English
新闻公告
More
化学进展 2010, Vol. 22 Issue (01): 9-18 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池正极材料的晶体结构及电化学性能

于锋1,2;张敬杰1*;王昌胤3;袁静1,2;杨岩峰1;宋广智1   

  1. (1.中国科学院理化技术研究所 北京 100190;2.中国科学院研究生院 北京 100049;3.北京有色金属研究总院能源材料与技术研究所 北京 100088)
  • 收稿日期:2009-04-23 修回日期:2009-06-02 出版日期:2010-01-24 发布日期:2010-01-07
  • 通讯作者: 张敬杰 E-mail:jjzhang@mail.ipc.ac.cn;yufeng05@mail.ipc.ac.cn

Crystal Structure and Electrochemical Performance of Lithium Ion Battery Cathode Materials

Yu Feng1,2; Zhang Jingjie1*; Wang Changyin3; Yuan Jing1,2; Yang Yanfeng1; Song Guangzhi1   

  1. (1. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 2. Graduate School of the Chinese Academy of Sciences, Beijing 100049, China; 3. Energy Materials and Technology Research Institute, General Research Institute for Nonferrous Metals, Beijing 100088, China)
  • Received:2009-04-23 Revised:2009-06-02 Online:2010-01-24 Published:2010-01-07
  • Contact: Zhang Jingjie E-mail:jjzhang@mail.ipc.ac.cn;yufeng05@mail.ipc.ac.cn

正极材料是锂离子电池的重要组成部分。作为提供自由脱嵌锂离子的正极材料,其晶体结构的特点决定了锂离子脱嵌路径方式的不同,并对锂离子电池的电化学性能等产生明显影响。本文根据正极材料的晶体结构和锂离子“脱嵌/嵌入”路径方式的不同,重点讨论了一维隧道结构、二维层状结构和三维框架结构正极材料的晶体结构特点、锂离子“脱嵌/嵌入”路径和其电化学性能之间的关系,主要包括一维隧道结构正极材料LiFePO4,二维层状结构正极材料LiMO2(M=Co, Ni, Mn)、Li1+xV3O8和Li2MSiO4 (M=Fe, Mn) 以及三维框架结构正极材料LiMn2O4和Li3V2(PO4)3。揭示了目前锂离子电池正极材料的研究现状和存在问题,并对今后的发展方向进行了评述。

As the important building blocks of lithium ion battery, cathode materials provide all extracting/inserting Lithium ions. Electrochemical performance of lithium ion battery is affected by the different way of Lithium ion migration in crystal structure of cathode materials. In this paper, the relationship of crystal structure, lithium ion migration way and electrochemical performance are reviewed in detail in terms of crystal structure: one-, two- and three-dimension. These cathode materials are mainly olivine-structured LiFePO4,α-NaFeO2 layered LiMO2 (M=Co, Ni, Mn),monoclinic structured Li1+xV3O8,orthogonal structured Li2MSiO4 (M=Fe, Mn),spinel structured LiMn2O4 and nascion structured Li3V2(PO4)3. Moreover,we discuss the present situation and challenges that remain regarding the lithium ion battery, and highlight ongoing research strategies on cathode materials.

Contents
1 Introduction
2 Lithium ion battery cathode materials
3 One-dimension cathode materials
3.1 Olivine-structured phosphates LiFePO4
3.2 Electrochemical performance ameliorations
4 Two-dimension cathode materials
4.1 α-NaFeO2 layered LiMO2 (M=Co, Ni, Mn)
4.2 Monoclinic structured Li1+xV3O8
4.3 Orthogonal structured Li2MSiO4 (M=Fe, Mn, Co)
5 Three-dimension cathode materials
5.1 Spinel structured LiMn2O4
5.2 NASCION structured Li3V2(PO4)3
6 Conclusion

中图分类号: 

()

[ 1 ]  Tarascon J M, ArmandM. Nature, 2001, 414: 359—367
[ 2 ]  Whittingham M S. Chem. Rev. , 2004, 104: 4271—4302
[ 3 ]  TakahashiM, Tohishima S, Takei K, et al. Solid State Ionics,2002, 148: 283—289
[ 4 ]  Franger S, Cras F L, Bourbon C, et al. J. Power Sources,2003, 119 /121: 252—257
[ 5 ]  Patil A, Patil V, Shin D W, et al. Mater. Res. Bull. , 2008,43: 1913—1942
[ 6 ]  Liu H K, Wang G X, Guo Z P, et al. J. Nanosci. Nanotech. ,2006, 6: 1—15
[ 7 ]  Grey C P, Dup re N. Chem. Rev. , 2004, 104: 4493—4512
[ 8 ]  Manthiram A, Murugan A V, SarkarA, et al. Energy Environ.Sci. , 2008, 1: 621—638
[ 9 ]  李福燊(Li F S) . 非金属导电功能材料(Nonmetallic Conductive & FunctionalMaterials) . 北京: 化学工业出版社(Beijing:Chemical Industry Press) , 2000. 173—190
[ 10 ]  Padhi A K, Nanjundaswamy K S, Goodenough J B, et al. J.Electrochem. Soc. , 1997, 144: 1188—1194
[ 11 ]  Delmas C, Maccario M, Croguennec L, et al. Nat. Mater. ,2008, 7: 665 — 671
[ 12 ]  Yang S F, Zavalij P Y, Whittingham M S. Electrochem. Commun. , 2001, 3: 505—508
[ 13 ]  Andersson A S, Beata K, Lennart H, et al. Solid State Ionics,2000, 130: 41—52
[ 14 ]  Yang S F, Song YN, Ngala K, et al. J. Power Sources, 2003,119 /121: 239—246
[ 15 ]  Yamada A, Hosoya M, Chung S C, et al. J. Power Sources,2003, 119 /121: 232—238
[ 16 ]  Prosini P P, LisiM, Zane D, et al. Solid State Ionics, 2002,148: 45—51
[ 17 ]  Morgan D, van der Ven A, Ceder G. Electrochem. Solid-State Lett. , 2004, 7: A30—A32
[ 18 ]  Fisher C A J, Prieto V M H, IslamM S. Chem. Mater. , 2008,20: 5907—5915
[ 19 ]  Nishimura S, Kobayashi G, Ohoyama K, et al. Nat. Mater. ,2008, 7: 707—711
[ 20 ]  Chung S Y, Blocking J T, Chiang Y M, et al. Nat. Mater. ,2002, 1: 123—128
[ 21 ]  WagemakerM, Ellis B L, Dirk L H, et al. Chem. Mater. ,2008, 20: 6313—6315
[ 22 ]  Wang G X, Needham S, Yao J, et al. J. Power Sources, 2006,159: 282—286
[ 23 ]  王兆翔(Wang Z X) , 陈立泉(Chen L Q) . 电源技术(Chin.J. Power Sources) , 2008, 32: 287—292
[ 24 ]  Ohzuku T, Brodd R J. J. Power Sources, 2007, 174: 449—456
[ 25 ]  Prosini P P, Zane D, Pasquali M. Electrochem. Acta, 2001,46: 3517—3523
[ 26 ]  Wang Y G, Wang Y R, Hosono E, et al. Angew. Chem. Int.Ed. , 2008, 47: 7461—7465
[ 27 ]  Croce F, Ep ifanio A D, Hassoun J, et al. Electrochem. Solid-State Lett. , 2002, 5: A47—A50
[ 28 ]  Park K S, Son J T, Kim S J, et al. Solid State Commun. ,2004, 129: 311—314
[ 29 ]  Kang B, Ceder G. Nature, 2009, 458: 190—193
[ 30 ]  Murugan A V, Muraliganth T, Manthiram A. J. Phys. Chem.C, 2008, 112: 14665—14671
[ 31 ]  Ellis B, Herle P S, Rho Y H, et al. Faraday Discuss. , 2007,134: 119—141
[ 32 ]  Hu Y S, Guo Y G, Dominko R, et al. Adv. Mater. , 2007, 19:1963—1966
[ 33 ]  Dominko R, BeleM, Goup il J M, et al. Chem. Mater. , 2007,19: 2960—2969
[ 34 ]  Yu F, Zhang J J, Yang Y F, et al. J. Power Sources, 2009,189: 794—797
[ 35 ]  于锋(Yu F) , 张敬杰( Zhang J J) , 杨岩峰(Yang Y F) 等. 无机化学学报(Chin. J. Inorg. Chem. ) , 2009, 25: 42—47
[ 36 ]  Aurbach D, Markovsky B, Salitra G, et al. J. Power Sources,2007, 165: 491—499
[ 37 ]  Bazito F F C, Torresi R M. J. Brazil. Chem. Soc. , 2006, 17:627—642
[ 38 ]  Gu Y X, Chen D R, J iao X L. J. Phys. Chem. B, 2005, 109:17901—17906
[ 39 ]  Lee H, Chang S K, Goh E Y, et al. Chem. Mater. , 2008, 20:5—7
[ 40 ]  Sun Y K, Myung S T, Kim M H, et al. J. Am. Chem. Soc. ,2005, 127: 13411—13418
[ 41 ]  Ju S H, Kang Y C. Ceram. Int. , 2009, 35: 1633—1639
[ 42 ]  Kim M G, Cho J. Adv. Funct. Mater. , 2009, 19: 1—18
[ 43 ]  Pistoia G, PasqualiM, TocciM, et al. J. Electrochem. Soc. ,1985, 132: 281—284
[ 44 ]  WinterM, Besenhard J O, Spahr M E, et a1. Adv. Mater. ,1998, 10: 725—729
[ 45 ]  Yang G, Kong Y, HouW H, et al. J. Phys. Chem. B, 2005,109: 1371—1379
[ 46 ]  Kawakita J, Miura T, Kishi T. J. Power Sources, 1999, 83:79—83
[ 47 ]  Wang G J, Qu Q T, Wang B, et al. J. Power Sources, 2009,189: 503—506
[ 48 ]  Yu A, Kumagai N, Liu Z L, et al. J. Power Sources, 1998,74: 117—121
[ 49 ]  Liu YM, Zhou X C, Guo Y L. Mater. Chem. Phys. , 2009,114: 915—919
[ 50 ]  Zhou Y, Yue H F, Zhang X Y, et al. Solid State Ionics, 2008,179: 1763—1767
[ 51 ]  Xu H Y, Wang H, Song Z Q, et al. Electrochim. Acta, 2004,49: 349—353
[ 52 ]  Xu J Q, Zhang H L, Zhang T, et al. J. Alloys Compd. , 2009,467: 327—331
[ 53 ]  Arroyo-de Dompablo M E, Armand M, Tarascon J M, et al. Electrochem. Commun. , 2006, 8: 1292—1298
[ 54 ]  Nyten A, Abouimrane A, ArmandM, et al. Electrochem. Commun. , 2005, 7: 156—160
[ 55 ]  Dominko R. J. Power Sources, 2008, 184: 462—468
[ 56 ]  Larsson P, Ahuja R, Nyten A, et al. Electrochem. Commun. ,2006, 8: 797—800
[ 57 ]  Wu S Q, Zhu Z Z, Yang Y, et al. Comput. Mater. Sci. , 2009,44: 1243—1251
[ 58 ]  Gong Z L, Li Y X, He G N, et al. Electrochem. Solid-State Lett. , 2008, 11: A60—A63
[ 59 ]  Berg H, Goransson K, Nolang B, et al. J. Mater. Chem. ,1999, 9: 2813—2820
[ 60 ]  Vethoeven V W J, Schepper IM, Nachtegaal G, et al. Phys.Rev. Lett. , 2001, 86: 4314—4317
[ 61 ]  Chung K Y, Kim K B. Electrochim. Acta, 2004, 49:3327—3337
[ 62 ]  Vetter J, Novak P, Wagner M R, et al. J. Power Sources,2005, 147: 269—281
[ 63 ]  Chen Z H, Amine K. J. Electrochem. Soc. , 2006, 153:A316—A320
[ 64 ]  Bakenov Z, Taniguchi I. Solid State Ionics, 2005, 176: 1027—1034
[ 65 ]  Han J M, Myung S T, Sun Y K. J Electrochem. Soc. , 2006,153: A1290—A1295
[ 66 ]  ChoiW, Manthiram A. J Electrochem. Soc. , 2007, 154:A614—A618
[ 67 ]  Yu L H, Qiu X P, Xi J Y, et al. Electrochim. Acta, 2006, 51:6406—6411
[ 68 ]  Tu J, Zhao X B, Cao G S, et al. Electrochim. Acta, 2006, 51:6456—6462
[ 69 ]  Li T, QiuW H, Zhang G H, et al. J. Power Sources, 2007,174: 515—518
[ 70 ]  Fang Y K, Wang J M, Ye X B, et al. Mater. Chem. Phys. ,2007, 103: 19—23
[ 71 ]  Masquelier C, Wurm C, Rodriguez-Carvajal J, et al. Chem. Mater. , 2000, 12: 525—532
[ 72 ]  Gaubicher J, Wurm C, Goward G, et al. Chem. Mater. , 2000,12: 3240—3242
[ 73 ]  Yin S C, Grondey H, Strobel P, et al. J. Am. Chem. Soc. ,2003, 125: 10402—10411
[ 74 ]  SaidiM Y, Barker J, Huang H, et a1. J. Power Sources, 2003,l19 /121: 266—272
[ 75 ]  Zhou X C, Liu YM, Guo Y L. Electrochim. Acta, 2009, 54:2253—2258
[ 76 ]  RenM M, Zhou Z, Gao X P, et al. J. Phys. Chem. C, 2008,112: 5689—5693
[ 77 ]  Chang C X, Xiang J F, Shi X X, et al. Electrochim. Acta,2008, 53: 2232—2237
[ 78 ]  于锋(Yu F) , 张敬杰( Zhang J J) , 杨岩峰(Yang Y F) 等. 无机材料学报( J. Inorg. Mater. ) , 2009, 24: 349—352
[ 79 ]  Huang H, Yin S C, Kerr T, et al. Adv. Mater. , 2002, 14:1525—1528
[ 80 ]  Rui X H, Li C, Chen C H. Electrochim. Acta, 2009, 54:3374—3380
[ 81 ]  Yin S C, Strobel P S, Grondey H, et al. Chem. Mater. , 2004,16: 1456—1465

[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[4] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[5] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[6] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[7] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[8] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[9] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[10] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[11] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[12] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[13] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[14] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[15] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.