English
新闻公告
More
化学进展 2009, Vol. 21 Issue (0708): 1655-1661 前一篇   后一篇

• 综述与评论 •

直接甲醇燃料电池的甲醇浓度控制方法*

王荣蓉1;金宝舵2;李春文1,3**;王泽2;谢晓峰2**;丁青青4   

  1. (1. 清华大学自动化系   |北京100084;2. 清华大学核能与新能源技术研究院  |北京 100084;3.河南省信息化电器重点实验室  | 郑州 450002;4.清华大学电机工程与应用电子技术系   |北京 100084)
  • 收稿日期:2008-07-18 修回日期:2009-03-02 出版日期:2009-08-24 发布日期:2009-06-30
  • 通讯作者: 李春文;谢晓峰 E-mail:lcw@tsinghua.edu.cn; xiexf@tsinghua.edu.cn
  • 基金资助:

    863项目;国家自然科学基金

Methanol Concentration Control Strategies for Direct Methanol Fuel Cells

Wang Rongrong1|Jin Baoduo2|Li Chunwen1,3**|Wang Ze2|Xie Xiaofeng2**; Ding Qingqing4   

  1. (1. Department of Automation, Tsinghua University, Beijing 100084, China|2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China|3.Key Laboratory of Information Electric Apparatus in Henan Province, Zhengzhou 450002, China|4.Department of  Electrical Engineering, Tsinghua University, Beijing 100084, China)
  • Received:2008-07-18 Revised:2009-03-02 Online:2009-08-24 Published:2009-06-30
  • Contact: Li Chunwen; Xie Xiaofeng E-mail:lcw@tsinghua.edu.cn; xiexf@tsinghua.edu.cn

直接甲醇燃料电池(DMFC)直接以甲醇为阳极燃料,具有系统结构简单、体积能量密度高、燃料补充方便等特点,非常适合用于小型移动电源。甲醇浓度对DMFC性能和燃料利用效率的影响非常大,甲醇浓度高低直接决定DMFC输出性能好坏,控制好DMFC中的甲醇浓度,对其寿命长短起着至关重要的作用。本文将目前已有的甲醇浓度控制方法分为有甲醇浓度传感器和无甲醇浓度传感器两大类,评述了这些浓度控制方法的研究现状和优缺点,并展望了甲醇浓度控制方法的趋势。

Direct methanol fuel cells (DMFCs) are suitable energy conversion devices for portable applications due to their high energy density for the generation of electric power from fuel. IIt is of great importance to control the methanol concentration as it is closely related to the performance and fuel utilization. In this paper, the known methanol concentration control strategies for DMFC are divided into two types: strategies with and without concentration sensors. The advantages and disadvantages of these control strategies are reviewed and compared, and the development trend of the concentration control strategies for DMFCs is prospected.

Contents
1 Introduction
2 Sensor-less concentration control strategies
2.1 Control strategies based on physical properties of polymers
2.2 Control strategies based on physical properties of metals
2.3 Control strategies with density-based fuel indicator
2.4 Fuel supplying apparatus with a polymer to control rate of fuel release
2.5 Control strategies based on release rate of CO2
2.6 Control strategies with a porous plate
2.7 Vapor fuel delivery system
2.8 Control strategies based on the performance of DMFC stack
3 Methanol concentration control strategies with concentration sensors
4 Conclusion

中图分类号: 

()

[ 1 ]  衣宝廉(Yi B L) . 燃料电池———高效、环境友好的发电方式( Fuel Cell ———High Efficiency , Environment Friendly Generate Electricity Manner) . 北京: 化学工业出版社(Beijing : Chemical Industry Press) , 2001
[ 2 ]  Lu GQ , Wang C Y. J . Power Sources , 2000 , 86 : 111 —116
[ 3 ]  Dyer C K. J . Power Sources , 2002 , 86 : 31 —34
[ 4 ]  Icardi U A , Specchia S , Fontana GJ R , Saracco G, Specchia V. J .Power Sources , 2008 , 176 : 460 —467
[ 5 ]  王诚(Wang C) , 毛宗强(Mao Z Q) , 陈荣华(Chen R H) , 王革华(Wang G H) , 谢晓峰(Xie X F) . 化学进展( Progress in Chemistry) , 2006 , 18 (1) : 30 —35
[ 6 ]  Chu D , Jiang R Z. Electrochimica Acta , 2006 , 51 : 5829 —5835
[ 7 ]  Kamarudin S K, Daud W R W, Ho S L , et al . J . Power Sources ,2007 , 163 : 743 —754
[ 8 ]  Sundmacher K, Schultz T, Zhou S , et al . Chemical Engineering Science , 2001 , 56 : 333 —341
[ 9 ]  Wee J H. J . Power Sources , 2006 , 161 : 1 —10
[10 ]  Abdelkareem M A , Morohashi N , Nakagawa N. J . Power Sources ,2007 , 172 : 659 —665
[11 ]  Liu J G, Zhao T S , Chen R , et al . Electrochemistry Communications , 2005 , 7 : 288 —294
[12 ]  Neburchilov V , Martin J , Wang H J , et al . J . Power Sources ,2007 , 169 : 221 —238
[13 ]  Kulikovsky A A , Schmitz H , Wippermann K, et al . Electrochemistry Communications , 2006 , 8 : 754 —760
[14 ]  Yang YM, Liang Y C. J . Power Sources , 2007 , 165 : 185 —195
[15 ]  Guo Z, Cao Y. US 0046123A1 , 2006
[16 ]  Guo Z, Cao Y. J . Power Sources , 2004 , 132 : 86 —91
[17 ]  Altamont GB , Hirsch R S. US 0157385A1 , 2003
[18 ]  Bellouard Y. Materials Science and Engineering A , 2008 , 481 :582 —589
[19 ]  Morgan N B. Materials Science and Engineering A , 2004 , 378 :16 —23
[20 ]  Gogel V , Frey T, Zhu Y S , et al . J . Power Sources , 2004 , 127 :172 —180
[21 ]  Gore M P , Mann L C. US 6789421B2 , 2004
[22 ]  Gore M P , Mann L C. US 0131663A1 , 2003
[23 ]  Huang C J , Lai C K, Huang K T, et al . US 0191590A1 , 2004
[24 ]  Chan Y H , Zhao T S , Chen R , et al . J . Power Sources , 2008 ,176 : 183 —190
[25 ]  Chen R , Zhao T S , Liu J G. J . Power Sources , 2006 , 157 : 351 —357
[26 ]  Abdelkareem M A , Nakagawa N. J . Power Sources , 2006 , 162 :114 —123
[27 ]  Nakagawa N , Abdelkareem M A. J . Power Sources , 2006 , 160 :105 —115
[28 ]  Nakagawa N , Kamata K, Nakazawa A , et al . Electrochemistry ,2006 , 74 : 221 —225
[29 ]  Liu F Q , Lu GQ , Wang C Y. J . Electrochem. Soc. , 2006 , 153 :A543 —A553
[30 ]  Guo Z, Faghri A. J . Power Sources , 2007 , 167 : 378 —390
[31 ]  Kim H K. J . Power Sources , 2006 , 162 : 1232 —1235
[32 ]  Yonetsu M, Takashita M, Sumino H. US 6506513 , 2003
[33 ]  Hockaday R G, Patrick S T, Marc D D , et al . US 6630266 , 2001
[34 ]  Eccariusa S , Krause F , Beard KA. J . Power Sources , 2008 , 182 :565 —579
[35 ]  Chen C Y, Liu D H , Huang C L , et al . J . Power Sources , 2007 ,167 : 442 —449
[36 ]  Chiu YJ , Lien H C. J . Power Sources , 2006 , 159 : 1162 —1168
[37 ]  Wang R R , Xie X F , Ding Q Q. J . Power Sources , 2008 , 185 :1272 —1272
[38 ]  Ha J H , KimJ H , Joh H I , et al . International Journal of Hydrogen Energy , 2008 , 33 : 7163 —7171
[39 ]  Xie C G, Bostaph J , Pavio J . J . Power Sources , 2004 , 136 : 55 —65
[40 ]  Xie C G. US 6942939B2 , 2005
[41 ]  Sun W, Sun G Q , Yang W Q , et al . J . Power Sources , 2006 , 162 :1115 —1121
[42 ]  Zhao H B , Shen J , Zhang J J , et al . J . Power Sources , 2006 , 159 :626 —636

[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[3] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[4] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[5] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[6] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[7] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[8] 郭驰, 张望, 涂吉, 陈盛锐, 梁济元, 郭向可. 三维铜基集流体的构筑及在锂金属电池中的应用[J]. 化学进展, 2022, 34(2): 370-383.
[9] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[10] 郭丽君, 李瑞, 刘建新, 席庆, 樊彩梅. 半导体光催化分解水的析氢效率研究[J]. 化学进展, 2020, 32(1): 46-54.
[11] 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 大面积钙钛矿太阳能电池[J]. 化学进展, 2019, 31(7): 1031-1043.
[12] 康健, 张乐, 甄方正, 单迎双, 马跃龙, 陈浩. 高流明密度激光照明用光转换材料[J]. 化学进展, 2019, 31(2/3): 322-336.
[13] 范淑芬, 辛佳, 黄静怡, 荣伟莉, 郑西来. 基于零价铁的地下水化学还原修复体系中的电子转移有效性和电子竞争机制[J]. 化学进展, 2018, 30(7): 1035-1046.
[14] 康建喜, 王世荣, 孙孟娜, 刘红丽, 李祥高. 体异质结型聚合物太阳能电池中的微观形貌调控方法[J]. 化学进展, 2017, 29(4): 400-411.
[15] 古晓晓, 杜宝吉, 李云辉, 高莹*, 李丹, 汪尔康. 基于纳米材料的基因载体[J]. 化学进展, 2015, 27(8): 1093-1101.