[9]
Zhang P, Zhao Y, Zhang X B . Chem. Soc. Rev., 2018,47:2921.
[10]
Tan P, Wei Z H, Shyy W, Zhao T S, Zhu X B . Energy Environ. Sci., 2016,9:1783.
[11]
Abraham K M, Jiang Z . J. Electrochem. Soc., 1996,143:1.
[12]
Chen Y H, Freunberger S A, Peng Z Q, Fontaine O, Bruce P G . Nat. Chem., 2013,5:489.
[13]
Xu D, Wang Z L, Xu J J, Zhang L L, Zhang X B . Chem. Commun., 2012,48:6948.
[14]
Trahan M J, Mukerjee S, Plichta E J, Hendrickson M A, Abraham K M . J. Electrochem. Soc., 2013,160:259.
[15]
Chen Y, Freunberger S A, Peng Z Q, Bardé F, Bruce P G . J. Am. Chem. Soc., 2012,134:7952.
[16]
Wang F, Chen H Z, Wu Q X, Mei R, Huang Y, Li X, Luo Z K . ACS Omega, 2017,2:236.
[17]
Walker W, Giordani V, Uddin J, Bryantsev V S, Chase G V, Addison D . J. Am. Chem. Soc., 2013,135:2076.
[18]
Lim H D, Song H, Kim J, Gwon H, Bae Y, Park K Y, Hong J, Kim H, Kim T, Kim Y H, Lepró X, Ovalle-Robles R, Baughman R H, Kang K . Angew. Chem. Int. Ed., 2014,126:4007.
[19]
Liang Z J, Lu Y C . J. Am. Chem. Soc., 2016,138:7574.
[20]
Freunberger S A, Chen Y, Drewett N E, Hardwick L J, Bardé F, Bruce P G . Angew. Chem., Int. Ed., 2011,50:8609.
[21]
Qiao Y, He Y B, Wu S C, Jiang K Z, Li X, Guo S H, He P, Zhou H S . ACS Energy Lett., 2018,3:463.
[22]
Qiao Y, Wu S C, Sun Y, Guo S H, Yi J, He P, Zhou H S . ACS Energy Lett., 2017,2:1869.
[23]
Song K, Agyeman D A, Park M H, Yang J, Kang Y M . Adv. Mater., 2017,29:1606572.
[24]
Tan P, Chen B, Xu H R, Zhang H C, Cai W Z, Ni M, Ni M L, Shao Z P . Energy Environ. Sci., 2017,10:2056.
[25]
McCloskey B D, Scheffler R, Speidel A, Girishkumar G, Luntz A C . J. Phys. Chem. C, 2012,116:23897.
[26]
Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce P G . J. Am. Chem. Soc., 2006,128:1390.
[27]
Zhai D Y, Wang H H, Yang J B, Lau K C, Li K X, Amine K, Curtiss L A . J. Am. Chem. Soc., 2013,135:15364.
[28]
Peng Z Q, Freunberger S A, Chen Y H, Bruce P G . Science, 2012,337:563.
[29]
Xia C, Kwok C Y, Nazar L F . Science, 2018,361:777.
[30]
Xu J J, Wang Z L, Xu D, Zhang L L, Zhang X B . Nat. Commun., 2013,4:2438.
[31]
Lin X D, Yuan R M, Cai S R, Jiang Y H, Lei J, Liu S G, Wu Q H, Liao H G, Zheng M S, Dong Q F . Adv. Energy Mater., 2018,8:1800089.
[32]
Xu J J, Chang Z W, Wang Y, Liu D P, Zhang Y, Zhang X B . Adv. Mater., 2016,43:9620.
[33]
McCloskey B D, Speidel A, Scheffler R, Miller D C, Viswanathan V, Hummelshøj J S, Nørskov J K, Luntz A C . J. Phys. Chem. Lett., 2012,8:997.
[34]
Belova A I, Kwabi D G, Yashina L V, Shao-Horn Y, Itkis D M . J. Phys. Chem. C, 2017,3:1569.
[35]
Yao X H, Dong Q, Cheng Q M, Wang D W . Angew. Chem., Int. Ed., 2016,38:11344.
[36]
Gong Y, Ding W. Li Z P, Su R, Zhang X L, Wang J, Zhou J G, Wang Z W, Gao Y H, Li S Q, Guan P F, Wei Z D, Sun C W . ACS Catal., 2018,8:4082.
[37]
Meng W, Wen L, Song Z H, Cao N, Qin X . J. Solid State Electrochem., 2017,21:665.
[38]
Zhang J T, Zhao Z H, Xia Z H, Dai L M . Nat. Nanotechnol., 2015,10:444.
[39]
Zeng X Y, You C H, Leng L M, Dang D, Qiao X C, Li X H, Li Y W, Liao S J, Adzic R R . J. Mater. Chem. A, 2015,3:11224.
[40]
Li Q, Xu P. Gao W, Ma S G, Zhang G Q, Cao R G, Cho J, Wang H L, Wu G . Adv. Mater., 2014,26:1378.
[41]
Li Y, Fu Z Y, Su B L . Adv. Funct. Mater., 2012,22:4634.
[42]
Chen M, Wang W, Liang X, Gong S, Liu J, Wang Q, Guo S J, Yang H . Adv. Energy Mater., 2018,8:1800171.
[43]
Li Y, Wang G L. Wei T, Fan Z J, Yan P . Nano Energy, 2016,19:165.
[44]
Pang J, Zhang W F. Zhang H, Zhang J L, Zhang H M, Cao G P, Han M F, Yang Y S . Carbon, 2018,132:280.
[45]
Borghei M, Laocharoen N, Kibena-Põldsepp E, Johansson L S, Campbell J, Kauppinen E, Tammeveski K, Rojas O J . Appl. Catal. B, 2017,204:394.
[46]
Yin W, Shen Y, Zou F, Hu X L, Chi B, Huang Y H . ACS Appl. Mater. Interfaces, 2015,7:4947.
[47]
Zhong M, Zhang X, Yang D H, Zhao B, Xie Z J, Zhou Z, Bu X H . Inorg. Chem. Front., 2017,4:1533.
[48]
Wu D F, Liang Z B, Zou R Q, Xu Q . Joule, 2018,2:2235.
[49]
Wu D F, Guo Z Y, Yin X B, Pang Q Q, Tu B B, Zhang, L J, Wang Y G, Li Q W . Adv. Mater., 2014,26:3258.
[50]
Cao L J, Lv F C, Liu Y, Wang W X, Huo Y F, Fu X Z, Sun R, Lu Z G . Chem. Commun., 2015,51:4364.
[51]
Xie J, Yao X H, Cheng Q M, Madden L P, Dornath P, Chang C C, Fan W, Wang D W . Angew. Chem., Int. Ed., 2015,127:4373.
[52]
Sun B, Chen S Q, Liu H, Wang G X . Adv. Funct. Mater., 2015,25:4436.
[53]
Zhang X L, Gao R, Li Z Y, Hu Z B, Liu H Y, Liu X F . Electrochimica Acta, 2016,201:134.
[54]
Wang M, Yao Y, Tang Z W, Zhao T, Wu F, Yang Y F, Huang Q F . ACS Appl. Mater. Interfaces, 2018,10:32212.
[55]
Sun K L, Li J, Huang L L, Ji S, Kannan P, Li D, Liu L N, Liao S J . J. Power Sources, 2019,412:433.
[56]
Zhu C L, Du L, Luo J M, Tang H B, Cui Z M, Song H Y, Liao S J . J. Mater. Chem. A, 2018,6:14291.
[57]
Li Y L, Wang J J, Li X F, Geng D S, Li R Y, Sun X L . Chem. Commun., 2011,47:9438.
[58]
Leng L M, Li J, Zeng X Y, Song H Y, Shu T, Wang H S, Liao S J . J. Power Sources, 2017,337:173.
[59]
Leng L M, Zeng X Y, Song H Y, Shu T, Wang H S, Liao S J . J. Mater. Chem. A, 2015,3:15626.
[60]
Zeng X Y, Leng L M, Liu F F, Wang G H, Dong Y Y, Du L, Liu L N, Liao S J . Electrochim. Acta, 2016,200:231.
[61]
El-Kady M F, Shao Y, Kaner R B , Nat. Rev. Mater., 2016,1:16033.
[62]
Kim D, Kim M, Kim D W, Suk J, Park O, Kang Y . Carbon, 2015,93:625.
[63]
Kim D Y, Kim M, Kim D W, Suk J, Park J J, Park O, Kang Y . Carbon, 2016,100:265.
[64]
Balaish M, Ein E Y . J. Power Sources, 2018,379:219.
[65]
Ma S C, Wu Y, Wang J W, Zhang Y, Zhang Y, Yan X X, Wei Y, Liu P, Wang J P, Jiang K L, Fan S S, Xu Y, Peng Z Q . Nano Lett., 2015,15:8084.
[66]
Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao S Z . Angew. Chem., Int. Ed., 2013,25:3192.
[67]
Ottakam Thotiyl M M, Freunberger S A, Peng Z Q, Bruce P G . J. Am. Chem. Soc., 2013,135:494.
[68]
Lee Y J, Park S H, Kim S H, Ko Y, Kang K, Lee Y J . ACS Catal., 2018,8:2923.
[69]
Yin Y B, Xu J J, Liu Q C, Zhang X B . Adv. Mater., 2016,34:7494.
[70]
Zhang X, Wang C Y, Chen Y N, Wang X G, Xie Z J, Zhou Z . J. Power Sources, 2018,377:136.
[71]
Gong K P, Du F, Xia Z H, Durstock M, Dai L M . Science, 2009,323:760.
[72]
Dai L M, Xue Y H, Qu L T, Choi H J, Baek J B . Chem. Rev., 2015,115:4823.
[73]
Han J H, Guo X W, Ito Y, Liu P, Hojo D, Aida T, Hirata A, Fujita T, Adschiri T, Zhou H S, Chen M W . Adv. Energy Mater., 2016,6:1501870.
[74]
Crespiera S M, Amantia D, Knipping E, Aucher C, Aubouy L, Amici J, Zeng J, Francia C, Bodoardo S . RSC Adv., 2016,6:57335.
[75]
Xu J J, Xu D, Wang Z L, Wang H G, Zhang L L, Zhang X B . Angew. Chem., Int. Ed., 2013,14:3887.
[76]
Wang G H, Li J, Liu M R, Du L, Liao S J . ACS Appl. Mater. Interfaces, 2018,10:32133.
[77]
Xu J J, Wang Z L, Xu D, Meng F Z, Zhang X B . Energy Environ. Sci., 2014,7:2213.
[78]
Kim G P, Lim D, Park I, Park H, Shim S E, Baeck S H . J. Power Sources, 2016,324:687.
[79]
Luo C S, Sun H, Jiang Z L, Guo H L, Gao M Y, Wei M H, Jiang Z M, Zhou H J, Sun S G . Electrochim. Acta, 2018,282:56.
[80]
Zou L, Jiang Y X, Cheng J F, Chen Y, Chi B, Pu J, Jian L . Electrochim. Acta, 2018,262:97.
[81]
Lai Y Q, Chen W, Zhang Z, Qu Y H, Gan Y Q, Li J . Electrochim. Acta, 2016,191:733.
[82]
Liu T, Zhang X H, Huang T, Yu A S . Nanoscale, 2018,10:15763.
[83]
Jung J W, Choi D W, Lee C K, Yoon K R, Yu S, Cheong J Y, Kim C, Cho S, Park J S, Park Y J, Kim D . Nano Energy, 2018,46:193.
[84]
Shui J L, Du F, Xue C M, Li Q, Dai L M . ACS Nano, 2014,8:015.
[85]
Yang X Y, Xu J J, Chang Z W, Bao D, Yin Y B, Liu T, Yan J M, Liu D P, Zhang Y, Zhang X B . Adv. Energy Mater., 2018,12:1702242.
[86]
Liu J L, Zhu D D, Zheng Y, Vasileff A, Qiao S Z . ACS Catal., 2018,8:6707.
[87]
Asadi M, Sayahpour B, Abbasi P, Ngo A T, Karis K, Jokisaari J R, Liu C, Narayanan B, Gerard M, Yasaei P, Hu X, Mukherjee A, Lau K C, Assary R S, Khalili-Araghi F, Klie R F, Curtiss L A, Salehi-Khojin A . Nature, 2018,555:502.
[1] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[2] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[3] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[4] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[5] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[6] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[7] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[8] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[9] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[10] 蒋志敏, 王莉, 沈旻, 陈慧闯, 马国强, 何向明. 锂离子电池正极界面修饰用电解液添加剂[J]. 化学进展, 2019, 31(5): 699-713.
[11] 赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019, 31(4): 613-630.
[12] 常增花, 王建涛, 武兆辉, 赵金玲, 卢世刚. 高浓度锂盐电解液[J]. 化学进展, 2018, 30(12): 1960-1974.
[13] 李亚琦, 左朋建*, 李睿楠, 马玉林, 尹鸽平*. 镁硫二次电池电解液[J]. 化学进展, 2017, 29(5): 553-562.
[14] 马国强, 王莉, 张建君, 陈慧闯, 何向明, 丁元胜. 含有氟代溶剂或含氟添加剂的锂离子电解液[J]. 化学进展, 2016, 28(9): 1299-1312.
[15] 张贺, 张驰, 宋晔. 阳极氧化钛纳米管阵列膜可控制备[J]. 化学进展, 2016, 28(6): 773-783.
阅读次数
全文


摘要

非水系锂空气电池碳基正极材料