English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1542-1554 DOI: 10.7536/PC150430 前一篇   后一篇

• 综述与评论 •

石墨烯基气凝胶催化还原特性及其应用

陈晓燕1, 孙怡然1, 于飞1,2, 陈君红1, 马杰1*   

  1. 1. 同济大学 污染控制与资源化研究国家重点实验室 上海 200092;
    2. 上海应用技术学院 化学与环境工程学院 上海 201418
  • 收稿日期:2015-04-01 修回日期:2015-07-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 马杰 E-mail:jma@tongji.edu.cn

The Catalytic Properties for Reduction of Graphene-Based Aerogels and Their Applications

Chen Xiaoyan1, Sun Yiran1, Yu Fei1,2, Chen Junhong1, Ma Jie1*   

  1. 1. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092;
    2. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • Received:2015-04-01 Revised:2015-07-01 Online:2015-11-15 Published:2015-09-18
石墨烯基气凝胶(GA)是一种内部连通的三维石墨烯宏观体,其在继承了石墨烯良好的化学稳定性和优良催化性能的同时拥有更高的比表面积和导电性。GA由于其优越的性能和独特的结构在催化、能量存储、吸附等领域得到广泛的应用。本文主要从GA催化还原特性展开,综述了具有不同催化性能的石墨烯基气凝胶的制备方法,将其总结归纳分为GA、掺杂型GA、复合型GA以及掺杂复合型GA四种类型,并详细介绍了制备方法对石墨烯基气凝胶催化性能的影响。石墨烯基气凝胶因具有优良的电化学活性和催化特性,在燃料电池、染料敏化太阳能电池、微生物电解池和电化学传感器等领域具有广泛的应用前景。最后对石墨烯基气凝胶在催化领域的应用前景进行分析和展望。
Graphene-based aerogels(GA) are three-dimensional macrostructures of graphene with interconnected networks. While inheriting the excellent chemical stability and catalytic performance of graphene, GA exhibits higher specific surface area and excellent conductivity comparing to two-dimensional structure. Because of the superior properties and unique structure, GA are widely applied in catalysis, energy storage and adsorption. This review is expanded around the catalytic reduction performance of GA. Firstly, the preparation methods of GA with different catalytic properties are reviewed, which are classified into four types as graphene aerogels, doped GA, GA composite and doped GA composite. Then the influence on catalytic performance of GA prepared with different methods is introduced in detail. The admirable electrochemical and catalytic performance of GA indicates wide application prospects in fuel cells, dye-sensitized solar cells, microbial electrolysis cells and electrochemical sensors. Finally, the catalysis applications of GA are analysed and outlooked.

Contents
1 Introduction
2 GA and its catalytic properties
3 Synthesis and modification of catalytical active GA
3.1 Preparation of pure GA
3.2 Preparation of doped GA
3.3 Preparation of GA composite
3.4 Preparation of doped GA composite
4 Applications of GA in reduction catalyst
4.1 Applications in positive electrode of fuel cells
4.2 Applications in counter electrode of dye-sensitized solar cells
4.3 Applications in cathode of microbial electrolysis cells
4.4 Applications in hydrogen peroxide electro-chemical sensors
5 Conclusion and outlook

中图分类号: 

()
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306:666.
[2] Geim A K, Novoselov K S. Nature Materials, 2007, 6:183.
[3] Huang X, Zeng Z, Fan Z, Liu J, Zhang H. Advanced Materials, 2012, 24:5979.
[4] Chao D, Zhu C, Xia X, Liu J, Zhang X, Wang J, Liang P, Lin J, Zhang H, Shen Z X. Nano Letters, 2014, 15:565.
[5] Wang X, Shi G. Energy & Environmental Science, 2015, 8:790.
[6] Wu Z S, Sun Y, Tan Y Z, Yang S, Feng X, Müllen K. Journal of the American Chemical Society, 2012, 134:19532.
[7] Kistler S. Journal of Physical Chemistry, 1932, 36:52.
[8] Ebelmen J. Annale de Chimie et de Physique, 1846, 16:129.
[9] Geffcken W. Kolloid-Zeitschrift, 1939, 86:55.
[10] Dislich H. Angewandte Chemie International Edition in English, 1971, 10:363.
[11] Yoldas B E. Journal of Materials Science, 1975, 10:1856.
[12] Ramsey D E, Davis R F. American Ceramic Society Bulletin, 1975, 54:312.
[13] Tewari P H, Hunt A J, Lofftus K D. Materials Letters, 1985, 3:363.
[14] Jones S M, Sakamoto J. Applications of Aerogels in Apace Exploration, in Aerogels Handbook. Springer, 2011. 721.
[15] Li C, Shi G. Advanced Materials, 2014, 26:3992.
[16] Li C, Shi G. Nanoscale, 2012, 4:5549.
[17] Biener J, Stadermann M, Suss M, Worsley M A, Biener M M, Rose K A, Baumann T F. Energy & Environmental Science, 2011, 4:656.
[18] Kavan L, Yum J H, Grätzel M. ACS Nano, 2010, 5:165.
[19] Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud'homme R K, Car R, Saville D A, Aksay I A. Journal of Physical Chemistry B, 2006, 110:8535.
[20] Fan X, Zheng W T, Kuo J L. ACS Applied Materials & Interfaces, 2012, 4:2432.
[21] Zhao Y, Kim Y H, Dillon A C, Heben M J, Zhang S B. Physical Review Letters, 2005, 94:155504.
[22] Yoon M, Yang S, Wang E, Zhang Z. Nano Letters, 2007, 7:2578.
[23] Hu X, Wu Y, Li H, Zhang Z. Journal of Physical Chemistry C, 2010, 114:9603.
[24] Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A. Science, 2004, 306:666.
[25] Sun H, Xu Z, Gao C. Advanced Materials, 2013, 25:2554.
[26] Kepic D, Markovic Z, Nikolic M, Dramicanin M, Cincovic M M, Markovic B T, Holclajtnerantunovic I. Journal of Optoelectronics & Advanced Materials, 2012, 14:95.
[27] Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B. J.Mater.Chem., 2011, 18:6494.
[28] Berger C, Song Z, Li T, Li X, Ogbazghi A Y, Feng R, Dai Z, Marchenkov A N, Conrad E H, First P N. Journal of Physical Chemistry B, 2004, 108:19912.
[29] Srivastava S K, Vankar V D, Kumar V. Nanoscale Research Letters, 2008, 3:25.
[30] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45:1558.
[31] Xia X, Chao D, Zhang Y, Shen Z, Fan H. Nano Today, 2014, 9:785.
[32] Li Y, Chen J, Huang L, Li C, Hong J D, Shi G. Advanced Materials, 2014, 26:4789
[33] Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H M. Nature Materials, 2011, 10:424.
[34] Min B H, Kim D W, Kim K H, Choi H O, Jang S W, Jung H T, Min B H, Kim D W, Kim K H, Choi H O. Carbon, 2014:446.
[35] Yong Y C, Dong X C, Chan-Park M B, Song H, Chen P. ACS Nano, 2012, 6:2394.
[36] Batzill M. Surface Science Reports, 2012, 67:83.
[37] Pettes M T, Ji H, Ruoff R S, Li S. Nano Letters, 2012, 12:2959.
[38] Choi B G, Yang M H, Hong W H, Choi J W, Yun S H. ACS Nano, 2012, 6:4020.
[39] Vickery J L, Patil A J, Mann S. Advanced Materials, 2009, 21:2180.
[40] Estevez L, Kelarakis A, Gong Q, Da'As E H, Giannelis E P. Journal of the American Chemical Society, 2011, 133:6122.
[41] Bai H, Li C, Wang X, Shi G. Chemical Communications, 2010, 14:2376.
[42] Tang Z, Shen S, Zhuang J, Wang X. Angewandte Chemie International Edition, 2010, 49:4707.
[43] Zu S Z and Han B H. Journal of Physical Chemistry C, 2009, 113:13651.
[44] Yin S, Goldovsky Y, Herzberg M, Liu L, Sun H, Zhang Y, Meng F, Cao X, Sun D D, Chen H. Advanced Functional Materials, 2013, 23:2972.
[45] Yang X, Zhu J, Qiu L, Li D. Advanced Materials, 2011, 23:2833.
[46] Zhang L L, Zhao X, Stoller M D, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff R S. Nano Letters, 2012, 12:1806.
[47] Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M. Science, 2011, 332:1537.
[48] Hummers Jr W S, Offeman R E. Journal of the American Chemical Society, 1958, 80:1339.
[49] Xu Y, Lu Z, Hua B, Hong W, Li C, Shi G. Journal of the American Chemical Society, 2009, 131:13490.
[50] Xu Y, Sheng K, Li C, Shi G. ACS Nano, 2010, 4:4324.
[51] Xu Y, Bai H, Lu G, Li C, Shi G. Journal of the American Chemical Society, 2008, 130:5856.
[52] Hong W, Xu Y, Li C, Lu G, Shi G. Electrochemistry Communications, 2008, 10:1555.
[53] Wu X, Zhou J, Xing W, Wang G, Cui H, Zhuo S, Xue Q, Yan Z, Qiao S Z. Journal of Materials Chemistry, 2012, 22:23186.
[54] Cheng W Y, Wang C C, Lu S Y. Carbon, 2013, 54:291.
[55] Chen W, Yan L. Nanoscale, 2011, 3:3132.
[56] Jeon K J, Lee Z, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J. ACS Nano, 2011, 5:1042.
[57] ZHU Z F, CHENG S, DONG X N. Journal of Functional Materials, 2013, 21:002.
[58] Kong X K, Chen Q W, Lun Z Y. Journal of Materials Chemistry A, 2014, 2:610.
[59] Zhang C, Mahmood N, Yin H, Liu F, Hou Y. Advanced Materials, 2013, 25:4932.
[60] Choi C H, Chung M W, Kwon H C, Park S H, Woo S I. Journal of Materials Chemistry A, 2013, 1:3694.
[61] Liu H, Liu Y, Zhu D. Journal of Materials Chemistry, 2011, 21:3335.
[62] Choi C H, Chung M W, Kwon H C, Park S H, Woo S I. Journal of Materials Chemistry A, 2013, 1:3694.
[63] Zhou X, Bai Z, Wu M, Qiao J, Chen Z. Journal of Materials Chemistry A, 2015, 3:3343.
[64] Wang M, Wang J, Hou Y, Shi D, Wexler D, Poynton S D, Slade R C T, Zhang W, Liu H, Chen J. ACS Applied Materials & Interfaces, 2015, 7:7066.
[65] Yang S, Zhi L, Tang K, Feng X, Maier J, Müllen K. Advanced Functional Materials, 2012, 22:3634.
[66] Ahn H J, Kim I H, Yoon J C, Kim S I, Jang J H. Chemical Communications, 2014, 50:2412.
[67] Su Y, Zhang Y, Zhuang X, Li S, Wu D, Zhang F, Feng X. Carbon, 2013, 62:296.
[68] Wu Z S, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Müllen K. Advanced Materials, 2012, 24:5130.
[69] Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W. Nano Letters, 2011, 11:2472.
[70] Wu Z S, Ren W, Xu L, Li F, Cheng H M. ACS Nano, 2011, 5:5463.
[71] Wang S, Iyyamperumal E, Roy A, Xue Y, Yu D, Dai L. Angewandte Chemie International Edition, 2011, 50:11960.
[72] Qiu Y. Physical Chemistry Chemical Physics, 2011, 13:12554.
[73] Tang G, Jiang Z G, Li X, Zhang H B, Dasari A, Yu Z Z. Carbon, 2014, 77:592.
[74] Zhang J, Cao Y, Feng J, Wu P. Journal of Physical Chemistry C, 2012, 116:8063.
[75] Jiang X, Yang X, Zhu Y, Shen J, Fan K, Li C. Journal of Power Sources, 2013, 237:178.
[76] Tang H, Sui Y, Zhu X, Bao Z. Nanoscale Research Letters, 2015, 10:260.
[77] Chen L, Wang X, Zhang X, Zhang H. Journal of Materials Chemistry, 2012, 22:22090.
[78] Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F. Advanced Materials, 2010, 22:3723.
[79] Ma Y, Sun L, Huang W, Zhang L, Zhao J, Fan Q, Huang W. Journal of Physical Chemistry C, 2011, 115:24592.
[80] Zhang D, Wen X, Shi L, Yan T, Zhang J. Nanoscale, 2012, 4:5440.
[81] Fan W, Miao Y E, Huang Y, Tjiu W W, Liu T. RSC Advances, 2015, 5:9228.
[82] Ma J, Li C, Yu F, Chen J. ChemSusChem, 2014, 7:3304.
[83] Tan C, Cao J, Khattak A M, Cai F, Jiang B, Yang G, Hu S. Journal of Power Sources, 2014, 270:28.
[84] Yin H, Zhang C, Liu F, Hou Y. Advanced Functional Materials, 2014, 24:2930.
[85] Hou Y, Zhang B, Wen Z, Cui S, Guo X, He Z, Chen J. Journal of Materials Chemistry A, 2014, 2:13795.
[86] Wei H, Xu M W, Bao S J, Yang F, Chai H. RSC Advances, 2014, 4:16979.
[87] Cao Z, Zou Y, Xiang C, Sun L X, Xu F. Analytical Letters, 2007, 40:2116.
[88] Ohnuki H, Saiki T, Kusakari A, Endo H, Ichihara M, Izumi M. Langmuir, 2007, 23:4675.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[4] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[5] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[8] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[11] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[12] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[13] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[14] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[15] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.