English
新闻公告
More
化学进展 2013, Vol. 25 Issue (0203): 270-275 DOI: 10.7536/PC120614 前一篇   后一篇

• 综述与评论 •

基于碳纳米材料载体的氢气传感器

向翠丽1, 邹勇进1, 邱树君1, 褚海亮1, 孙立贤*1,2, 徐芬*1,3   

  1. 1. 广西信息材料重点实验室 桂林电子科技大学 桂林 541004;
    2. 中国科学院大连化学 物理研究所 大连 116023;
    3. 辽宁师范大学 化学化工学院 大连 116029
  • 收稿日期:2012-06-01 修回日期:2012-09-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 孙立贤, 徐芬 E-mail:lxsun@dicp.ac.cn;fenxu@dicp.ac.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2010CB631303)、国家自然科学基金项目( No.20833009、51071146,51071081, 21173111,51101145,51101144,51201041,51201042)、IUPAC项目(No.2008-006-3-100)、广西信息材料重点实验室基金项目(No.PF12003X)、广西科技厅创新团队项目(No.2012GXNSFGA060002)和桂林电子科技大学启动基金项目(No.UF11029Y)资助

Nanocarbon-Based Materials for Hydrogen Sensor

Xiang Cuili1, Zou Yongjin1, Qiu Shujun1, Chu Hailiang1, Sun Lixian*1,2, Xu Fen*1,3   

  1. 1. Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China;
    2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023;
    3. Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
  • Received:2012-06-01 Revised:2012-09-01 Online:2013-02-24 Published:2012-12-28

氢气作为高效洁净的二次能源备受关注,但由于氢气无色无味、易爆炸,因此在使用的过程中必须对环境中的氢气进行检查。这就决定了氢气传感器在现代工业、燃料电池及氢的贮存和分离等的氢检测方面有着重要的应用。开发灵敏度高、选择性和稳定性好的氢气传感器一直是传感器领域研究的重要方向。由于具有独特的物理化学性质、高的比表面积和优越的电子特性,碳纳米材料常作为氢气传感器的敏感材料的载体。碳纳米复合材料在吸附氢气之后,其电子性质会发生变化,利用这个性质可以实现对氢气的检测。本文就碳纳米材料与金属纳米粒子、金属氧化物、聚合物的复合材料的氢敏感材料进行了系统的分析,综述了近年来基于碳纳米材料的氢气传感器的研究进展,并对氢气传感器的应用前景和发展趋势进行了展望,指出了需要研究的科学问题。

Hydrogen is a clean and versatile energy source but it is hazardous and highly explosive in air atmosphere due to colorless and tasteless. Despite of these safety disadvantages, hydrogen provides the best route to a sustainable ideal fuel for future. Thus hydrogen sensor has important applications in modern industry, including fuel cell, hydrogen storage and separation,etc. Development of hydrogen sensor with high sensitivity, selectivity and stability has been an important topic in the field of sensor research. Carbon-based nanomaterials have unique physical and chemical properties, high surface area and excellent electronic properties, which are often used as sensitive materials for hydrogen sensor. Nanocarbon based materials show extreme sensitivity towards changes that stems from the susceptibility of their electronic structure to interacting hydrogen molecules. This chemical sensitivity has made them ideal candidates for incorporation into the design of hydrogen sensors. The performance of three nanocarbon based composites (nanocarbon-based materials/metal nanoparticles composite, nanocarbon-based materials/metal oxide composite, nanocarbon-based materials/polymer composite) is analyzed systematically in this paper. Characteristic performance parameters of these sensors, including measuring range, sensitivity, selectivity, response time and lifetime are reviewed and the latest technology developments are reported. In addition, the application prospect and future outlook of hydrogen sensor are addressed. The key issues needed to be solved are also discussed. Contents
1 Introduction
2 Nanocarbon-based hydrogen sensor
2.1 Nanocarbon-based materials/metal nanoparticles composite
2.2 Nanocarbon-based materials/metal oxide composite
2.3 Nanocarbon-based materials/polymer composite
3 Conclusion and outlook

中图分类号: 

()

[1] Kong J, Chapline M G, Dai H. Adv. Mater., 2001, 13: 1384-1386
[2] Kauffman D R, Star A. Angew. Chem. Int. Ed., 2008, 47: 6550-6570
[3] Kaniyoor A, Jafri R I, Arockiadoss T, Ramaprabhu S. Nanoscale, 2009, 1: 382-386
[4] Srivastava S, Kumar S, Singh V N, Singh M, Vijay Y K. Int. J. Hydrogen Energy, 2011, 36: 6343-6355
[5] Hang L S, Wang W D, Liang X Q, Chu W S, Song W G, Wang W, Wu Z Y. Nanoscale, 2011, 3: 2458-2460
[6] Rigby L J. US4399424, 1983
[7] 杨振(Yang Z),张敏(Zhang M),廖延彪(Liao Y B),田芊(Tian Q),黎启胜(Li Q S),张毅(Zhang Y),庄志(Zhuang Z),CN101451959,2009
[8] 欧阳柳章(Ouyang L Z),秦发祥(Qin F X),朱敏(Zhu M).CN101158662,2008
[9] 周理(Zhou L),孙艳(Sun Y),苏伟(Su W),化学进展(Progress in Chemistry),2005,17: 660-665
[10] Su P G, Shiu C C. Sens. Actuators B, 2011, 157: 275- 281
[11] Chu B H, Lo C F, Nicolosi J, Chang C Y, Chen V, Strupinskic W, Pearton S J, Ren F.Sens. Actuators B, 2011, 157: 500-503
[12] Zou J L, Zdyrko B, Luzinov I, Raston C L, Iyer K S. Chem. Commun., 2012, 1033-1035
[13] Zeng X Q, Wang Y L, Deng H, Latimer M L, Xiao Z L, Pearson J, Xu T, Wang H H, Welp U, Crabtree G W, Kwok W K. ACS Nano, 2011, 5: 7443-7452
[14] Noh J S, Lee J M, Lee W. Sensors, 2011, 11: 825-851
[15] Ghasempour R, Mortazavi S Z, Iraji A, Rahimi F. Int. J. Hydrogen Energy, 2010, 35: 4445-4449
[16] Sun Y, Wang H H. Adv. Mater., 2007, 19: 2818-2823
[17] Sun Y, Wang H H. Appl. Phy. Lett., 2007, 90: art. no. 213107
[18] Kumar M K, Reddy A L M, Ramaprabhu S. Sens. Actuators B, 2008, 130: 653-660
[19] La D D, Kim C K, Jun T S, Jung Y, Seong G H, Choo J, Kim Y S. Sens. Actuators B, 2011,155: 191-198
[20] Kumar R, Varandani D, Mehta B R, Singh V N, Wen Z, Feng X, Mullen K.Nanotechnol., 2011, 22: art. no. 275719
[21] Ju S, Lee J M, Jung Y, Lee E, Lee W, Kim S J. Sens. Actuators B, 2010, 146: 122-128
[22] Zilli D, Bonelli P R, Cukierman A L. Sens. Actuators B, 2011, 157: 169-176
[23] Ohara S, Hatakeyama Y, Umetsu M, Tan Z, Adschiri T. Adv. Powder Technol., 2011, 22: 559-565
[24] 孙立贤(Sun L X),邹勇进(Zou Y J),向翠丽(Xiang C L),徐芬(Xu F).CN101290310,2007
[25] 王敏(Wang M),冯颖(Feng Y). CN101216448, 2008
[26] 黄彦(Huang Y),李雪(Li X),范益群(Fan Y Q),徐南平(Xu N P).化学进展(Progress in Chemistry),2006,18: 230-238
[27] Sippel-Oakley J, Wang H T, Kang B S, Wu Z, Ren F, Rinzler A G, Pearton S J. Nanotechnol., 2005, 16: 2218-2221
[28] Sayago I, Terrado E, Lafuente E, Horrillo M C, Maser W K, Benito A M, Navarro R, Urriolabeitia E P, Martinez M T, Gutierrez J. Synth. Met., 2005, 148: 15-19
[29] Huang B R, Lin T C. Int. J. Hydrogen Energy, 2011, 36: 15919-15926
[30] Sadek A Z, Bansal V, McCulloch D G, Spizzirri P G, Latham K, Lau D W M, Hu Z, Kalantar-Zadeh K. Sens. Actuators B, 2011, 160: 1034-1042
[31] Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M. Nat. Mater., 2011, 10: 424-428
[32] Li N, Liu G, Zhen C, Li F, Zhang L L, Cheng H M. Adv. Funct. Mater., 2011, 21: 1717-1722
[33] Wan W B, Zhao Z B, Hu H, Zhou Q A, Fan Y R, Qiu J S. New Carbon Mater., 2011, 26: 16-20
[34] Kim D, Pikhitsa P V, Yang H, Choi M. Nanotechnol., 2011, 22: art. no. 485501
[35] Wu W, Liu Z, Jauregui L A, Yu Q, Pillai R, Cao H, Bao J, Chenc Y P, Pei S S. Sens. Actuators B, 2010, 150: 296-300
[36] Kaniyoor A, Ramaprabhu S. Carbon, 2011, 49: 227-236
[37] Johnson J L, Behnam A, Pearton S J, Ural A. Adv. Mater., 2010, 22: 4877-4880
[38] Lange U, Hirsch T, Mirsky V M, Wolfbeis O S. Electrochim. Acta, 2011, 56: 3707-3712
[39] Mao S, Cui S M, Yu K H, Wen Z H, Lu G H, Chen J H. Nanoscale, 2012, 4: 1275-1279
[40] Aroutiounian V. Int. J. Hydrogen Energy, 2007, 32: 1145-1158
[41] Barsan N, Weimar U. J. Electroceram., 2001, 7: 143-167
[42] Lin F C, Takao Y, Shimizu Y, Egashira M. J. Am. Ceram. Soc., 1995, 78: 2301-2306
[43] Tournier G, Pilolat C. Sens. Actuators B, 2005, 106: 553-562
[44] Fleischer M, Seth M, Kohl C D, Meixner M. Sens. Actuators B, 1996, 35/36: 297-303
[45] Lee A, Reedy B. Sens. Actuators B, 1999, 60: 35-42
[46] Han C H, Han S D, Singh I, Toupance T. Sens. Actuators B, 2005, 109: 264-269
[47] Kosacki I, Anderson H U. Sens. Actuators B, 1998, 48: 263-269
[48] Wongwiriyapan W, Okabayashi Y, Minami S, Itabashi K, Ueda T, Shimazaki R, Ito T, Our K, Hond S, Tabat H, Katayam M. Nanotechnol., 2011, 22: art. no. 055501
[49] Guo K, Jayatissa A H.Mater. Sci. Eng. C, 2008, 28: 1556-1559
[50] Luca L D, Donato A, Santangelo S, Faggio G, Messina G, Donato N, Neri G.Int. J. Hydrogen Energy, 2011, 37: 1151-1160
[51] Gong J, Sun J, Chen Q. Sens. Actuators B, 2008, 130: 829-835
[52] Santangelo S, Messina G, Faggio G, Donato A, DeLuca L, Donato N, Bonavita A, Neri G. J. Solid State Chem., 2010, 183: 2451-2455
[53] Zhu L F, She J C, Luo J Y, Deng S Z, Chen J, Ji X W, Xu N S.Sens. Actuators B, 2011, 153: 354-360
[54] Wongchoosuk C, Wisitsoraat A, Phokharatkul D, Tuantranont A. Kerdcharoen T. Sensors, 2010, 10: 7705-7715
[55] Yi J, Lee J M, Park W Il.Sens Actuators B, 2011,155: 264-269
[56] Huang H, Gong H, Chow C L, Guo J, White T J, Tse M S, Tan O K. Adv. Funct. Mater., 2011, 21: 2680-2686
[57] Li W, Hoa N D, Kim D.Sens. Actuators B, 2010, 149: 184-188
[58] Srivastava S, Sharma S S, Agrawal S, Kumar S, Singh M, Vijay Y K.Synth. Met., 2010, 160: 529-534
[59] Srivastava S, Sharma S S, Kumar S, Agrawal S, Singh M, Vijay Y K. Int. J. Hydrogen Energy, 2009, 34: 8444-845
[60] Sadek A Z, Wlodarski W, Kalantar-Zadeh K, Baker C, Kaner R B. Sens. Actuators B,2007, 139: 53-57

[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[3] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[4] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[5] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[6] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[7] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[8] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[9] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[10] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[11] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
[12] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[13] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[14] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[15] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.