English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

埃洛石纳米管的应用研究现状

马智*, 王金叶, 高祥, 丁彤, 秦永宁   

  1. 天津大学化工学院催化科学与工程系 天津 300072
  • 收稿日期:2011-06-01 修回日期:2011-09-01 出版日期:2012-03-24 发布日期:2011-11-25
  • 通讯作者: 马智 E-mail:mazhi@tju.edu.cn

Application of Halloysite Nanotubes

Ma Zhi*, Wang Jinye, Gao Xiang, Ding Tong, Qin Yongning   

  1. Department of Catalysis Science and Technology, College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2011-06-01 Revised:2011-09-01 Online:2012-03-24 Published:2011-11-25
埃洛石纳米管是一种新型的纳米材料,价廉易得且具有优异的性能,目前对它的研究是国际材料领域的前沿和热点,与碳纳米管相比它具有独特的结构特点和明显的资源优势。本篇综述回顾了埃洛石纳米管的应用研究进展,扼要介绍了埃洛石纳米管的化学组成及晶体结构。埃洛石纳米管的功能与其结构特点息息相关,文章以它对水、甲醇、乙醇等氢键流体的输运性能、对燃料气体的储存容纳、对药物大分子微胶囊包裹以及作为治理环境吸附剂等为例,浅谈它在物质吸附、储存、输运方面的应用;以它作为重油催化裂化的催化剂和酶及金属氧化物的催化剂载体为例,浅谈在催化方面的应用。最后,对高岭土资源的有效开发利用以及埃洛石纳米管应用研究领域的未来方向提出了一些设想。
Halloysite nano-particles have recently become the subject of research attention as a new type of material.Halloysite nanotubes (HNTs) are readily obtainable and are much cheaper than other nano-particles such as carbon nanotubes(CNTs). More importantly, the unique crystal structure of HNTs not only resembles that of CNTs in terms of aspect ratio,but also has a highly ordered structure with aluminol groups bound in the inner surface and silanol groups on the external surface. Consequently HNTs not only have potential as additive for enhancing the mechanical performance of polymers but also make them attractive candidates for a variety of potential applications, including molecular adsorption, molecular encapsulation, storage and transport, catalyst or catalyst support in chemical reactions.This review summarizes the extensive but scattered literature on halloysite nanotubes’ application, from its crystal structure, chemical and characteristic of morphological, to its adsorption, transport and catalysis reactivity, involving the various valuable prospects. Finally, the future trends and prospects in the development of application research of HNTs are highlighted. Contents
1 Introduction
2 Chemical composition and crystalline structure of halloysite nanotubes
3 Adsorption,storage and transport properties of HNTs
3.1 Transport properties of hydrogen-bonding liquids such as water, methanol and ethanol
3.2 Adsorption storage properties of fuel gas CH4, H2 on HNTs
3.3 HNTs as the support for drugs or bioactive molecules
3.4 HNTs as sorbents for contaminants and pollutants
4 HNTs used as catalyst or catalyst support
4.1 Acid catalyst
4.2 Enzymatic carrier
4.3 The support of the catalyst metal complexes
5 Some other properties of HNTs
6 Outlook

中图分类号: 

()
[1] Du M L, Guo B C, Jia D M. Society of Chemical Industry, 2010, 59: 574-582
[2] Dieckmann G R, Dalton A B, Johnson P A, Razal J, Chen J, Giordano G M, Munoz E, Musselman I H, Baughman R H, Draper R K. J. Am. Chem. Soc., 2003, 125: 1770-1777
[3] Shi Kam N W, O'Connell M, Wisdom J A, Dai H. Proc Natl. Acad. Sci. USA, 2005, 102: 11600-11605
[4] Kam N W, Liu Z, Dai H. J. Am. Chem. Soc., 2005, 127: 12492-12493
[5] Feazell R P, Nakayama-Ratchford N, Dai H, Lippard S J. J. Am. Chem. Soc., 2007, 129: 8438-8439
[6] De Heer W H. Curr. Opin. Solid State Mater. Sci., 1999, 4: 355-359
[7] Zhou W W, Han Z Y, Wang J Y, Zhang Y, Jin Z, Sun X, Zhang Y W, Yan C H, Li Y. Nano Lett., 2006, 6: 2987-2990
[8] Liu Z F, Jiao L Y, Yao Y G, Xian X J, Zhang J. Adv. Mater., 2010, 22: 2285-2310
[9] Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B. Clays Clay Miner., 2005, 40: 383-426
[10] Frost R L, Shurvell H F. Clays Clay Miner., 1997, 45: 68-72
[11] 杜明亮(Du M L). 华南理工大学博士论文(Doctoral Dissertation of South China University of Technology), 2007
[12] Klinke C, Bonard J M, Kern K. Phys. ReV. B., 2005, 71: art. no. 035403
[13] Robertson D H, Brenner D W, Mintmire J W. Phys. Rev. B, 1992, 45: 12592-12595
[14] Gardolinski J E, Martins Filho H P, Wypych F. Quim. Nova., 2003, 26: 30-35
[15] Joussein E, Petit S, Delvaux B. Appl. Clay Sci., 2007, 35: 17-24
[16] Theng B K G, Russell M, Churchman G J, Parfitt R L. Clays Clay Miner., 1982, 30: 143-149
[17] Berthier P. Ann. Chim. Phys., 1826, 32: 332-335
[18] Pauling L. Proc. Natl. Acad. Sci. USA, 1930, 16: 578-582
[19] Harris P J F. Carbon Nanotubes and Related Structures: Newmaterials for the 21st Century. Cambridge UK: Cambridge University Press, 1999
[20] Bates T F, Sand L B, Mink J F. Science, 1950, 111: 512-513
[21] Bates T F, Hildebrand F A, Swineford A. Am. Mineral., 1950, 35: 463-484
[22] Whittaker E J W. Acta Crystallogr., 1956, 9: 855-862
[23] Nakagaki S, Wypych F. J. Colloid Interf. Sci., 2007, 315: 142-157
[24] Hong H L, Mi J X. Mineral. Mag., 2006, 70: 257-264
[25] Perruchot A, Dupuis C, Brouard E, Nicaise D, Ertus R. Clays Clay Miner., 1997, 32: 271-287
[26] Churchman G J, Theng B K G. Appl. Clay Sci., 2002, 20: 153-156
[27] Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B. Clays Clay Miner., 2005, 40: 383-426
[28] Veerabadran N G, Price R R, Lvov Y M. Nano Lett., 2007, 2: 115-120
[29] Kautz C Q, Ryan P C. Clays Clay Miner., 2003, 51: 252-263
[30] Hillier S, Ryan P C. Clays Clay Miner., 2002, 37: 487-496
[31] Guimaraes L, Enyashin A N, Seifert G, Duarte H A. J. Phys. Chem. C, 2010, 114: 11358-11363
[32] Guimaraes L, Enyashin A N, Frenzel J, Heine T, Duarte H A, Seifert G. ACS Nano, 2007, 1: 362-368
[33] Kohler T, Frauenheim T, Hajnal Z, Seifert G. Phys. Rev. B: Condens. Matter., 2004, 69: art. no. 193403
[34] Piperno S, Kaplan-Ashiri I, Cohen S R, Popovitz-Biro R, Wagner H D, Tenne R, Foresti E, Lesci I G, Roveri N. Adv. Funct. Mater., 2007, 17: 3332-3338
[35] Rooj S, Das A, Thakur V, Mahaling R N, Bhowmick A K, Heinrich G. Mater. Des., 2010, 31: 2151-2156
[36] Guimaraes L, Enyashin A N, Seifert G, Duarte H A. 11th International Conference on Advanceed Materials. Rio de Janeiro Brazil. September 20-25, 2009
[37] Zhao M F, Liu P. Microporous Mesoporous Mater., 2008, 112: 419-424
[38] Liu R C, Zhang B, Mei D D, Zhang H Q, Liu J D. Desalination, 2011, 268: 111-116
[39] Wang J H, Zhang X, Zhang B, Zhao Y F, Liu J D, Chen R F. Desalination, 2010, 259: 22-28
[40] Lu X C, Chuan X Y, Wang A P, Kang F Y. Acta Geol. Sinica Engl. Ed., 2006, 80: 278-284
[41] Kilislioglu A, Bilgin B. Radiochim. Acta, 2002, 90: 155-160
[42] Chmielowiec-Korzeniowska A, Tymczyna L, Skórska C, Sitkowska J, Cholewa G, Dutkiewicz J. Ann. Agric. Environ. Med., 2007, 14: 141-150
[43] Tymczyna L, Chmielowiec-Korzeniowska A, Drabik A, Skorska C, Sitkowska J, Cholewa G, Dutkiewicz J. Ann. Agric. Environ. Med., 2007, 14: 151-157
[44] Levis S R, Deasy P B. Int. J. Pharm., 2003, 253: 145-157
[45] Byrne R S, Deasy P B. J. Microencapsulation, 2005, 22: 423-437
[46] Aguzzi C, Cerezo P, Viseras C, Caramella C. Appl. Clay Sci., 2007, 36: 22-36
[47] Viseras M T, Aguzzi C, Cerezo P, Viseras C, Valenzuela C. Microporous Mesoporous Mater., 2008, 108: 112-116
[48] Shchukin D G, Lamaka S V, Yasakau K A, Zheludkevich M L, Möhwald H, Ferreira M G S. J. Phys. Chem. C, 2008, 112: 958-964
[49] Shchukin D G, Mohwald H. Adv. Funct. Mater., 2007, 17: 1451-1458
[50] Neuber U, Bender H. Acrylate Sealants. Industrial Report, Germany, 2004
[51] Zhang Y. Antiwear Composite Lubricating Greases for Machinery Parts. Industrial Report, China, 2004
[52] Baskaran S, Bolan N S, Rahman A, Tillman R W. NZJ. Agric. Res., 1996, 39: 297-310
[53] Theng B K G. On Measuring the Specific Surface Area of Clays and Soils by Adsorption of Para-Nitrophenol: Use and Limitations, in Clays Control the Environment. Proceedings of the 10th International Clay Conference, Adelaide, 1993. 304-310
[54] Ha S N, Lee H C. Cosmetic Composition for Preventing the Skin Aging and Whitening the Skin, Containing Natural Mixture Having Plentiful Inorganic Substances Including Selenium. Industrial Report, Korea Research Institute of Chemical Technology, South Korea, 2003
[55] Maubru M, Restle S, Perron B. Cosmetic Compositions Comprising A Methacrylic Acid Copolymer, Insoluble Mineral Particles and A Cationic or Amphoteric polymer. Industrial report, L’Oreal, France, 2004
[56] Dujardin E, Ebbesen T W, Hiura H, Tanigaki K. Science, 1994, 265(5180): 1850-1852
[57] Lvov Y M, Shchukin D G, Mohwald H, Price R R. ACS Nano, 2008, 2: 814-820
[58] Lvov Y M, Price R R. Halloysite Nanotubules: A Novel Substrate for the Controlled Delivery of Bioactive Molecules, in Bio-Inorganic Hybrid Nanomaterials. Wiley, 2008. Chap. 14, 454
[59] Veerabadran N G, Price R R, Lvov Y M. Nano Lett., 2007, 2: 115-120
[60] Byrne R S, Deasy P B. J. Microencapsulation, 2005, 22: 423-437
[61] Smith A W. Adv. Drug Deliv. Rev., 2005, 57: 1539-1550
[62] Kelly H M, Deasy P B, Ziaka E, Claffey N. Int. J. Pharm., 2004, 274: 167-183
[63] Levis S R, Deasy P B. Int. J. Pharm., 2003, 253: 145-157
[64] Price R R, Gaber B P, Lvov Y M. J. Microencapsul., 2001, 18: 713-722
[65] Krejcova K, Rabiskova M. Chem. Listy, 2008, 102: 35-39
[66] Lvov Y M, Price R, Gaber B, Ichinose I. Colloids Surf. A, 2002, 198: 375-382
[67] Abdullayev E, Shchukin D, Lvov Y M. Polym. Mater. Sci. Eng., 2008, 99: 331-332
[68] Veerabadran N, Mongayt D, Torchilin V, Price R, Lvov Y M. Macromol. Rapid Commun., 2009, 24: 99-103
[69] Fix D, Andreeva D V, Lvov Y M, Shchukin D G, Möhwald H. Adv. Funct. Mater., 2009, 19: 1720-1727
[70] Zang J, Konduri S, Nair S, Sholl D S. ACS Nano, 2009, 3: 1548-1556
[71] Guimaraes L, Enyashin A N, Frenzel J, Heine T, Duarte H A, Seifert G. ACS Nano, 2007, 1: 362-368
[72] Liu Y C, Shen J W, Gubbins K E, Moore J D, Wu T, Wang Q. Phys. Rev. B, 2008, 77: art. no. 125438
[73] Mamontov E, Burnham C J, Chen S H, Moravsky A P, Loong C K, de Souza N R, Kolesnikov A I. J. Chem. Phys., 2006, 124: 194703-194706
[74] Won C Y, Joseph S, Aluru N R. J. Chem. Phys., 2006, 125: 114701-114709
[75] Striolo A. Nanotechnology, 2007, 18: 475704-475710
[76] Won C Y, Aluru N R. J. Am. Chem. Soc., 2007, 129: 2748-2749
[77] Paoli H, Methivier A, Jobic H, Krause C, Pfeifer H, Stallmach F, Karger J. Microporous Mesoporous Mater., 2002, 55: 147-158
[78] Konduri S, Tong H M, Chempath S, Nair S. J. Phys. Chem. C, 2008, 112: 15367-15374
[79] Konduri S, Mukherjee S, Nair S. ACS Nano, 2007, 1: 393-402
[80] Mukherjee S, Bartlow V M, Nair S. Chem. Mater., 2005, 17: 4900-4909
[81] 陈荣峰(Chen R F), 张冰(Zhang B), 曹艳霞(Cao Y X). CN 200710054559.2, 2007
[82] Ohashi F, Tomura S, Akaku K, Hayashi S, Wada S I. J. Mater. Sci., 2004, 39: 1799-1801
[83] Rong T J, Xiao J K. Mater. Lett., 2002, 57: 297-301
[84] Zatta L, de Costa Gardolinski J E F da C, Wypych F. Appl. Clay Sci., 2011, 51: 165-169
[85] Xiao Q G, Tao X, Chen J F. Ind. Eng. Chem. Res., 2009, 46: 459-463
[86] Martinez-Gallegos S, Bulbulian S. Clays Clay Miner., 2004, 52: 650-656
[87] Corma A, Fornes V, Rey F. Adv. Mater., 2002, 14: 71-74
[88] Tierrablanca E, Romero-García J, Roman P, Cruz-Silva R. Appl. Catal. A, 2010, 381: 267-273
[89] Shchukin D G, Sukhorukov G B, Price R R, Lvov Y M. Small, 2005, 1: 510-513
[90] Zhai R, Zhang B, Liu L, Xie Y D, Zhang H Q, Liu J D. Catal. Commun., 2010, 12: 259-263
[91] Machado G S, de Freitas Castro K A D, Wypych F, Nakagaki S. J. Mol. Catal. A, 2008, 283: 99-107
[92] Liu P, Zhao M F. Appl. Surf. Sci., 2009, 255: 3989-3993
[93] Nakagaki S, Machado G S, Halma M, Marangon A A S, Castro K A D F, Mattoso N, Wypych F. J. Catal., 2006, 242: 110-117
[94] Barrientos-Ramírez S, Ramos-Fernández E V, Silvestre-Albero J, Sepúlveda-Escribano A, Pastor-Blas M M, González-Montiel A. Microporous Mesoporous Mater., 2009, 120: 132-140
[95] Gualtieri A F. Phys. Chem. Miner., 2001, 28: 719-728
[96] Qiu J Y, Zhang C, Komeya K, Meguro T, Tatami T, Cheng Y B. J. Aust. Ceram. Soc., 2001, 37: 45-49
[97] Kutsuna S, Chen L, Nohara K, Takeuchi K, Ibusuki T. Environ. Sci. Technol., 2002, 36: 3118-3123
[98] Levis S R, Deasy P B. Int. J. Pharm., 2003, 253: 145-157
[99] Klimkiewicz R, Drag E B. J. Phys. Chem. Solids, 2004, 65: 459-464
[100] Lvov Y, Price R, Gaber B, Ichinose I. Colloids Surf. A, 2002, 198/200: 375-382
[101] White G V, Rumsey B. Key Eng. Mater., 2004, 264/268: 889-892
[102] Zhou J, Lu L, Li X. Process for Preparation of Catalytic Cracking Catalyst from Catalyst Powder. Industrial Report, China, 2004
[103] Novembre D, Di Sabatino B, Gimeno D. Clays Clay Miner., 2005, 53: 28-36
[104] Qiu Q, Hlavacek V, Prochazka S. Ind. Eng. Chem. Res., 2005, 44: 2469-2476
[105] Luca V, Thomson S. J. Mater. Chem., 2000, 10: 2121-2126
[106] Wang A P, Kang F Y, Huang Z H, Guo Z C. Clays Clay Miner., 2006, 54: 485-490
[107] Antill S J, Kepert C J. Aust. J. Chem., 2003, 56: 723-723
[108] Fu Y B, Zhang L D. J. Nanosci. Nanotechnol., 2005, 5: 1113-1119
[109] Fu Y B, Zhang L D, Zheng J Y. J. Nanosci. Nanotechnol., 2005, 5: 558-564
[110] Wang A P, Kang F Y, Huang Z H, Guo Z C, Chuan X Y. Microporous Mesoporous Mater., 2008, 108: 318-324
[111] Lvov Y M, Grozdits G A, Eadula S, Zheng Z G, Lu Z H. Nordic PulpPap. Res. J., 2006, 21: 552-557
[112] Lu Z H, Eadula S, Zheng Z G, Xu K, Grozdits G, Lvov Y M. Colloids Surf. A, 2007, 292: 56-62
[113] Liu G Y, Kang F Y, Li B H, Huang Z H, Chuan X Y. J. Phys. Chem. Solids, 2006, 67: 1186-1189
[114] Fu Y B, Zhang L D. J. Solid State Chem., 2005, 178: 3595-3600
[115] Fu Y B, Zhang L D, Zheng J Y. Trans. Nonferrous Metals. Soc., 2004, 14: 152-156
[116] Zhao Y F, Zhang B, Zhang X, Wang J H, Liu J D, Chen R F. J. Hazard. Mater., 2010, 178: 658-664
[117] Querol X, Moreno N, Umana J C, Alastuey A, Hernandez E, Lopez-Soler A, Plana F. Int. J. Coal Geol., 2002, 50: 413-423
[118] Saada M A, Soulard M, Patarin J, Regis R C. Microporous Mesoporous Mater., 2009, 122: 275-282
[119] Juan R, Hernandez S, Andres J M, Ruiz C. J. Hazard. Mater., 2009, 161: 781-786
[120] Wu D Y, Zhang B H, Li C J, Zhang Z J, Kong H N. J. Colloid Interface Sci., 2006, 304: 300-306
[121] Youssef H, Ibrahim D, Komarneni S. Microporous Mesoporous Mater., 2008, 115: 527-534
[122] Petkowicz D I, Rigo R T, Radtke C, Pergher S B, dos Santos J H Z. Microporous Mesoporous Mater., 2008, 116: 548-554
[123] Yang C, Liu P, Zhao Y Q. Electrochim. Acta, 2010, 55: 6857-6864
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[7] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[8] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[9] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[10] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[11] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[12] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[13] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[14] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[15] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
阅读次数
全文


摘要

埃洛石纳米管的应用研究现状