English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1714-1721 DOI: 10.7536/PC150634 前一篇   后一篇

• 综述与评论 •

超轻材料

高燕, 周永风, 杨青林*, 郭林, 江雷   

  1. 仿生智能界面科学与技术教育部重点实验室 仿生能源材料与器件北京市重点实验室 北京航空航天大学 化学与环境学院 北京 100191
  • 收稿日期:2015-06-01 修回日期:2015-07-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 杨青林 E-mail:yangql@buaa.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51372010)和国家重点基础研究发展计划(973)项目(No.2010CB934700)资助

Ultralight Materials

Gao Yan, Zhou Yongfeng, Yang Qinglin*, Guo Lin, Jiang Lei   

  1. Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang University, Beijing 100191, China
  • Received:2015-06-01 Revised:2015-07-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51372010) and the National Basic Research Program of China (973)(No. 2010CB934700).
超轻材料是一类密度小于10 mg/cm3的新型材料,具有良好的比强度和比刚度,是优异的物理化学性质和结构性能的统一体。随着人们对超轻材料强大性能的认识,国内外许多课题组都相继开展了对超轻材料的研究,并取得了一系列的成果。现有的超轻材料已经涵盖了硅系、金属及其氧化物、陶瓷、高分子聚合物、新型碳材料及其复合物等各类成分。超轻材料具有声吸收、能量吸收、减震缓冲、热绝缘等性能,在航空航天领域具有重要作用。超轻材料的性能主要取决于它的结构和组成材料的固体成分的性能,比如材料中孔隙的分布以及固体本身的硬度及强度都对性能有着重要的影响。本文根据材料结构的不同,将超轻材料分为气凝胶、泡沫材料、微点阵材料三类。本文对近年来超轻材料的材质及制备方法进行了简要的综述,并通过对各种材料的比较就该领域未来的发展进行了展望。
Ultralight materials are a kind of novel materials whose densities are less than 10 mg/cm3. These materials exhibit excellent physical properties, chemical properties and mechanical properties derived from both constituent and structure, which possess high specific strength and specific stiffness. With the excellent properties of ultralight materials, great effort has been devoted to studying ultralight materials. The components of the existed ultralight materials mainly include silica, metal and oxidizing materials, ceramic, polymers, carbon and compounds. Ultralight materials play an important role in the field of aerospace, due to their unique properties such as acoustic absorption, energy absorption, shock absorption and thermal insulation. The effective properties of ultralight materials are defined both by their cellular architecture and the properties of the solid, such as the spatial configuration of voids and solids, the stiffness and strength of solids. They all have significant influence on the properties of materials. In this review, ultralight materials are classified into three types by different structures: aerogel, foam and microlattice. Also, the fabrication methods and constituent of the ultralight materials created in recent work are summarized. In addition, The research prospects and directions of ultralight materials in the future are also briefly discussed by comparison of all kinds of materials.

Contents
1 Introduction
2 Aerogel
2.1 Silica aerogel
2.2 Carbon aerogel
3 Foam
3.1 Metal foam
3.2 Carbon foam
3.3 Polymer foam
4 Microlattice
4.1 Metal microlattice
4.2 Carbon microlattice
4.3 Ceramic microlattie
5 Conclusion

中图分类号: 

()
[1] Schaedler T A, Jacobsen A J, Torrents A, Sorensen A E, Lian J, Greer J R, Valdevit L, Carter W B. Science, 2011, 334: 962.
[2] Dorcheh A S, Abbasi M H. J. Mater. Proc. Technol., 2008, 199: 10.
[3] Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Adv. Mater., 2013, 169: 20.
[4] Deshpande V S, Fleck N A, Ashby M F. J. Mech. Phys. Solids, 2001, 49: 1747.
[5] Evans A G, Hutchinson J W, Fleck N A, Ashby M F, Wadley H N G. Prog. Mater. Sci., 2001, 46: 309.
[6] Queheillalt D T, Wadley H N G. Acta Mater., 2005, 53: 303.
[7] Zou J H, Liu J H, Karakoti A S, Kumar A, Joung D, Li Q, Khondaker S I, Seal S, Zhai L. ACS Nano, 2010, 4: 7293.
[8] Tappan B C, Huynh M H, Hiskey M A, Chavez D E, Luther E P, Mang J T, Son S F. J. Am. Chem. Soc., 2006, 128: 6589.
[9] Fujii S, Ran A J, Armes S P. J. Am. Chem. Soc., 2006, 128: 7882.
[10] Yin J, Li X, Zhou J X, Guo W L. Nano Lett., 2013, 13: 3232.
[11] Kocon L, Despetis F, Phalippou J. J. Non-Cryst. Solids, 1998, 225: 96.
[12] Mecklenburg M, Schuchardt A, Mishra Y K, Kaps S, Adelung R, Lotnyk A, Kienle L, Schulte K. Adv. Mater., 2012, 24: 3486.
[13] Sun H Y, Xu Z, Gao C. Adv. Mater., 2013, 25: 2554.
[14] Li J H, Li J Y, Meng H, Xie S Y, Zhang B W, Li L F, Ma H J, Zhang J Y, Yu M. J. Mater. Chem. A, 2014, 2: 2934.
[15] Qian Y Q, Ismail I M, Stein A. Carbon, 2014, 68: 221.
[16] Jiang F, Hsieh Y L. J. Mater. Chem. A, 2014, 2: 350.
[17] Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M. Nat. Mater., 2014, 6: 424.
[18] Gui X C, Wei J Q, Wang K L, Cao A Y, Zhu H W, Jia Y, Shu Q K, Wu D H. Adv. Mater., 2010, 22: 617.
[19] 张林(Zhang L), 罗炫(Luo X), 杜凯(Du K). 材料导报(Materials Review), 2002, 16(6): 48.
[20] Elliontt N E, Mitchell M A. Nucl. Instrum. Methods Phys. Res., Sect. A, 1995, 362: 112.
[21] Wang X L, Guo Q Q, Cai X B, Zhou S L, Kobe B,Yang J. ACS Appl. Mater. Inter., 2014, 6: 2583.
[22] Meza L R, Das S, Greer J R. Science, 2014, 345: 1322.
[23] Zheng X Y, Lee H, Weisgraber T H, Shusteff M, DeOtte J, Duoss E B, KuntzJ D, Biener M M, Ge Q, Jackson J A, Kucheyev S O, Fang N X, Spadaccini C M. Science, 2014, 344: 1373.
[24] Jacobsen A J, Mahoney S, Carter W B, Nutt S. Carbon, 2011, 49: 1025.
[25] 同小刚(Tong X G), 王芬(Wang F), 冯海涛(Feng H T), 安世武(An S W). 材料导报(Materials Review), 2006, 5(20): 24.
[26] 陈晓红(Chen X H), 胡子君(Hu Z J), 宋怀河(Song H H), 王非(Wang F). 宇航材料工艺(Aerospace Materials & Technology), 2010, 6: 10.
[27] Kistler S S. Nature, 1931, 127: 741.
[28] Hegde N D, Rao A V. Appl. Surf. Sci., 2006, 253: 1566
[29] Vollet D R, de Sousa W A T, Donatti D A, Ruiz A I. J. Non-Cryst. Solids, 2007, 353: 143.
[30] 郑文芝(Zheng W Z). 华南理工大学博士论文(Doctoral Dissertation of South China University of Technology), 2010.
[31] Xu Z, Sun H Y, Gao C. APL Mater., 2013, 1: 030901.
[32] Wei Y Y, Li X, Xu Z, Sun H Y, Zheng Y C, Peng L, Liu Z, Gao C, Gao M X. Polym. Chem., 2015, 6: 973.
[33] Peng L, Zheng Y C, Li J C, Jin Y, Gao C. ACS Catal., 2015, 5: 3387.
[34] Bellunatoa T, Braemb A. Nucl. Instrum. Methods Phys. Res. Sect. A, 2003, 502: 227.
[35] Tillotson T M, Hrubesh L W. J. Cryst. Solids, 1992, 145: 44.
[36] Ejima H, Iwata T, Yoshie N. Macromol., 2008, 41: 9846.
[37] Zhang X T, Liu J R, Xu B, Su Y F, Luo Y J. Carbon, 2011, 49: 1884.
[38] Gutierrez M C, Carriazo D, Tamayo A, Jimenez R, Pico F, Rojo J M, Ferrer M L, del Monte F. Chem. Eur. J., 2011, 17: 10533.
[39] Xu Y X, Sheng K X, Li C, Shi G Q. ACS Nano, 2010, 4: 4324.
[40] Sui Z Y, Meng Q H, Zhang X T, Ma R, Cao B. J. Mater. Chem., 2012, 22: 8767.
[41] Wu Z Y, Li C, Liang H W, Chen J F, Yu S H. Angew. Chem. Int. Ed., 2013, 52: 2925.
[42] Wang B, Ma L, Sun Y G, Du S Y. Mater. Des., 2010, 31: 2659.
[43] Zhang K B, Tan X L, Zhang J C, Wu W D, Tang Y J. RSC Adv., 2014, 4: 7196.
[44] 陈祥(Chen X), 李延祥(Li Y X), 材料导报(Materials Review), 2003, 5(17): 5.
[45] Banhart J. Prog. Mater. Sci., 2001, 46: 559.
[46] Wu L Q, Li W W, Li P, Liao S T, Qiu S Q, Chen M L, Guo Y F, Li Q, Zhu C, Liu L W. Small, 2014,10: 1421.
[47] Dong X C, Ma Y W, Zhu G Y, Huang Y X, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P. J. Mater. Chem., 2012, 22: 17044.
[48] Dong X C, Wang X W, Wang L H, Song H, Zhang H, Huang W, Chen P. ACS Appl. Mater. Interfaces, 2012, 4: 3129.
[49] Singhal P, Rodriguez J N, Small W, Eagleston S, Vande Water J, Maitland D J, Wilson T S. J. Polym. Sci., Part B: Polym. Phys., 2012, 50: 724.
[50] Shastri V P, Martin I, Langer R. PNAS, 2000, 197(5):1970
[51] Xiong J, Mines R, Ghosh R, Vaziri A, Ma L, Ohrndorf A, Christ H J, Wu L Z. Adv. Eng. Mater., 2015, 17: 1253.
[52] Maloney K J, Roper C S, Jacobsen A J, Carter W B, Valdevit L, Schaedler T A. APL Mater., 2013, 1: 1.
[53] Lian J, Jang D C, Valdevit L, Schaedler T A, Jacobsen A J, Carter W B, Greer J R. Nano Lett., 2011, 11: 4118.
[54] Bauer J, Hengsbach S, Tesari I, Schwaiger R, Kraft O. PNAS, 2014, 111: 2453.
[55] Meza L R, Greer J R. J. M. Sci., 2014, 49: 2496.
[56] Cheung K C, Gershenfeld N. Science, 2013, 341: 1219.
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[6] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[7] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[8] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[9] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[10] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[13] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[14] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[15] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
阅读次数
全文


摘要

超轻材料